Econstudentlog

A few diabetes papers of interest

i. Burden of Diabetic Foot Ulcers for Medicare and Private Insurers.

Some observations from the paper (my bold):

According to the American Diabetes Association, the annual cost of diabetes, which affects 22.3 million people in the U.S., was $245 billion in 2012: $176 billion in excess health care expenditures and $69 billion in reduced workforce productivity (1). While much of the excess health care cost is attributable to treatment of diabetes itself, a substantial amount of the cost differential arises via treatment of chronic complications such as those related to the heart, kidneys, and nervous system (1).

One common complication of diabetes is the development of foot ulcers. Historically, foot ulcers have been estimated to affect 1–4% of patients with diabetes annually (2,3) and as many as 25% of the patients with diabetes over their lifetimes (2). More recently, Margolis et al. (3) have estimated that the annual incidence of foot ulcers among patients with diabetes may be as high as 6%. Treatment of diabetic foot ulcers (DFUs) includes conventional wound management (e.g., debridement, moist dressings, and offloading areas of high pressure or friction) as well as more sophisticated treatments such as bioengineered cellular technologies and hyperbaric oxygen therapy (HBO) (4).

DFUs often require extensive healing time and are associated with increased risk for infections and other sequelae that can result in severe and costly outcomes (4). […] DFU patients have a low survival prognosis, with a 3-year cumulative mortality rate of 28% (6) and rates among amputated patients approaching 50% (7).”

“While DFU patients can require substantial amounts of resource use, little is known about the burden of DFUs imposed on the U.S. health care system and payers. In fact, we are aware of only two studies to date that have estimated the incremental medical resource use and costs of DFU beyond that of diabetes alone (6,8). Neither of these analyses, however, accounted for the many underlying differences between DFU and non-DFU patient populations, such as disproportionate presence of costly underlying comorbid conditions among DFU patients […] Other existing literature on the burden of DFUs in the U.S. calculated the overall health care costs (as opposed to incremental) without reference to a non-DFU control population (911). As a result of the variety of data and methodologies used, it is not surprising that the burden of DFUs reported in the literature is wide-ranging, with the average per-patient costs, for example, ranging from $4,595 per episode (9) to over $35,000 annually for all services (6).

The objective of this study was to expand and improve on previous research to provide a more robust, current estimate of incremental clinical and economic burden of DFUs. To do so, this analysis examined the differences in medical resource use and costs between patients with DFUs during a recent time period (January 2007–September 2011) and a matched control population with diabetes but without DFUs, using administrative claims records from nationally representative databases for Medicare and privately insured populations. […] [Our] criteria resulted in a final analytic sample of 231,438 Medicare patients, with 29,681 (12.8%) identified as DFU patients and the remaining 201,757 comprising the potential control population of non-DFU diabetic patients. For private insurance, 119,018 patients met the sample selection criteria, with 5,681 (4.8%) DFU patients and 113,337 potential controls (Fig. 1).”

Prior to matching, DFU patients were statistically different from the non-DFU control population on nearly every dimension examined during the 12-month preindex period. […] The matching process resulted in the identification of 27,878 pairs of DFU and control patients for Medicare and 4,536 pairs for private insurance that were very similar with regards to preindex patient characteristics […] [I]mportantly, the matched DFU and control groups had comparable health care costs during the 12 months prior to the index date (Medicare, $17,744 DFU and controls; private insurance, $14,761 DFU vs. $14,766 controls). […] Despite having matched the groups to ensure similar patient characteristics, DFU patients used significantly (P < 0.0001) more medical resources during the 12-month follow-up period than did the matched controls […]. Among matched Medicare patients, DFU patients had 138.2% more days hospitalized, 85.4% more days of home health care, 40.6% more ED visits, and 35.1% more outpatient/physician office visits. The results were similar for the privately insured DFU patients, who had 173.5% more days hospitalized, 230.0% more days of home health care, 109.0% more ED visits, and 42.5% more outpatient/physician office visits than matched controls. […] The rate of lower limb amputations was 3.8% among matched Medicare DFU patients and 5.0% among matched privately insured DFU patients. In contrast, observed lower limb amputation rates among diabetic patients without foot ulcer were only 0.04% in Medicare and 0.02% in private insurance.”

Increased medical resource utilization resulted in DFU patients having approximately twice the costs as the matched non-DFU controls […], with annual incremental per-patient medical costs ranging from $11,710 for Medicare ($28,031 vs. $16,320; P < 0.0001) to $15,890 for private insurance ($26,881 vs. $10,991; P < 0.0001). All places of service (i.e., inpatient, ED, outpatient/physician office, home health care, and other) contributed approximately equally to the cost differential among Medicare patients. For the privately insured, however, increased inpatient costs ($17,061 vs. $6,501; P < 0.0001) were responsible for nearly two-thirds of the overall cost differential, […] resulting in total incremental direct health care (i.e., medical + prescription drug) costs of $16,883 ($31,419 vs. $14,536; P < 0.0001). Substantial proportions of the incremental medical costs were attributable to claims with DFU-related diagnoses or procedures for both Medicare (45.1%) and privately insured samples (60.3%).”

“Of the 4,536 matched pairs of privately insured patients, work-loss information was available for 575 DFU patients and 857 controls. DFU patients had $3,259 in excess work-loss costs ($6,311 vs. $3,052; P < 0.0001) compared with matched controls, with disability and absenteeism comprising $1,670 and $1,589 of the overall differential, respectively […] The results indicate that compared with diabetic patients without foot ulcers, DFU patients miss more days of work due to medical-related absenteeism and to disability, imposing additional burden on employers.”

“These estimates indicate that DFU imposes substantial burden on payers beyond that required to treat diabetes itself. For example, prior research has estimated annual per-patient incremental health care expenditures for patients with diabetes (versus those without diabetes) of approximately $7,900 (1). The estimates of this analysis suggest that the presence of DFU further compounds these incremental treatment costs by adding $11,710 to $16,883 per patient. Stated differently, the results indicate that the excess health care costs of DFU are approximately twice that attributable to treatment of diabetes itself, and that the presence of DFU approximately triples the excess cost differential versus a population of patients without diabetes.

“Using estimates of the total U.S. diabetes population (22.3 million) (1) and the midpoint (3.5%) of annual DFU incidence estimates (1–6%) (2,3), the results of this analysis suggest an annual incremental payer burden of DFU ranging from $9.1 billion (22.3 million patients with diabetes × 3.5% DFU incidence × $11,710 Medicare cost differential) to $13.2 billion (22.3 million patients with diabetes × 3.5% DFU incidence × $16,883 private insurance cost differential). These estimates, moreover, likely understate the actual burden of DFU because the incremental costs referenced in this calculation do not include excess work-loss costs described above, prescription drug costs for Medicare patients, out-of-pocket costs paid by the patient, costs borne by supplemental insurers, and other (non-work loss) indirect costs such as those associated with premature mortality, reduced quality of life, and informal caregiving.”

ii. Contributors to Mortality in High-Risk Diabetic Patients in the Diabetes Heart Study.

“Rates of cardiovascular disease (CVD) are two- to fourfold greater in individuals with type 2 diabetes compared with nondiabetic individuals, and up to 65% of all-cause mortality among individuals with type 2 diabetes is attributed to CVD (1,2). However, the risk profile is not uniform for all individuals affected by diabetes (35). Coronary artery calcified plaque (CAC), determined using computed tomography, is a measure of CVD burden (6,7). CAC scores have been shown to be an independent predictor of CVD outcomes and mortality in population-based studies (810) and a powerful predictor of all-cause and CVD mortality in individuals affected by type 2 diabetes (4,1115).

In the Diabetes Heart Study (DHS), individuals with CAC >1,000 were found to have greater than 6-fold (16) and 11-fold (17) increased risk for all-cause mortality and CVD mortality, respectively, after 7 years of follow-up. With this high risk for adverse outcomes, it is noteworthy that >50% of the DHS sample with CAC >1,000 have lived with this CVD burden for (now) an average of over 12 years. This suggests that outcomes vary in the type 2 diabetic patient population, even among individuals with the highest risk. This study examined the subset of DHS participants with CAC >1,000 and evaluated whether differences in a range of clinical factors and measurements, including modifiable CVD risk factors, provided further insights into risk for mortality.”

“This investigation focused on 371 high-risk participants (from 260 families) […] The goal of this analysis was to identify clinical and other characteristics that influence risk for all-cause mortality in high-risk (baseline CAC >1,000) DHS participants. […] a predominance of traditional CVD risk factors, including older age, male sex, elevated BMI, and high rates of dyslipidemia and hypertension, was evident in this high-risk subgroup (Table 1). These participants were followed for 8.2 ± 3.0 years (mean ± SD), over which time 41% died. […] a number of indices continued to significantly predict outcome following adjustment for other CVD risk factors (including age, sex, and medication use) […]. Higher cholesterol and LDL concentrations were associated with an increased risk (∼1.3-fold) for mortality […] Slightly larger increases in risk for mortality were observed with changes in kidney function (1.3- to 1.4-fold) and elevated CRP (∼1.4-fold) […] use of cholesterol-lowering medication was less common among the deceased participants; those reporting no use of cholesterol-lowering medication at baseline were at a 1.4-fold increased risk of mortality […] these results confirm that, even among this high-risk group, heterogeneity in known CVD risk factors and associations with adverse outcomes are still observed and support their ongoing consideration as useful tools for individual risk assessment. Finally, the data presented here suggest that use of cholesterol-lowering medication was strongly associated with protection, supporting the known beneficial effects of cholesterol management on CVD risk (28,29). […] data suggest that cholesterol-lowering medications may be used less than recommended and need to be more aggressively targeted as a critical modifiable risk factor.”

iii. Neurological Consequences of Diabetic Ketoacidosis at Initial Presentation of Type 1 Diabetes in a Prospective Cohort Study of Children.

“Patients aged 6–18 years with and without DKA at diagnosis were studied at four time points: <48 h, 5 days, 28 days, and 6 months postdiagnosis. Patients underwent magnetic resonance imaging (MRI) and spectroscopy with cognitive assessment at each time point. Relationships between clinical characteristics at presentation and MRI and neurologic outcomes were examined using multiple linear regression, repeated-measures, and ANCOVA analyses.”

“With DKA, cerebral white matter showed the greatest alterations with increased total white matter volume and higher mean diffusivity in the frontal, temporal, and parietal white matter. Total white matter volume decreased over the first 6 months. For gray matter in DKA patients, total volume was lower at baseline and increased over 6 months. […] Of note, although changes in total and regional brain volumes over the first 5 days resolved, they were associated with poorer delayed memory recall and poorer sustained and divided attention at 6 months. Age at time of presentation and pH level were predictors of neuroimaging and functional outcomes.

CONCLUSIONS DKA at type 1 diabetes diagnosis results in morphologic and functional brain changes. These changes are associated with adverse neurocognitive outcomes in the medium term.”

“This study highlights the common nature of transient focal cerebral edema and associated impaired mental state at presentation with new-onset type 1 diabetes in children. We demonstrate that alterations occur most markedly in cerebral white matter, particularly in the frontal lobes, and are most prominent in the youngest children with the most dramatic acidemia. […] early brain changes were associated with persisting alterations in attention and memory 6 months later. Children with DKA did not differ in age, sex, SES, premorbid need for school assistance/remediation, or postdiagnosis clinical trajectory. Earlier diagnosis of type 1 diabetes in children may avoid the complication of DKA and the neurological consequences documented in this study and is worthy of a major public health initiative.”

“In relation to clinical risk factors, the degree of acidosis and younger age appeared to be the greatest risk factors for alterations in cerebral structure. […] cerebral volume changes in the frontal, temporal, and parietal regions in the first week after diagnosis were associated with lower attention and memory scores 6 months later, suggesting that functional information processing difficulties persist after resolution of tissue water increases in cerebral white matter. These findings have not been reported to date but are consistent with the growing concern over academic performance in children with diabetes (2). […] Brain injury should no longer be considered a rare complication of DKA. This study has shown that it is both frequent and persistent.” (my bold)

iv. Antihypertensive Treatment and Resistant Hypertension in Patients With Type 1 Diabetes by Stages of Diabetic Nephropathy.

“High blood pressure (BP) is a risk factor for coronary artery disease, heart failure, and stroke, as well as for chronic kidney disease. Furthermore, hypertension has been estimated to affect ∼30% of patients with type 1 diabetes (1,2) and both parallels and precedes the worsening of kidney disease in these patients (35). […] Despite strong evidence that intensive treatment of elevated BP reduces the risk of cardiovascular disease and microvascular complications, as well as improves the prognosis of patients with diabetic nephropathy (especially with the use of ACE inhibitors [ACEIs] and angiotensin II antagonists [angiotensin receptor blockers, ARBs]) (1,911), treatment targets and recommendations seem difficult to meet in clinical practice (1215). This suggests that the patients might either show poor adherence to the treatment and lifestyle changes or have a suboptimal drug regimen. It is evident that most patients with hypertension might require multiple-drug therapy to reach treatment goals (16). However, certain subgroups of the patients have been considered to have resistant hypertension (RH). RH is defined as office BP that remains above target even after using a minimum of three antihypertensive drugs at maximal tolerated doses, from different classes, one of which is a diuretic. Also, patients with controlled BP using four or more antihypertensive drugs are considered resistant to treatment (17).”

“The true prevalence of RH is unknown, but clinical trials suggest a share between 10 and 30% of the hypertensive patients in the general population (18). […] Only a few studies have considered BP control and treatment in patients with type 1 diabetes (2,15,22). Typically these studies have been limited to a small number of participants, which has not allowed stratifying of the patients according to the nephropathy status. The rate of RH is therefore unknown in patients with type 1 diabetes in general and with respect to different stages of diabetic nephropathy. Therefore, we estimated to what extent patients with type 1 diabetes meet the BP targets proposed by the ADA guidelines. We also evaluated the use of antihypertensive medication and the prevalence of RH in the patients stratified by stage of diabetic nephropathy.”

“[A]ll adult patients with type 1 diabetes from >80 hospitals and primary healthcare centers across Finland were asked to participate. Type 1 diabetes was defined by age at onset of diabetes <40 years, C-peptide ≤0.3 nmol/L, and insulin treatment initiated within 1 year of diagnosis, if C-peptide was not measured. […] we used two different ADA BP targets: <130/85 mmHg, which was the target until 2000 (6), and <130/80 mmHg, which was the target between 2001 and 2012 (7). Patients were divided into groups based on whether their BP had reached the target or not and whether the antihypertensive drug was in use or not. […] uncontrolled hypertension was defined as failure to achieve target BP, based on these two different ADA guidelines, despite use of antihypertensive medication. RH was defined as failure to achieve the goal BP (<130/85 mmHg) even after using a minimum of three antihypertensive drugs, from different classes, one of which was a diuretic. […] On the basis of eGFR (mL/min/1.73 m2) level, patients were classified into five groups according to the Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines: stage 1 eGFR ≥90, stage 2 eGFR 60–89, stage 3 eGFR 30–59, stage 4 eGFR 15–29, and stage 5 eGFR <15. Patients who were on dialysis were classified into stage 5. […] A total of 3,678 patients with complete data on systolic and diastolic BP and nephropathy status were identified from the FinnDiane database. […] The mean age was 38.0 ± 12.0 and mean duration of diabetes 22.1 ± 12.3 years.  […] The patients with advanced diabetic nephropathy had higher BP, worse dyslipidemia, poorer glycemic control, and more insulin resistance and macrovascular complications. BMI values were lower in the dialysis patients, probably due to renal cachexia.”

“Of all patients, 60.9% did not reach the BP target <130/85 mmHg, and the proportion was 70.3% with the target of <130/80 mmHg. […] The patients who were not on target had higher age and longer duration of diabetes and were more likely to be men. They also had poorer glycemic and lipid control as well as more micro- and macrovascular complications. […] Based on the BP target <130/85 mmHg, more than half of the patients in the normoalbuminuria group did not reach the BP target, and the share increased along with the worsening of nephropathy; two-thirds of the patients in the microalbuminuria group and fourfifths in the macroalbuminuria group were not on target, while even 90% of the dialysis and kidney transplant patients did not reach the target (Fig. 1A). Based on the stricter BP target of <130/80 mmHg, the numbers were obviously worse, but the trend was the same (Fig. 1B).”

“About 37% of the FinnDiane patients had antihypertensive treatment […] Whereas 14.1% of the patients with normal AER [Albumin Excretion Rate] had antihypertensive treatment, the proportions were 60.5% in the microalbuminuric, 90.3% in the macroalbuminuric, 88.6% in the dialysis, and 91.2% in the kidney transplant patients. However, in all groups, only a minority of the patients had BP values on target with the antihypertensive drug treatment they were prescribed […] The mean numbers of antihypertensive drugs varied within the nephropathy groups between those who had BP on target and those who did not […]. However, only in the micro- (P = 0.02) and macroalbuminuria (P = 0.003) groups were the mean numbers of the drugs higher if the BP was not on target, compared with those who had reached the targets. Notably, among the patients with normoalbuminuria who had not reached the BP target, 58% and, of the patients with microalbuminuria, 61% were taking only one antihypertensive drug. In contrast, more than half of the dialysis and 40% of the macroalbuminuric and transplanted patients, who had not reached the targets, had at least three drugs in their regimen. Moreover, one-fifth of the dialysis, 15% of the macroalbuminuric, and 10% of the transplanted patients had at least four antihypertensive drugs in use without reaching the target (Table 2). Almost all patients treated with antihypertensive drugs in the normo-, micro-, and macroalbuminuria groups (76% of normo-, 93% of micro-, and 89% of macrolbuminuric patients) had ACEIs or ARBs in the regimen. The proportions were lower in the ESRD groups: 42% of the dialysis and 29% of the transplanted patients were taking these drugs.”

“In general, the prevalence of RH was 7.9% for all patients with type 1 diabetes (n = 3,678) and 21.2% for the antihypertensive drug–treated patients (n = 1,370). The proportion was higher in men than in women (10.0 vs. 5.7%, P < 0.0001) […] When the patients were stratified by nephropathy status, the figures changed; in the normoalbuminuria group, the prevalence of RH was 1.2% of all and 8.7% of the drug treated patients. The corresponding numbers were 4.7 and 7.8% for the microalbuminuric patients, 28.1 and 31.2% for the macroalbuminuric patients, 36.6 and 41.3% for the patients on dialysis, and 26.3 and 28.8% for the kidney-transplanted patients, respectively […] The prevalence of RH also increased along with the worsening of renal function. The share was 1.4% for all and 7.4% for drug-treated patients at KDOQI stage 1. The corresponding numbers were 3.8 and 10.0% for the patients at stage 2, 26.6 and 30.0% for the patients at stage 3, 54.8 and 56.0% for the patients at stage 4, and 48.0 and 52.1% for those at stage 5, when kidney transplantation patients were excluded. […] In a multivariate logistic regression analysis, higher age, lower eGFR, higher waist-to-hip ratio, higher triglycerides, as well as microalbuminuria and macroalbuminuria, when normoalbuminuria was the reference category, were independently associated with RH […] A separate analysis also showed that dietary sodium intake, based on urinary sodium excretion rate, was independently associated with RH.”

“The current study shows that the prevalence of RH in patients with type 1 diabetes increases alongside the worsening of diabetic nephropathy. Whereas less than one-tenth of the antihypertensive drug–treated patients with normo- or microalbuminuria met the criteria for RH, the proportions were substantially higher among the patients with overt nephropathy: one-third of the patients with macroalbuminuria or a transplanted kidney and even 40% of the patients on dialysis. […] the prevalence of RH for the drug-treated patients was even higher (56%) in patients at the predialysis stage (eGFR 15–29). The findings are consistent with other studies that have demonstrated that chronic kidney disease is a strong predictor of failure to achieve BP targets despite the use of three or more different types of antihypertensive drugs in the general hypertensive population (26).”

“The prevalence of RH was 21.2% of the patients treated with antihypertensive drugs. Previous studies have indicated a prevalence of RH of 13% among patients being treated for hypertension (1921,27). […] the prevalence [of RH] seems to be […] higher among the drug-treated type 1 diabetic patients. These figures can only partly be explained by the use of a lower treatment target for BP, as recommended for patients with diabetes (6), since even when we used the BP target recommended for hypertensive patients (<140/90 mmHg), our data still showed a higher prevalence of RH (17%).”

“The study also confirmed previous findings that a large number of patients with type 1 diabetes do not achieve the recommended BP targets. Although the prevalence of RH increased with the severity of diabetic nephropathy, our data also suggest that patients with normo- and microalbuminuria might have a suboptimal drug regimen, since the majority of those who had not reached the BP target were taking only one antihypertensive drug. […] There is therefore an urgent need to improve antihypertensive treatment, not only in patients with overt nephropathy but also in those who have elevated BP without complications or early signs of renal disease. Moreover, further emphasis should be placed on the transplanted patients, since it is well known that hypertension affects both graft and patient survival negatively (30).” (my bold)

v. Association of Autoimmunity to Autonomic Nervous Structures With Nerve Function in Patients With Type 1 Diabetes: A 16-Year Prospective Study.

“Neuropathy is a chronic complication that includes a number of distinct syndromes and autonomic dysfunctions and contributes to increase morbidity and mortality in the diabetic population. In particular, cardiovascular autonomic neuropathy (CAN) is an independent risk factor for mortality in type 1 diabetes and is associated with poor prognosis and poor quality of life (13). Cardiovascular (CV) autonomic regulation rests upon a balance between sympathetic and parasympathetic innervation of the heart and blood vessels controlling heart rate and vascular dynamics. CAN encompasses several clinical manifestations, from resting tachycardia to fatal arrhythmia and silent myocardial infarction (4).

The mechanisms responsible for altered neural function in diabetes are not fully understood, and it is assumed that multiple mutually perpetuating pathogenic mechanisms may concur. These include dysmetabolic injury, neurovascular insufficiency, deficiency of neurotrophic growth factors and essential fatty acids, advanced glycosylation products (5,6), and autoimmune damage. Independent cross-sectional and prospective (713) studies identified circulating autoantibodies to autonomic nervous structures and hypothesized that immune determinants may be involved in autonomic nerve damage in type 1 diabetes. […] However, demonstration of a cause–effect relationship between antibodies (Ab) and diabetic autonomic neuropathy awaits confirmation.”

“We report on a 16-year follow-up study specifically designed to prospectively examine a cohort of patients with type 1 diabetes and aimed at assessing whether the presence of circulating Ab to autonomic nervous structures is associated with increased risk and predictive value of developing CAN. This, in turn, would be highly suggestive of the involvement of autoimmune mechanisms in the pathogenesis of this complication.”

“The present prospective study, conducted in young patients without established autonomic neuropathy at recruitment and followed for over 16 years until adulthood, strongly indicates that a cause–effect relationship may exist between auto-Ab to autonomic nervous tissues and development of diabetic autonomic neuropathy. Incipient or established CAN (22) reached a prevalence of 68% among the Ab-positive patients, significantly higher compared with the Ab-negative patients. […] Logistic regression analysis indicates that auto-Ab carry an almost 15-fold increased RR of developing an abnormal DB [deep breathing] test over 16 years and an almost sixfold increase of developing at least one abnormal CV [cardiovascular] test, independent of other variables. […] Circulating Ab to autonomic structures are associated with the development of autonomic dysfunction in young diabetic patients independent of glycemic control. […] autoimmune mechanisms targeting sympathetic and parasympathetic structures may play a primary etiologic role in the development and progression of autonomic dysfunction in type 1 diabetes in the long term. […] positivity for auto-Ab had a high positive predictive value for the later development of autonomic neuropathy.”

“Diabetic autonomic neuropathy, possibly the least recognized and most overlooked of diabetes complications, has increasingly gained attention as an independent predictor of silent myocardial ischemia and mortality, as consistently indicated by several cross-sectional studies (2,3,33). The pooled prevalence rate risk for silent ischemia is estimated at 1.96 by meta-analysis studies (5). In this report, established CAN (22) was detected in nearly 20% of young adult patients with acceptable metabolic control, after over approximately 23 years of diabetes duration, against 12% of patients of the same cohort with subtle asymptomatic autonomic dysfunction (one abnormal CV test) a decade earlier, in line with other studies in type 1 diabetes (2,24). Approximately 30% of the patients developed signs of peripheral somatic neuropathy not associated with autonomic dysfunction. This discrepancy suggests the participation of pathogenic mechanisms different from metabolic control and a distinct clinical course, as indicated by the DCCT study, where hyperglycemia had a less robust relationship with autonomic than somatic neuropathy (6).”

“Furthermore, this study shows that autonomic neuropathy, together with female sex and the occurrence of severe hypoglycemia, is a major determinant for poor quality of life in patients with type 1 diabetes. This is in agreement with previous reports (35) and linked to such invalidating symptoms as orthostatic hypotension and chronic diarrhea. […] In conclusion, the current study provides persuasive evidence for a primary pathogenic role of autoimmunity in the development of autonomic diabetic neuropathy. However, the mechanisms through which auto-Ab impair their target organ function, whether through classical complement action, proapoptotic effects of complement, enhanced antigen presentation, or channelopathy (26,39,40), remain to be elucidated.” (my bold)

vi. Body Composition Is the Main Determinant for the Difference in Type 2 Diabetes Pathophysiology Between Japanese and Caucasians.

“According to current understanding, the pathophysiology of type 2 diabetes is different in Japanese compared with Caucasians in the sense that Japanese are unable to compensate insulin resistance with increased insulin secretion to the same extent as Caucasians. Prediabetes and early stage diabetes in Japanese are characterized by reduced β-cell function combined with lower degree of insulin resistance compared with Caucasians (810). In a prospective, cross-sectional study of individuals with normal glucose tolerance (NGT) and impaired glucose tolerance (IGT), it was demonstrated that Japanese in Japan were more insulin sensitive than Mexican Americans in the U.S. and Arabs in Israel (11). The three populations also differed with regards to β-cell response, whereas the disposition index — a measure of insulin secretion relative to insulin resistance — was similar across ethnicities for NGT and IGT participants. These studies suggest that profound differences in type 2 diabetes pathophysiology exist between different populations. However, few attempts have been made to establish the underlying demographic or lifestyle-related factors such as body composition, physical fitness, and physical activity leading to these differences.”

“The current study aimed at comparing Japanese and Caucasians at various glucose tolerance states, with respect to 1) insulin sensitivity and β-cell response and 2) the role of demographic, genetic, and lifestyle-related factors as underlying predictors for possible ethnic differences in insulin sensitivity and β-cell response. […] In our study, glucose profiles from OGTTs [oral glucose tolerance tests] were similar in Japanese and Caucasians, whereas insulin and C-peptide responses were lower in Japanese participants compared with Caucasians. In line with these observations, measures of β-cell response were generally lower in Japanese, who simultaneously had higher insulin sensitivity. Moreover, β-cell response relative to the degree of insulin resistance as measured by disposition indices was virtually identical in the two populations. […] We […] confirmed the existence of differences in insulin sensitivity and β-cell response between Japanese and Caucasians and showed for the first time that a major part of these differences can be explained by differences in body composition […]. On the basis of these results, we propose a similar pathophysiology of type 2 diabetes in Caucasians and Japanese with respect to insulin sensitivity and β-cell function.”

Advertisements

October 12, 2017 Posted by | Cardiology, Diabetes, Epidemiology, Health Economics, Medicine, Nephrology, Neurology, Pharmacology, Studies | Leave a comment

Diabetes and the Brain (V)

I have blogged this book in some detail in the past, but I never really finished my intended coverage of the book. This post is an attempt to rectify this.

Below I have added some quotes and observations from some of the chapters I have not covered in my previous posts about the book. I bolded some key observations along the way.

A substantial number of studies have assessed the effect of type 2 diabetes on cognitive functioning with psychometric tests. The majority of these studies reported subtle decrements in individuals with type 2 diabetes relative to non-diabetic controls (2, 4). […] the majority of studies in patients with type 2 diabetes reported moderate reductions in neuropsychological test performance, mainly in memory, information-processing speed, and mental flexibility, a pattern that is also observed in aging-related cognitive decline. […] the observed cognitive decrements are relatively subtle and rather non-specific. […] All in all, disturbances in glucose and insulin metabolism and associated vascular risk factors are associated with modest reductions in cognitive performance in “pre-diabetic stages.” Consequently, it may well be that the cognitive decrements that can be observed in patients with type 2 diabetes also start to develop before the actual onset of the diabetes. […] Because the different vascular and metabolic risk factors that are clustered in the metabolic syndrome are strongly interrelated, the contribution of each of the individual factor will be difficult to assess.” 

“Aging-related changes on brain imaging include vascular lesions and focal and global atrophy. Vascular lesions include (silent) brain infarcts and white-matter hyperintensities (WMHs). WMHs are common in the general population and their prevalence increases with age, approaching 100% by the age of 85 (69). The prevalence of lacunar infarcts also increases with age, up to 5% for symptomatic infarcts and 30% for silent infarcts by the age of 80 (70). In normal aging, the brain gradually reduces in size, which becomes particularly evident after the age of 70 (71). This loss of brain volume is global […] age-related changes of the brain […] are often relatively more pronounced in older patients with type 2 […] A recent systematic review showed that patients with diabetes have a 2-fold increased risk of (silent) infarcts compared to non-diabetic persons (75). The relationship between type 2 diabetes and WMHs is subject to debate. […] there are now clear indications that diabetes is a risk factor for WMH progression (82). […] The presence of the APOE ε4 allele is a risk factor for the development of Alzheimer’s disease (99). Patients with type 2 diabetes who carry the APOE ε4 allele appeared to have a 2-fold increased risk of dementia compared to persons with either of these risk factors in isolation (100, 101).”

In adults with type 1 diabetes the occurrence of microvascular complications is associated with reduced cognitive performance (137) and accelerated cognitive decline (138). Moreover, type 1 diabetes is associated with decreased white-matter volume of the brain and diminished cognitive performance in particular in patients with retinopathy (139). Microvascular complications are also thought to play a role in the development of cognitive decline in patients with type 2 diabetes, but studies that have specifically examined this association are scarce. […] Currently there are no established specific treatment measures to prevent or ameliorate cognitive impairments in patients with diabetes.”

“Clinicians should be aware of the fact that cognitive decrements are relatively more common among patients with diabetes. […] it is important to note that cognitive complaints as spontaneously expressed by the patient are often a poor indicator of the severity of cognitive decrements. People with moderate disturbances may express marked complaints, while people with marked disturbances of cognition often do not complain at all. […] Diabetes is generally associated with relatively mild impairments, mainly in attention, memory, information-processing speed, and executive function. Rapid cognitive decline or severe cognitive impairment, especially in persons under the age of 60 is indicative of other underlying pathology. Potentially treatable causes of cognitive decline such as depression should be excluded. People who are depressed often present with complaints of concentration or memory.”

“Insulin resistance increases with age, and the organism maintains normal glucose levels as long as it can produce enough insulin (hyperinsulinemia). Some individuals are less capable than others to mount sustained hyperinsulinemia and will develop glucose intolerance and T2D (23). Other individuals with insulin resistance will maintain normal glucose levels at the expense of hyperinsulinemia but their pancreas will eventually “burn out,” will not be able to sustain hyperinsulinemia, and will develop glucose intolerance and diabetes (23). Others will continue having insulin resistance, may have or not have glucose intolerance, will not develop diabetes, but will have hyperinsulinemia and suffer its consequences. […] Elevations of adiposity result in insulin resistance, causing the pancreas to increase insulin to abnormal levels to sustain normal glucose, and if and when the pancreas can no longer sustain hyperinsulinemia, glucose intolerance and diabetes will ensue. However, the overlap between these processes is not complete (26). Not all persons with higher adiposity will develop insulin resistance and hyperinsulinemia, but most will. Not all persons with insulin resistance and hyperinsulinemia will develop glucose intolerance and diabetes, and this depends on genetic and other susceptibility factors that are not completely understood (25, 26). Some adults develop diabetes without going through insulin resistance and hyperinsulinemia, but it is thought that most will. The susceptibility to adiposity, that is, the risk of developing the above-described sequence in response to adiposity, varies by gender (4) and particularly by ethnicity. […] Chinese and Southeast Asians are more susceptible than Europeans to developing insulin resistance with comparable increases of adiposity (2).”

There is very strong evidence that adiposity, hyperinsulinemia, and T2D are related to cognitive impairment syndromes, whether AD [Alzheimer’s Disease], VD [Vascular Dementia], or MCI [Mild Cognitive Impairment], and whether the main mechanism is cerebrovascular disease or non-vascular mechanisms. However, more evidence is needed to establish causation. If the relation between these conditions and dementia were to be causal, the public health implications are enormous. […] Diabetes mellitus affects about 20% of adults older than 65 years of age […] two-thirds of the adult population in the United States are overweight or obese, and the short-term trend is for this to worsen. These trends are also being observed worldwide. […] We estimated that in New York City the presence of diabetes or hyperinsulinemia in elderly people could account for 39% of cases of AD (78).”

Psychiatric illnesses in general may be more common among persons with diabetes than in community-based samples, specifically affective and anxiety-related disorders (4). Persons with diabetes are twice as likely to have depression as non-diabetic persons (5). A review of 20 studies on the comorbidity of depression and diabetes found that the average prevalence was about 15%, and ranged from 8.5 to 40%, three times the rate of depressive disorders found in the general adult population of the United States (4–7). The rates of clinically significant depressive symptoms among persons with diabetes are even higher – ranging from 21.8 to 60.0% (8). Recent studies have indicated that persons with type II diabetes, accompanied by either major or minor depression, have significantly higher mortality rates than non-depressed persons with diabetes (9–10) […] A recent meta-analysis reported that patients with type 2 diabetes have a 2-fold increased risk of depression compared to non-diabetic persons (142). The prevalence of major depressive disorder in patients with type 2 diabetes was estimated at 11% and depressive symptoms were observed in 31% of the patients.” (As should be obvious from the above quotes the range of estimates vary a lot here, but the estimates tend to be high – US.)

Depression is an important risk factor for cardiovascular disease (Glassman, Maj & Sartorius is a decent book on these topics), and diabetes is also an established risk factor. Might this not lead to a hypothesis that diabetics who are depressed may do particularly poorly, with higher mortality rates and so on? Yes. …and it seems that this is also what people tend to find when they look at this stuff:

Persons with diabetes and depressive symptoms have mortality rates nearly twice as high as persons with diabetes and no depressive symptomatology (9). Persons with co-occurring medical illness and depression also have higher health care utilization leading to higher direct and indirect health care costs (12–13) […]. A meta-analysis of the relationship between depression and diabetes (types I and II) indicated that an increase in the number of depressive symptoms is associated with an increase in the severity and number of diabetic complications, including retinopathy, neuropathy, and nephropathy (15–17). Compared to persons with either diabetes or depression alone, individuals with co-occurring diabetes and depression have shown poorer adherence to dietary and physical activity recommendations, decreased adherence to hypoglycemic medication regimens, higher health care costs, increases in HgbA1c levels, poorer glycemic control, higher rates of retinopathy, and macrovascular complications such as stroke and myocardial infarction, higher ambulatory care use, and use of prescriptions (14, 18–22). Diabetes and depressive symptoms have been shown to have strong independent effects on physical functioning, and individuals experiencing either of these conditions will have worse functional outcomes than those with neither or only one condition (19–20). Nearly all of diabetes management is conducted by the patient and those with co-occurring depression may have poorer outcomes and increased risk of complications due to less adherence to glucose, diet, and medication regimens […] There is some evidence that treatment of depression with antidepressant and/or cognitive-behavioral therapies can improve glycemic control and glucose regulation without any change in the treatment for diabetes (27, 28) […] One important finding is [also] that treatment of depression seems to be able to halt atrophy of the hippocampus and may even lead to stimulation of neurogenesis of hippocampal cells (86).”

Diabetic neuropathy is a severe, disabling chronic condition that affects a significant number of individuals with diabetes. Long considered a disease of the peripheral nervous system, there is mounting evidence of central nervous system involvement. Recent advances in neuroimaging methods have led to a better understanding and refinement of how diabetic neuropathy affects the central nervous system. […] spinal cord atrophy is an early process being present not only in established-DPN [diabetic peripheral neuropathy] but also even in subjects with relatively modest impairments of nerve function (subclinical-DPN) […] findings […] show that the neuropathic process in diabetes is not confined to the peripheral nerve and does involve the spinal cord. Worryingly, this occurs early in the neuropathic process. Even at the early DPN stage, extensive and perhaps even irreversible damage may have occurred. […] it is likely that the insult of diabetes is generalised, concomitantly affecting the PNS and CNS. […] It is noteworthy that a variety of therapeutic interventions specifically targeted at peripheral nerve damage in DPN have thus far been ineffective, and it is possible that this may in part be due to inadequate appreciation of the full extent of CNS involvement in DPN.

Interestingly, if the CNS is also involved in the pathogenesis of (‘human’) diabetic neuropathy it may have some relevance to the complaint that some methods of diabetes-induction in animal models cause (secondary) damage to central structures in animal models – a complaint which I’ve previously made a note of e.g. in the context of my coverage of Horowitz & Samson’s book. The relevance of this depends quite a bit on whether it’s the same central structures that are affected in the animal models and in humans. It probably isn’t. These guys also discuss this stuff in some detail, though I won’t go into too much detail here. Some observations on related topics are however worth including here:

“Several studies examining behavioral learning have shown progressive deficits in diabetic rodents, whereas simple avoidance tasks are preserved. Impaired spatial learning and memory as assessed by the Morris water maze paradigm occur progressively in both the spontaneously diabetic BB/Worrat and STZ-induced diabetic rodents (1, 11, 12, 22, 41, 42). The cognitive components reflected by impaired Morris water maze performances involve problem-solving, enhanced attention and storage, and retrieval of information (43). […] Observations regarding cognition and plasticity in models characterized by hyperglycemia and insulin deficiency (i.e., alloxan or STZ-diabetes, BB/Wor rats, NOD-mice), often referred to as models of type 1 diabetes, are quite consistent. With respect to clinical relevance, it should be noted that the level of glycemia in these models markedly exceeds that observed in patients. Moreover, changes in cognition as observed in these models are much more rapid and severe than in adult patients with type 1 diabetes […], even if the relatively shorter lifespan of rodents is taken into account. […] In my view these models of “type 1 diabetes” may help to understand the pathophysiology of the effects of severe chronic hyperglycemia–hypoinsulinemia on the brain, but mimic the impact of type 1 diabetes on the brain in humans only to a limited extent.”

“Abnormalities in cognition and plasticity have also been noted in the majority of models characterized by insulin resistance, hyperinsulinemia, and (modest) hyperglycemia (e.g., Zucker fa/fa rat, Diabetic Zucker rat, db/db mouse, GK rat, OLETF rat), often referred to as models of type 2 diabetes. With regard to clinical relevance, it is important to note that although the endocrinological features of these models do mimic certain aspects of type 2 diabetes, the genetic defect that underlies each of them is not the primary defect encountered in humans with type 2 diabetes. Some of the genetic abnormalities that lead to a “diabetic phenotype” may also have a direct impact on the brain. […] some studies using these models report abnormalities in cognition and plasticity, even in the absence of hyperglycemia […] In addition, in the majority of available models insulin resistance and associated metabolic abnormalities develop at a relatively early age. Although this is practical for research purposes it needs to be acknowledged that type 2 diabetes is typically a disease of older age in humans. […] It is therefore still too early to determine the clinical significance of the available models in understanding the impact of type 2 diabetes on the brain. Further efforts into the development of a valid model are warranted.”

[A] key problem in clinical studies is the complexity and multifactorial nature of cerebral complications in relation to diabetes. Metabolic factors in patients (e.g., glucose levels, insulin levels, insulin sensitivity) are strongly interrelated and related to other factors that may affect the brain (e.g., blood pressure, lipids, inflammation, oxidative stress). Derangements in these factors in the periphery and the brain may be dissociated, for example, through the role of the blood–brain barrier, or adaptations of transport across this barrier, or through differences in receptor functions and post-receptor signaling cascades in the periphery and the brain. The different forms of treatments that patients receive add to the complexity. A key contribution of animal studies may be to single out individual components and study them in isolation or in combination with a limited number of other factors in a controlled fashion.

October 9, 2017 Posted by | Books, Cardiology, Diabetes, Epidemiology, Medicine, Neurology, Pharmacology | Leave a comment

A few diabetes papers of interest

i. Neurocognitive Functioning in Children and Adolescents at the Time of Type 1 Diabetes Diagnosis: Associations With Glycemic Control 1 Year After Diagnosis.

“Children and youth with type 1 diabetes are at risk for developing neurocognitive dysfunction, especially in the areas of psychomotor speed, attention/executive functioning, and visuomotor integration (1,2). Most research suggests that deficits emerge over time, perhaps in response to the cumulative effect of glycemic extremes (36). However, the idea that cognitive changes emerge gradually has been challenged (79). Ryan (9) argued that if diabetes has a cumulative effect on cognition, cognitive test performance should be positively correlated with illness duration. Yet he found comparable deficits in psychomotor speed (the most commonly noted area of deficit) in adolescents and young adults with illness duration ranging from 6 to 25 years. He therefore proposed a diathesis model in which cognitive declines in diabetes are especially likely to occur in more vulnerable patients, at crucial periods, in response to illness-related events (e.g., severe hyperglycemia) known to have an impact on the central nervous system (CNS) (8). This model accounts for the finding that cognitive deficits are more likely in children with early-onset diabetes, and for the accelerated cognitive aging seen in diabetic individuals later in life (7). A third hypothesized crucial period is the time leading up to diabetes diagnosis, during which severe fluctuations in blood glucose and persistent hyperglycemia often occur. Concurrent changes in blood-brain barrier permeability could result in a flood of glucose into the brain, with neurotoxic effects (9).”

“In the current study, we report neuropsychological test findings for children and adolescents tested within 3 days of diabetes diagnosis. The purpose of the study was to determine whether neurocognitive impairments are detectable at diagnosis, as predicted by the diathesis hypothesis. We hypothesized that performance on tests of psychomotor speed, visuomotor integration, and attention/executive functioning would be significantly below normative expectations, and that differences would be greater in children with earlier disease onset. We also predicted that diabetic ketoacidosis (DKA), a primary cause of diabetes-related neurological morbidity (12) and a likely proxy for severe peri-onset hyperglycemia, would be associated with poorer performance.”

“Charts were reviewed for 147 children/adolescents aged 5–18 years (mean = 10.4 ± 3.2 years) who completed a short neuropsychological screening during their inpatient hospitalization for new-onset type 1 diabetes, as part of a pilot clinical program intended to identify patients in need of further neuropsychological evaluation. Participants were patients at a large urban children’s hospital in the southwestern U.S. […] Compared with normative expectations, children/youth with type 1 diabetes performed significantly worse on GPD, GPN, VMI, and FAS (P < 0.0001 in all cases), with large decrements evident on all four measures (Fig. 1). A small but significant effect was also evident in DSB (P = 0.022). High incidence of impairment was evident on all neuropsychological tasks completed by older participants (aged 9–18 years) except DSF/DSB (Fig. 2).”

“Deficits in neurocognitive functioning were evident in children and adolescents within days of type 1 diabetes diagnosis. Participants performed >1 SD below normative expectations in bilateral psychomotor speed (GP) and 0.7–0.8 SDs below expected performance in visuomotor integration (VMI) and phonemic fluency (FAS). Incidence of impairment was much higher than normative expectations on all tasks except DSF/DSB. For example, >20% of youth were impaired in dominant hand fine-motor control, and >30% were impaired with their nondominant hand. These findings provide provisional support for Ryan’s hypothesis (79) that the peri-onset period may be a time of significant cognitive vulnerability.

Importantly, deficits were not evident on all measures. Performance on measures of attention/executive functioning (TMT-A, TMT-B, DSF, and DSB) was largely consistent with normative expectations, as was reading ability (WRAT-4), suggesting that the below-average performance in other areas was not likely due to malaise or fatigue. Depressive symptoms at diagnosis were associated with performance on TMT-B and FAS, but not on other measures. Thus, it seems unlikely that depressive symptoms accounted for the observed motor slowing.

Instead, the findings suggest that the visual-motor system may be especially vulnerable to early effects of type 1 diabetes. This interpretation is especially compelling given that psychomotor impairment is the most consistently reported long-term cognitive effect of type 1 diabetes. The sensitivity of the visual-motor system at diabetes diagnosis is consistent with a growing body of neuroimaging research implicating posterior white matter tracts and associated gray matter regions (particularly cuneus/precuneus) as areas of vulnerability in type 1 diabetes (3032). These regions form part of the neural system responsible for integrating visual inputs with motor outputs, and in adults with type 1 diabetes, structural pathology in these regions is directly correlated to performance on GP [grooved pegboard test] (30,31). Arbelaez et al. (33) noted that these brain areas form part of the “default network” (34), a system engaged during internally focused cognition that has high resting glucose metabolism and may be especially vulnerable to glucose variability.”

“It should be noted that previous studies (e.g., Northam et al. [3]) have not found evidence of neurocognitive dysfunction around the time of diabetes diagnosis. This may be due to study differences in measures, outcomes, and/or time frame. We know of no other studies that completed neuropsychological testing within days of diagnosis. Given our time frame, it is possible that our findings reflect transient effects rather than more permanent changes in the CNS. Contrary to predictions, we found no association between DKA at diagnosis and neurocognitive performance […] However, even transient effects could be considered potential indicators of CNS vulnerability. Neurophysiological changes at the time of diagnosis have been shown to persist under certain circumstances or for some patients. […] [Some] findings suggest that some individuals may be particularly susceptible to the effects of glycemic extremes on neurocognitive function, consistent with a large body of research in developmental neuroscience indicating individual differences in neurobiological vulnerability to adverse events. Thus, although it is possible that the neurocognitive impairments observed in our study might resolve with euglycemia, deficits at diagnosis could still be considered a potential marker of CNS vulnerability to metabolic perturbations (both acute and chronic).”

“In summary, this study provides the first demonstration that type 1 diabetes–associated neurocognitive impairment can be detected at the time of diagnosis, supporting the possibility that deficits arise secondary to peri-onset effects. Whether these effects are transient markers of vulnerability or represent more persistent changes in CNS awaits further study.”

ii. Association Between Impaired Cardiovascular Autonomic Function and Hypoglycemia in Patients With Type 1 Diabetes.

“Cardiovascular autonomic neuropathy (CAN) is a chronic complication of diabetes and an independent predictor of cardiovascular disease (CVD) morbidity and mortality (13). The mechanisms of CAN are complex and not fully understood. It can be assessed by simple cardiovascular reflex tests (CARTs) and heart rate variability (HRV) studies that were shown to be sensitive, noninvasive, and reproducible (3,4).”

“HbA1c fails to capture information on the daily fluctuations in blood glucose levels, termed glycemic variability (GV). Recent observations have fostered the notion that GV, independent of HbA1c, may confer an additional risk for the development of micro- and macrovascular diabetes complications (8,9). […] the relationship between GV and chronic complications, specifically CAN, in patients with type 1 diabetes has not been systematically studied. In addition, limited data exist on the relationship between hypoglycemic components of the GV and measures of CAN among subjects with type 1 diabetes (11,12). Therefore, we have designed a prospective study to evaluate the impact and the possible sustained effects of GV on measures of cardiac autonomic function and other cardiovascular complications among subjects with type 1 diabetes […] In the present communication, we report cross-sectional analyses at baseline between indices of hypoglycemic stress on measures of cardiac autonomic function.”

“The following measures of CAN were predefined as outcomes of interests and analyzed: expiration-to-inspiration ratio (E:I), Valsalva ratio, 30:15 ratios, low-frequency (LF) power (0.04 to 0.15 Hz), high-frequency (HF) power (0.15 to 0.4 Hz), and LF/HF at rest and during CARTs. […] We found that LBGI [low blood glucose index] and AUC [area under the curve] hypoglycemia were associated with reduced LF and HF power of HRV [heart rate variability], suggesting an impaired autonomic function, which was independent of glucose control as assessed by the HbA1c.”

“Our findings are in concordance with a recent report demonstrating attenuation of the baroreflex sensitivity and of the sympathetic response to various cardiovascular stressors after antecedent hypoglycemia among healthy subjects who were exposed to acute hypoglycemic stress (18). Similar associations […] were also reported in a small study of subjects with type 2 diabetes (19). […] higher GV and hypoglycemic stress may have an acute effect on modulating autonomic control with inducing a sympathetic/vagal imbalance and a blunting of the cardiac vagal control (18). The impairment in the normal counter-regulatory autonomic responses induced by hypoglycemia on the cardiovascular system could be important in healthy individuals but may be particularly detrimental in individuals with diabetes who have hitherto compromised cardiovascular function and/or subclinical CAN. In these individuals, hypoglycemia may also induce QT interval prolongation, increase plasma catecholamine levels, and lower serum potassium (19,20). In concert, these changes may lower the threshold for serious arrhythmia (19,20) and could result in an increased risk of cardiovascular events and sudden cardiac death. Conversely, the presence of CAN may increase the risk of hypoglycemia through hypoglycemia unawareness and subsequent impaired ability to restore euglycemia (21) through impaired sympathoadrenal response to hypoglycemia or delayed gastric emptying. […] A possible pathogenic role of GV/hypoglycemic stress on CAN development and progressions should be also considered. Prior studies in healthy and diabetic subjects have found that higher exposure to hypoglycemia reduces the counter-regulatory hormone (e.g., epinephrine, glucagon, and adrenocorticotropic hormone) and blunts autonomic nervous system responses to subsequent hypoglycemia (21). […] Our data […] suggest that wide glycemic fluctuations, particularly hypoglycemic stress, may increase the risk of CAN in patients with type 1 diabetes.”

“In summary, in this cohort of relatively young and uncomplicated patients with type 1 diabetes, GV and higher hypoglycemic stress were associated with impaired HRV reflective of sympathetic/parasympathetic dysfunction with potential important clinical consequences.”

iii. Elevated Levels of hs-CRP Are Associated With High Prevalence of Depression in Japanese Patients With Type 2 Diabetes: The Diabetes Distress and Care Registry at Tenri (DDCRT 6).

“In the last decade, several studies have been published that suggest a close association between diabetes and depression. Patients with diabetes have a high prevalence of depression (1) […] and a high prevalence of complications (3). In addition, depression is associated with mortality in these patients (4). […] Because of this strong association, several recent studies have suggested the possibility of a common biological pathway such as inflammation as an underlying mechanism of the association between depression and diabetes (5). […] Multiple mechanisms are involved in the association between diabetes and inflammation, including modulation of lipolysis, alteration of glucose uptake by adipose tissue, and an indirect mechanism involving an increase in free fatty acid levels blocking the insulin signaling pathway (10). Psychological stress can also cause inflammation via innervation of cytokine-producing cells and activation of the sympathetic nervous systems and adrenergic receptors on macrophages (11). Depression enhances the production of inflammatory cytokines (1214). Overproduction of inflammatory cytokines may stimulate corticotropin-releasing hormone production, a mechanism that leads to hypothalamic-pituitary axis activity. Conversely, cytokines induce depressive-like behaviors; in studies where healthy participants were given endotoxin infusions to trigger cytokine release, the participants developed classic depressive symptoms (15). Based on this evidence, it could be hypothesized that inflammation is the common biological pathway underlying the association between diabetes and depression.”

“[F]ew studies have examined the clinical role of inflammation and depression as biological correlates in patients with diabetes. […] In this study, we hypothesized that high CRP [C-reactive protein] levels were associated with the high prevalence of depression in patients with diabetes and that this association may be modified by obesity or glycemic control. […] Patient data were derived from the second-year survey of a diabetes registry at Tenri Hospital, a regional tertiary care teaching hospital in Japan. […] 3,573 patients […] were included in the study. […] Overall, mean age, HbA1c level, and BMI were 66.0 years, 7.4% (57.8 mmol/mol), and 24.6 kg/m2, respectively. Patients with major depression tended to be relatively young […] and female […] with a high BMI […], high HbA1c levels […], and high hs-CRP levels […]; had more diabetic nephropathy […], required more insulin therapy […], and exercised less […]”.

“In conclusion, we observed that hs-CRP levels were associated with a high prevalence of major depression in patients with type 2 diabetes with a BMI of ≥25 kg/m2. […] In patients with a BMI of <25 kg/m2, no significant association was found between hs-CRP quintiles and major depression […] We did not observe a significant association between hs-CRP and major depression in either of HbA1c subgroups. […] Our results show that the association between hs-CRP and diabetes is valid even in an Asian population, but it might not be extended to nonobese subjects. […] several factors such as obesity and glycemic control may modify the association between inflammation and depression. […] Obesity is strongly associated with chronic inflammation.”

iv. A Novel Association Between Nondipping and Painful Diabetic Polyneuropathy.

“Sleep problems are common in painful diabetic polyneuropathy (PDPN) (1) and contribute to the effect of pain on quality of life. Nondipping (the absence of the nocturnal fall in blood pressure [BP]) is a recognized feature of diabetic cardiac autonomic neuropathy (CAN) and is attributed to the abnormal prevalence of nocturnal sympathetic activity (2). […] This study aimed to evaluate the relationship of the circadian pattern of BP with both neuropathic pain and pain-related sleep problems in PDPN […] Investigating the relationship between PDPN and BP circadian pattern, we found patients with PDPN exhibited impaired nocturnal decrease in BP compared with those without neuropathy, as well as higher nocturnal systolic BP than both those without DPN and with painless DPN. […] in multivariate analysis including comorbidities and most potential confounders, neuropathic pain was an independent determinant of ∆ in BP and nocturnal systolic BP.”

“PDPN could behave as a marker for the presence and severity of CAN. […] PDPN should increasingly be regarded as a condition of high cardiovascular risk.”

v. Reduced Testing Frequency for Glycated Hemoglobin, HbA1c, Is Associated With Deteriorating Diabetes Control.

I think a potentially important take-away from this paper, which they don’t really talk about, is that when you’re analyzing time series data in research contexts where the HbA1c variable is available at the individual level at some base frequency and you then encounter individuals for whom the HbA1c variable is unobserved in such a data set for some time periods/is not observed at the frequency you’d expect, such (implicit) missing values may not be missing at random (for more on these topics see e.g. this post). More specifically, in light of the findings of this paper I think it would make a lot of sense to default to an assumption of missing values being an indicator of worse-than-average metabolic control during the unobserved period of the time series in question when doing time-to-event analyses, especially in contexts where the values are missing for an extended period of time.

The authors of the paper consider metabolic control an outcome to be explained by the testing frequency. That’s one way to approach these things, but it’s not the only one and I think it’s also important to keep in mind that some patients also sometimes make a conscious decision not to show up for their appointments/tests; i.e. the testing frequency is not necessarily fully determined by the medical staff, although they of course have an important impact on this variable.

Some observations from the paper:

“We examined repeat HbA1c tests (400,497 tests in 79,409 patients, 2008–2011) processed by three U.K. clinical laboratories. We examined the relationship between retest interval and 1) percentage change in HbA1c and 2) proportion of cases showing a significant HbA1c rise. The effect of demographics factors on these findings was also explored. […] Figure 1 shows the relationship between repeat requesting interval (categorized in 1-month intervals) and percentage change in HbA1c concentration in the total data set. From 2 months onward, there was a direct relationship between retesting interval and control. A testing frequency of >6 months was associated with deterioration in control. The optimum testing frequency in order to maximize the downward trajectory in HbA1c between two tests was approximately four times per year. Our data also indicate that testing more frequently than 2 months has no benefit over testing every 2–4 months. Relative to the 2–3 month category, all other categories demonstrated statistically higher mean change in HbA1c (all P < 0.001). […] similar patterns were observed for each of the three centers, with the optimum interval to improvement in overall control at ∼3 months across all centers.”

“[I]n patients with poor control, the pattern was similar to that seen in the total group, except that 1) there was generally a more marked decrease or more modest increase in change of HbA1c concentration throughout and, consequently, 2) a downward trajectory in HbA1c was observed when the interval between tests was up to 8 months, rather than the 6 months as seen in the total group. In patients with a starting HbA1c of <6% (<42 mmol/mol), there was a generally linear relationship between interval and increase in HbA1c, with all intervals demonstrating an upward change in mean HbA1c. The intermediate group showed a similar pattern as those with a starting HbA1c of <6% (<42 mmol/mol), but with a steeper slope.”

“In order to examine the potential link between monitoring frequency and the risk of major deterioration in control, we then assessed the relationship between testing interval and proportion of patients demonstrating an increase in HbA1c beyond the normal biological and analytical variation in HbA1c […] Using this definition of significant increase as a ≥9.9% rise in subsequent HbA1c, our data show that the proportion of patients showing this magnitude of rise increased month to month, with increasing intervals between tests for each of the three centers. […] testing at 2–3-monthly intervals would, at a population level, result in a marked reduction in the proportion of cases demonstrating a significant increase compared with annual testing […] irrespective of the baseline HbA1c, there was a generally linear relationship between interval and the proportion demonstrating a significant increase in HbA1c, though the slope of this relationship increased with rising initial HbA1c.”

“Previous data from our and other groups on requesting patterns indicated that relatively few patients in general practice were tested annually (5,6). […] Our data indicate that for a HbA1c retest interval of more than 2 months, there was a direct relationship between retesting interval and control […], with a retest frequency of greater than 6 months being associated with deterioration in control. The data showed that for diabetic patients as a whole, the optimum repeat testing interval should be four times per year, particularly in those with poorer diabetes control (starting HbA1c >7% [≥53 mmol/mol]). […] The optimum retest interval across the three centers was similar, suggesting that our findings may be unrelated to clinical laboratory factors, local policies/protocols on testing, or patient demographics.”

It might be important to mention that there are important cross-country differences in terms of how often people with diabetes get HbA1c measured – I’m unsure of whether or not standards have changed since then, but at least in Denmark a specific treatment goal of the Danish Regions a few years ago was whether or not 95% of diabetics had had their HbA1c measured within the last year (here’s a relevant link to some stuff I wrote about related topics a while back).

October 2, 2017 Posted by | Cardiology, Diabetes, Immunology, Medicine, Neurology, Psychology, Statistics, Studies | Leave a comment

National EM Board Review Course: Toxicology

Some links:

Flumazenil.
Naloxone.
Alcoholic Ketoacidosis.
Gastrointestinal decontamination in the acutely poisoned patient.
Chelation in Metal Intoxication.
Mudpiles – causes of high anion-gap metabolic acidosis.
Toxidromes.
Whole-bowel irrigation: Background, indications, contraindications…
Organophosphate toxicity.
Withdrawal syndromes.
Acetaminophen toxicity.
Alcohol withdrawal.
Wernicke syndrome.
Methanol toxicity.
Ethylene glycol toxicity.
Sympathomimetic toxicity.
Disulfiram toxicity.
Arsenic toxicity.
Barbiturate toxicity.
Beta-blocker toxicity.
Calcium channel blocker toxicity.
Carbon monoxide toxicity.
Caustic ingestions.
Clonidine toxicity.
Cyanide toxicity.
Digitalis toxicity.
Gamma-hydroxybutyrate toxicity.
Hydrocarbon toxicity.
CDC Facts About Hydrogen Fluoride (Hydrofluoric Acid).
Hydrogen Sulfide Toxicity.
Isoniazid toxicity.
Iron toxicity.
Lead toxicity.
Lithium toxicity.
Mercury toxicity.
Methemoglobinemia.
Mushroom toxicity.
Argyria.
Gyromitra mushroom toxicity.
Neuroleptic agent toxicity.
Neuroleptic malignant syndrome.
Oral hypoglycemic agent toxicity.
PCP toxicity.
Phenytoin toxicity.
Rodenticide toxicity.
Salicylate toxicity.
Serotonin syndrome.
TCA toxicity.

September 29, 2017 Posted by | Lectures, Medicine, Pharmacology, Psychiatry | Leave a comment

Type 1 Diabetes Mellitus and Cardiovascular Disease

“Despite the known higher risk of cardiovascular disease (CVD) in individuals with type 1 diabetes mellitus (T1DM), the pathophysiology underlying the relationship between cardiovascular events, CVD risk factors, and T1DM is not well understood. […] The present review will focus on the importance of CVD in patients with T1DM. We will summarize recent observations of potential differences in the pathophysiology of T1DM compared with T2DM, particularly with regard to atherosclerosis. We will explore the implications of these concepts for treatment of CVD risk factors in patients with T1DM. […] The statement will identify gaps in knowledge about T1DM and CVD and will conclude with a summary of areas in which research is needed.”

The above quote is from this paper: Type 1 Diabetes Mellitus and Cardiovascular Disease: A Scientific Statement From the American Heart Association and American Diabetes Association.

I originally intended to cover this one in one of my regular diabetes posts, but I decided in the end that there was simply too much stuff to cover here for it to make sense not to devote an entire post to it. I have quoted extensively from the paper/statement below and I also decided to bold a few of the observations I found particularly important/noteworthy(/worth pointing out to people reading along?).

“T1DM has strong human leukocyte antigen associations to the DQA, DQB, and DRB alleles (2). One or more autoantibodies, including islet cell, insulin, glutamic acid decarboxylase 65 (GAD65), zinc transporter 8 (3), and tyrosine phosphatase IA-2β and IA-2β antibodies, can be detected in 85–90% of individuals on presentation. The rate of β-cell destruction varies, generally occurring more rapidly at younger ages. However, T1DM can also present in adults, some of whom can have enough residual β-cell function to avoid dependence on insulin until many years later. When autoantibodies are present, this is referred to as latent autoimmune diabetes of adulthood. Infrequently, T1DM can present without evidence of autoimmunity but with intermittent episodes of ketoacidosis; between episodes, the need for insulin treatment can come and go. This type of DM, called idiopathic diabetes (1) or T1DM type B, occurs more often in those of African and Asian ancestry (4). Because of the increasing prevalence of obesity in the United States, there are also obese individuals with T1DM, particularly children. Evidence of insulin resistance (such as acanthosis nigricans); fasting insulin, glucose, and C-peptide levels; and the presence of islet cell, insulin, glutamic acid decarboxylase, and phosphatase autoantibodies can help differentiate between T1DM and T2DM, although both insulin resistance and insulin insufficiency can be present in the same patient (5), and rarely, T2DM can present at an advanced stage with low C-peptide levels and minimal islet cell function.”

Overall, CVD events are more common and occur earlier in patients with T1DM than in nondiabetic populations; women with T1DM are more likely to have a CVD event than are healthy women. CVD prevalence rates in T1DM vary substantially based on duration of DM, age of cohort, and sex, as well as possibly by race/ethnicity (8,11,12). The Pittsburgh Epidemiology of Diabetes Complications (EDC) study demonstrated that the incidence of major coronary artery disease (CAD) events in young adults (aged 28–38 years) with T1DM was 0.98% per year and surpassed 3% per year after age 55 years, which makes it the leading cause of death in that population (13). By contrast, incident first CVD in the nondiabetic population ranges from 0.1% in 35- to 44-year-olds to 7.4% in adults aged 85–94 years (14). An increased risk of CVD has been reported in other studies, with the age-adjusted relative risk (RR) for CVD in T1DM being ≈10 times that of the general population (1517). One of the most robust analyses of CVD risk in this disease derives from the large UK General Practice Research Database (GPRD), comprising data from >7,400 patients with T1DM with a mean ± SD age of 33 ± 14.5 years and a mean DM duration of 15 ± 12 years (8). CVD events in the UK GPRD study occurred on average 10 to 15 years earlier than in matched nondiabetic control subjects.”

“When types of CVD are reported separately, CHD [coronary heart disease] predominates […] The published cumulative incidence of CHD ranges between 2.1% (18) and 19% (19), with most studies reporting cumulative incidences of ≈15% over ≈15 years of follow-up (2022). […] Although stroke is less common than CHD in T1DM, it is another important CVD end point. Reported incidence rates vary but are relatively low. […] the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) reported an incidence rate of 5.9% over 20 years (≈0.3%) (21); and the European Diabetes (EURODIAB) Study reported a 0.74% incidence of cerebrovascular disease per year (18). These incidence rates are for the most part higher than those reported in the general population […] PAD [peripheral artery disease] is another important vascular complication of T1DM […] The rate of nontraumatic amputation in T1DM is high, occurring at 0.4–7.2% per year (28). By 65 years of age, the cumulative probability of lower-extremity amputation in a Swedish administrative database was 11% for women with T1DM and 20.7% for men (10). In this Swedish population, the rate of lower-extremity amputation among those with T1DM was nearly 86-fold that of the general population.

“Abnormal vascular findings associated with atherosclerosis are also seen in patients with T1DM. Coronary artery calcification (CAC) burden, an accepted noninvasive assessment of atherosclerosis and a predictor of CVD events in the general population, is greater in people with T1DM than in nondiabetic healthy control subjects […] With regard to subclinical carotid disease, both carotid intima-media thickness (cIMT) and plaque are increased in children, adolescents, and adults with T1DM […] compared with age- and sex-matched healthy control subjects […] Endothelial function is altered even at a very early stage of T1DM […] Taken together, these data suggest that preclinical CVD can be seen more frequently and to a greater extent in patients with T1DM, even at an early age. Some data suggest that its presence may portend CVD events; however, how these subclinical markers function as end points is not clear.”

“Neuropathy in T1DM can lead to abnormalities in the response of the coronary vasculature to sympathetic stimulation, which may manifest clinically as resting tachycardia or bradycardia, exercise intolerance, orthostatic hypotension, loss of the nocturnal decline in BP, or silent myocardial ischemia on cardiac testing. These abnormalities can lead to delayed presentation of CVD. An early indicator of cardiac autonomic neuropathy is reduced heart rate variability […] Estimates of the prevalence of cardiac autonomic neuropathy in T1DM vary widely […] Cardiac neuropathy may affect as many as ≈40% of individuals with T1DM (45).”

CVD events occur much earlier in patients with T1DM than in the general population, often after 2 decades of T1DM, which in some patients may be by age 30 years. Thus, in the EDC study, CVD was the leading cause of death in T1DM patients after 20 years of disease duration, at rates of >3% per year (13). Rates of CVD this high fall into the National Cholesterol Education Program’s high-risk category and merit intensive CVD prevention efforts (48). […] CVD events are not generally expected to occur during childhood, even in the setting of T1DM; however, the atherosclerotic process begins during childhood. Children and adolescents with T1DM have subclinical CVD abnormalities even within the first decade of DM diagnosis according to a number of different methodologies”.

Rates of CVD are lower in premenopausal women than in men […much lower: “Cardiovascular disease develops 7 to 10 years later in women than in men” – US]. In T1DM, these differences are erased. In the United Kingdom, CVD affects men and women with T1DM equally at <40 years of age (23), although after age 40 years, men are affected more than women (51). Similar findings on CVD mortality rates were reported in a large Norwegian T1DM cohort study (52) and in the Allegheny County (PA) T1DM Registry (13), which reported the relative impact of CVD compared with the general population was much higher for women than for men (standardized mortality ratio [SMR] 13.2 versus 5.0 for total mortality and 24.7 versus 8.8 for CVD mortality, women versus men). […] Overall, T1DM appears to eliminate most of the female sex protection seen in the nondiabetic population.”

“The data on atherosclerosis in T1DM are limited. A small angiographic study compared 32 individuals with T1DM to 31 nondiabetic patients matched for age and symptoms (71). That study found atherosclerosis in the setting of T1DM was characterized by more severe (tighter) stenoses, more extensive involvement (multiple vessels), and more distal coronary findings than in patients without DM. A quantitative coronary angiographic study in T1DM suggested more severe, distal disease and an overall increased burden compared with nondiabetic patients (up to fourfold higher) (72).”

“In the general population, inflammation is a central pathological process of atherosclerosis (79). Limited pathology data suggest that inflammation is more prominent in patients with DM than in nondiabetic control subjects (70), and those with T1DM in particular are affected. […] Knowledge of the clinical role of inflammatory markers in T1DM and CVD prediction and management is in its infancy, but early data suggest a relationship with preclinical atherosclerosis. […] Studies showed C-reactive protein is elevated within the first year of diagnosis of T1DM (80), and interleukin-6 and fibrinogen levels are high in individuals with an average disease duration of 2 years (81), independent of adiposity and glycemia (82). Other inflammatory markers such as soluble interleukin-2 receptor (83) and CD40 ligand (84,85) are higher in patients with T1DM than in nondiabetic subjects. Inflammation is evident in youth, even soon after the diagnosis of T1DM. […] The mechanisms by which inflammation operates in T1DM are likely multiple but may include hyperglycemia and hypoglycemia, excess adiposity or altered body fat distribution, thrombosis, and adipokines. Several recent studies have demonstrated a relationship between acute hypoglycemia and indexes of systemic inflammation […] These studies suggest that acute hypoglycemia in T1DM produces complex vascular effects involved in the activation of proinflammatory, prothrombotic, and proatherogenic mechanisms. […] Fibrinogen, a prothrombotic acute phase reactant, is increased in T1DM and is associated with premature CVD (109), and it may be important in vessel thrombosis at later stages of CVD.”

“Genetic polymorphisms appear to influence the progression and prognosis of CVD in T1DM […] Like fibrinogen, haptoglobin is an acute phase protein that inhibits hemoglobin-induced oxidative tissue damage by binding to free hemoglobin (110). […] In humans, there are 2 classes of alleles at the haptoglobin locus, giving rise to 3 possible genotypes: haptoglobin 1-1, haptoglobin 2-1, and haptoglobin 2-2. […] In T1DM, there is an independent twofold increased incidence of CAD in haptoglobin 2-2 carriers compared with those with the haptoglobin 1-1 genotype (117); the 2-1 genotype is associated with an intermediate effect of increased CVD risk. More recently, an independent association was reported in T1DM between the haptoglobin 2-2 genotype and early progression to end-stage renal disease (ESRD) (118). In the CACTI study group, the presence of the haptoglobin 2-2 genotype also doubled the risk of CAC [coronary artery calcification] in patients free from CAC at baseline, after adjustment for traditional CVD risk factors (119). […] At present, genetic testing for polymorphisms in T1DM [however] has no clear clinical utility in CVD prediction or management.”

“Dysglycemia is often conceived of as a vasculopathic process. Preclinical atherosclerosis and epidemiological studies generally support this relationship. Clinical trial data from the DCCT supplied definitive findings strongly in favor of beneficial effects of better glycemic control on CVD outcomes. Glycemia is associated with preclinical atherosclerosis in studies that include tests of endothelial function, arterial stiffness, cIMT, autonomic neuropathy, and left ventricular (LV) function in T1DM […] LV mass and function improve with better glycemic control (126,135,136). Epidemiological evidence generally supports the relationship between hyperglycemia and clinical CHD events in T1DM. […] A large Swedish database review recently reported a reasonably strong association between HbA1c and CAD in T1DM (HR, 1.3 per 1% HbA1c increase) (141). […] findings support the recommendation that early optimal glycemic control in T1DM will have long-term benefits for CVD reduction.”

“Obesity is a known independent risk factor for CVD in nondiabetic populations, but the impact of obesity in T1DM has not been fully established. Traditionally, T1DM was a condition of lean individuals, yet the prevalence of overweight and obesity in T1DM has increased significantly […] This is related to epidemiological shifts in the population overall, tighter glucose control leading to less glucosuria, more frequent/greater caloric intake to fend off real and perceived hypoglycemia, and the specific effects of intensive DM therapy, which has been shown to increase the prevalence of obesity (152). Indeed, several clinical trials, including the DCCT, demonstrate that intensive insulin therapy can lead to excessive weight gain in a subset of patients with T1DM (152). […] No systematic evaluation has been conducted to assess whether improving insulin sensitization lowers rates of CVD. Ironically, the better glycemic control associated with insulin therapy may lead to weight gain, with a superimposed insulin resistance, which may be approached by giving higher doses of insulin. However, some evidence from the EDC study suggests that weight gain in the presence of improved glycemic control is associated with an improved CVD risk profile (162). […] Although T1DM is characteristically a disease of absolute insulin deficiency (154), insulin resistance appears to contribute to CHD risk in patients with T1DM. For example, having a family history of T2DM, which suggests a genetic predisposition for insulin resistance, has been associated with an increased CVD risk in patients with T1DM (155).”

“In general, the lipid levels of adults with well-controlled T1DM are similar to those of individuals without DM […] Worse glycemic control, higher weight (164), and more insulin resistance as measured by euglycemic clamp (165) are associated with a more atherogenic cholesterol distribution in men and women with T1DM […] Studies in pediatric and young adult populations suggest higher lipid values than in youth without T1DM, with glycemic control being a significant contributor (148). […] Most studies show that as is true for the general population, dyslipidemia is a risk factor for CVD in T1DM. Qualitative differences in lipid and lipoprotein fractions are being investigated to determine whether abnormal lipid function may contribute to this. The HDL-C fraction has been of particular interest because the metabolism of HDL-C in T1DM may be altered because of abnormal lipoprotein lipase and hepatic lipase activities related to exogenously administered insulin […] Additionally, as noted earlier, the less efficient handling of heme by the haptoglobin 2-2 genotype in patients with T1DM leaves these complexes less capable of being removed by macrophages, which allows them to associate with HDL, which renders it less functional (116). […] Conventionally, pharmacotherapy is used more aggressively for patients with T1DM and lipid disorders than for nondiabetic patients; however, recommendations for treatment are mostly extrapolated from interventional trials in adults with T2DM, in which rates of CVD events are equivalent to those in secondary prevention populations. Whether this is appropriate for T1DM is not clear […] Awareness of CVD risk and screening for hypercholesterolemia in T1DM have increased over time, yet recent data indicate that control is suboptimal, particularly in younger patients who have not yet developed long-term complications and might therefore benefit from prevention efforts (173). Adults with T1DM who have abnormal lipids and additional risk factors for CVD (e.g., hypertension, obesity, or smoking) who have not developed CVD should be treated with statins. Adults with CVD and T1DM should also be treated with statins, regardless of whether they have additional risk factors.”

“Diabetic kidney disease (DKD) is a complication of T1DM that is strongly linked to CVD. DKD can present as microalbuminuria or macroalbuminuria, impaired GFR, or both. These represent separate but complementary manifestations of DKD and are often, but not necessarily, sequential in their presentation. […] the risk of all-cause mortality increased with the severity of DKD, from microalbuminuria to macroalbuminuria to ESRD. […] Microalbuminuria is likely an indicator of diffuse vascular injury. […] Microalbuminuria is highly correlated with CVD (49,180182). In the Steno Diabetes Center (Gentofte, Denmark) cohort, T1DM patients with isolated microalbuminuria had a 4.2-fold increased risk of CVD (49,180). In the EDC study, microalbuminuria was associated with mortality risk, with an SMR of 6.4. In the FinnDiane study, mortality risk was also increased with microalbuminuria (SMR, 2.8). […] A recent review summarized these data. In patients with T1DM and microalbuminuria, there was an RR of all-cause mortality of 1.8 (95% CI, 1.5–2.1) that was unaffected by adjustment for confounders (183). Similar RRs were found for mortality from CVD (1.9; 95% CI, 1.3–2.9), CHD (2.1; 95% CI, 1.2–3.5), and aggregate CVD mortality (2.0; 95% CI, 1.5–2.6).”

“Macroalbuminuria represents more substantial kidney damage and is also associated with CVD. Mechanisms may be more closely related to functional consequences of kidney disease, such as higher LDL-C and lower HDL-C. Prospective data from Finland indicate the RR for CVD is ≈10 times greater in patients with macroalbuminuria than in those without macroalbuminuria (184). Historically, in the [Danish] Steno cohort, patients with T1DM and macroalbuminuria had a 37-fold increased risk of CVD mortality compared with the general population (49,180); however, a more recent report from EURODIAB suggests a much lower RR (8.7; 95% CI, 4.03–19.0) (185). […] In general, impaired GFR is a risk factor for CVD, independent of albuminuria […] ESRD [end-stage renal disease, US], the extreme form of impaired GFR, is associated with the greatest risk of CVD of all varieties of DKD. In the EDC study, ESRD was associated with an SMR for total mortality of 29.8, whereas in the FinnDiane study, it was 18.3. It is now clear that GFR loss and the development of eGFR <60 mL · min−1 · 1.73 m−2 can occur without previous manifestation of microalbuminuria or macroalbuminuria (177,178). In T1DM, the precise incidence, pathological basis, and prognosis of this phenotype remain incompletely described.”

“Prevention of DKD remains challenging. Although microalbuminuria and macroalbuminuria are attractive therapeutic targets for CVD prevention, there are no specific interventions directed at the kidney that prevent DKD. Inhibition of the renin-angiotensin-aldosterone system is an attractive option but has not been demonstrated to prevent DKD before it is clinically apparent. […] In contrast to prevention efforts, treatment of DKD with agents that inhibit the renin-angiotensin-aldosterone system is effective. […] angiotensin-converting enzyme (ACE) inhibitors reduce the progression of DKD and death in T1DM (200). Thus, once DKD develops, treatment is recommended to prevent progression and to reduce or minimize other CVD risk factors, which has a positive effect on CVD risk. All patients with T1DM and hypertension or albuminuria should be treated with an ACE inhibitor. If an ACE inhibitor is not tolerated, an angiotensin II receptor blocker (ARB) is likely to have similar efficacy, although this has not been studied specifically in patients with T1DM. Optimal dosing for ACE inhibitors or ARBs in the setting of DKD is not well defined; titration may be guided by BP, albuminuria, serum potassium, and creatinine. Combination therapy of ACE and ARB blockade cannot be specifically recommended at this time.”

“Hypertension is more common in patients with T1DM and is a powerful risk factor for CVD, regardless of whether an individual has DKD. In the CACTI [Coronary Artery Calcification in Type 1 Diabetes] study, hypertension was much more common in patients with T1DM than in age- and sex-matched control subjects (43% versus 15%, P < 0.001); in fact, only 42% of all T1DM patients met the Joint National Commission 7 goal (BP <130/80 mmHg) (201). Hypertension also affects youth with T1DM. The SEARCH trial of youth aged 3–17 years with T1DM (n = 3,691) found the prevalence of elevated BP was 5.9% […] Abnormalities in BP can stem from DKD or obesity. Hyperglycemia may also contribute to hypertension over the long term. In the DCCT/EDIC cohort, higher HbA1c was strongly associated with increased risk of hypertension, and intensive DM therapy reduced the long-term risk of hypertension by 24% (203). […] There are few published trials about the ideal pharmacotherapeutic agent(s) for hypertension in T1DM.”

“Smoking is a major risk factor for CVD, particularly PAD (213); however, there is little information on the prevalence or effects of smoking in T1DM. […] The added CVD risk of smoking may be particularly important in patients with DM, who are already vulnerable. In patients with T1DM, cigarette smoking [has been shown to increase] the risk of DM nephropathy, retinopathy, and neuropathy (214,215) […] Smoking increases CVD risk factors in T1DM via deterioration in glucose metabolism, lipids, and endothelial function (216). Unfortunately, smoking cessation can result in weight gain, which may deter smokers with DM from quitting (217). […] Smoking cessation should be strongly recommended to all patients with T1DM as part of an overall strategy to lower CVD, in particular PAD.”

“CVD risk factors are more common in children with T1DM than in the general pediatric population (218). Population-based studies estimate that 14–45% of children with T1DM have ≥2 CVD risk factors (219221). As with nondiabetic children, the prevalence of CVD risk factors increases with age (221). […] The American Academy of Pediatrics, the American Heart Association, and the ADA recognize patients with DM, and particularly T1DM, as being in a higher-risk group who should receive more aggressive risk factor screening and treatment than nondiabetic children […] The available data suggest many children and adolescents with T1DM do not receive the recommended treatment for their dyslipidemia and hypertension (220,222).”

“There are no CVD risk-prediction algorithms for patients with T1DM in widespread use. […] Use of the Framingham Heart Study and UK Prospective Diabetes Study (UKPDS) algorithms in the EDC study population did not provide good predictive results, which suggests that neither general or T2DM risk algorithms are sufficient for risk prediction in T1DM (235). On the basis of these findings, a model has been developed with the use of EDC cohort data (236) that incorporates measures outside the Framingham construct (white blood cell count, albuminuria, DM duration). Although this algorithm was validated in the EURODIAB Study cohort (237), it has not been widely adopted, and diagnostic and therapeutic decisions are often based on global CVD risk-estimation methods (i.e., Framingham risk score or T2DM-specific UKPDS risk engine [http://www.dtu.ox.ac.uk/riskengine/index.php]). Other options for CVD risk prediction in patients with T1DM include the ADA risk-assessment tool (http://main.diabetes.org/dorg/mha/main_en_US.html?loc=dorg-mha) and the Atherosclerosis Risk in Communities (ARIC) risk predictor (http://www.aricnews.net/riskcalc/html/RC1.html), but again, accuracy for T1DM is not clear.”

September 25, 2017 Posted by | Cardiology, Diabetes, Epidemiology, Genetics, Medicine, Nephrology, Neurology, Pharmacology, Studies | Leave a comment

National EM Board Review Course: Environmental Emergencies

Some links to resources on stuff covered in the lecture:

Drowning.
Diving disorders.
Henry’s law/Boyle’s law/Dalton’s law.
Nitrogen narcosis.
Decompression Sickness.
Hyperbaric Oxygen Therapy.
Blast Injuries.
Altitude sickness.
High Altitude Flatus Expulsion (HAFE).
High-Altitude Pulmonary Edema.
Hypothermia.
Cold-induced vasodilation.
Osborn Waves.
Frostbite (‘think of this as a thermal burn equivalent caused by cold’).
Trench foot.
Heat stroke.
Heat cramps.
Thermal Burns.
Parkland formula.
Escharotomy and Burns.
Electrical Injuries in Emergency Medicine.
Lightning Injuries.
Radiation exposure.
Inhalation Anthrax.
Botulism As a Bioterrorism Agent.
Chemical weapon/vessicants/nerve agent.
Bite injuries.
Cat scratch disease.
Rabies.
Rattlesnake Bite.
Snakebites: First aid.
Snake bite: coral snakes.
Black widow spider bite.
Brown recluse spider bite.
Marine envenomation.

September 22, 2017 Posted by | Lectures, Medicine | Leave a comment

A few diabetes papers of interest

i. Glycated Hemoglobin and All-Cause and Cause-Specific Mortality in Singaporean Chinese Without Diagnosed Diabetes: The Singapore Chinese Health Study.

“Previous studies have reported that elevated levels of HbA1c below the diabetes threshold (<6.5%) are associated with an increased risk for cardiovascular morbidity and mortality (312). Yet, this research base is not comprehensive, and data from Chinese populations are scant, especially in those without diabetes. This gap in the literature is important since Southeast Asian populations are experiencing epidemic rates of type 2 diabetes and related comorbidities with a substantial global health impact (1316).

Overall, there are few cohort studies that have examined the etiologic association between HbA1c levels and all-cause and cause-specific mortality. There is even lesser insight on the nature of the relationship between HbA1c and significant clinical outcomes in Southeast Asian populations. Therefore, we examined the association between HbA1c and all-cause and cause-specific mortality in the Singapore Chinese Health Study (SCHS).”

“The design of the SCHS has been previously summarized (17). Briefly, the cohort was drawn from men and women, aged 45–74 years, who belonged to one of the major dialect groups (Hokkien or Cantonese) of Chinese in Singapore. […] Between April 1993 and December 1998, 63,257 individuals completed an in-person interview that included questions on usual diet, demographics, height and weight, use of tobacco, usual physical activity, menstrual and reproductive history (women only), medical history including history of diabetes diagnosis by a physician, and family history of cancer. […] At the follow-up interview (F1), which occurred in 1999–2004, subjects were asked to update their baseline interview information. […] The study population derived from 28,346 participants of the total 54,243 who were alive and participated at F1, who provided consent at F1 to collect subsequent blood samples (a consent rate of ∼65%). The participants for this study were a random selection of individuals from the full study population who did not report a history of diabetes or CVD at the baseline or follow-up interview and reported no history of cancer.”

“During 74,890 person-years of follow-up, there were 888 total deaths, of which 249 were due to CVD, 388 were due to cancer, and 169 were recorded as respiratory mortality. […] There was a positive association between HbA1c and age, BMI, and prevalence of self-reported hypertension, while an inverse association was observed between educational attainment and HbA1c. […] The crude mortality rate was 1,186 deaths per 100,000 person-years. The age- and sex-standardized mortality rates for all-cause, CVD, and cerebrovascular each showed a J-shaped pattern according to HbA1c level. The CHD and cancer mortality rates were higher for HbA1c ≥6.5% (≥48 mmol/mol) and otherwise displayed no apparent pattern. […] There was no association between any level of HbA1c and respiratory causes of death.”

“Chinese men and women with no history of cancer, reported diabetes, or CVD with an HbA1c level ≥6.5% (≥48 mmol/mol) were at a significant increased risk of mortality during follow-up relative to their peers with an HbA1c of 5.4–5.6% (36–38 mmol/mol). No other range of HbA1c was significantly associated with risk of mortality during follow-up, and in secondary analyses, when the HbA1c level ≥6.5% (≥48 mmol/mol) was divided into four categories, this increased risk was observed in all four categories; thus, these data represent a clear threshold association between HbA1c and mortality in this population. These results are consistent with previous prospective cohort studies identifying chronically high HbA1c, outside of diabetes, to be associated with increased risk for all-cause and CVD-related mortality (312,22).”

“Hyperglycemia is a known risk factor for CVD, not limited to individuals with diabetes. This may be in part due to the vascular damage caused by oxidative stress in periods of hypo- and hyperglycemia (23,24). For individuals with impaired fasting glucose and impaired glucose tolerance, increased oxidative stress and endothelial dysfunction are present before the onset of diabetes (25). The association between chronically high levels of HbA1c and development of and death from cancer is not as well defined (9,2630). Abnormal metabolism may play a role in cancer development and death. This is important, considering cancer is the leading cause of death in Singapore for adults 15–59 years of age (31). Increased risk for cancer mortality was found in individuals with impaired glucose tolerance (30). […] Hyperinsulinemia and IGF-I are associated with increased cancer risk, possibly through mitogenic effects and tumor formation (27,28,37). This is the basis for the insulin-cancer hypothesis. Simply put, chronic levels of hyperinsulinemia reduce the production of IGF binding proteins 1 and 2. The absence of these proteins results in excess bioactive IGF-I, supporting tumor development (38). Chronic hyperglycemia, indicating high levels of insulin and IGF-I, may explain inhibition of cell apoptosis, increased cell proliferation, and increased cancer risk (39).”

ii. The Cross-sectional and Longitudinal Associations of Diabetic Retinopathy With Cognitive Function and Brain MRI Findings: The Action to Control Cardiovascular Risk in Diabetes (ACCORD) Trial.

“Brain imaging studies suggest that type 2 diabetes–related microvascular disease may affect the central nervous system in addition to its effects on other organs, such as the eye and kidney. Histopathological evidence indicates that microvascular disease in the brain can lead to white matter lesions (WMLs) visible with MRI of the brain (1), and risk for them is often increased by type 2 diabetes (26). Type 2 diabetes also has recently been associated with lower brain volume, particularly gray matter volume (79).

The association between diabetic retinopathy and changes in brain tissue is of particular interest because retinal and cerebral small vessels have similar anatomy, physiology, and embryology (10). […] the preponderance of evidence suggests diabetic retinopathy is associated with increased WML burden (3,1214), although variation exists. While cross-sectional studies support a correlation between diabetic retinopathy and WMLs (2,3,6,15), diabetic retinopathy and brain atrophy (16), diabetic retinopathy and psychomotor speed (17,18), and psychomotor speed and WMLs (5,19,20), longitudinal evidence demonstrating the assumed sequence of disease development, for example, vascular damage of eye and brain followed by cognitive decline, is lacking.

Using Action to Control Cardiovascular Risk in Diabetes (ACCORD) data, in which a subset of participants received longitudinal measurements of diabetic retinopathy, cognition, and MRI variables, we analyzed the 1) cross-sectional associations between diabetic retinopathy and evidence of brain microvascular disease and 2) determined whether baseline presence or severity of diabetic retinopathy predicts 20- or 40-month changes in cognitive performance or brain microvascular disease.”

“The ACCORD trial (21) was a multicenter randomized trial examining the effects of intensive glycemic control, blood pressure, and lipids on cardiovascular disease events. The 10,251 ACCORD participants were aged 40–79 years, had poorly controlled type 2 diabetes (HbA1c > 7.5% [58.5 mmol/mol]), and had or were at high risk for cardiovascular disease. […] The ACCORD-Eye sample comprised 3,472 participants who did not report previous vitrectomy or photocoagulation surgery for proliferative diabetic retinopathy at baseline […] ACCORD-MIND included a subset of 2,977 ACCORD participants who completed a 30-min cognitive testing battery, 614 of whom also had useable scans from the MRI substudy (23,24). […] ACCORD-MIND had visits at three time points: baseline, 20 months, and 40 months. MRI of the brain was completed at baseline and the 40-month time point.”

“Baseline diabetic retinopathy was associated with more rapid 40-month declines in DSST and MMSE [Mini-Mental State Examination] when adjusting for demographics and lifestyle factors in model 1 […]. Moreover, increasing severity of diabetic retinopathy was associated with increased amounts of decline in DSST [Digit Symbol Substitution Test] performance (−1.30, −1.76, and −2.81 for no, mild, and moderate/severe NPDR, respectively; P = 0.003) […Be careful about how to interpret that p-value – see below, US] . The associations remained virtually unchanged after further adjusting for vascular and diabetes risk factors, depression, and visual acuity using model 2.”

“This longitudinal study provides new evidence that diabetic retinopathy is associated with future cognitive decline in persons with type 2 diabetes and confirms the finding from the Edinburgh Type 2 Diabetes Study derived from cross-sectional data that lifetime cognitive decline is associated with diabetic retinopathy (32). We found that the presence of diabetic retinopathy, independent of visual acuity, predicts greater declines in global cognitive function measured with the MMSE and that the magnitude of decline in processing speed measured with the DSST increased with increasing severity of baseline diabetic retinopathy. The association with psychomotor speed is consistent with prior cross-sectional findings in community-based samples of middle-aged (18) and older adults (17), as well as prospective studies of a community-based sample of middle-aged adults (33) and patients with type 1 diabetes (34) showing that retinopathy with different etiologies predicted a subsequent decline in psychomotor speed. This study extends these findings to patients with type 2 diabetes.”

“we tested a number of different associations but did not correct P values for multiple testing” [Aargh!, US.]

iii. Incidence of Remission in Adults With Type 2 Diabetes: The Diabetes & Aging Study.

(Note to self before moving on to the paper: these people identified type 1 diabetes by self-report or diabetes onset at <30 years of age, treated with insulin only and never treated with oral agents).

“It is widely believed that type 2 diabetes is a chronic progressive condition, which at best can be controlled, but never cured (1), and that once treatment with glucose-lowering medication is initiated, it is required indefinitely and is intensified over time (2,3). However, a growing body of evidence from clinical trials and case-control studies (46) has reported the remission of type 2 diabetes in certain populations, most notably individuals who received bariatric surgery. […] Despite the clinical relevance and importance of remission, little is known about the incidence of remission in community settings (11,12). Studies to date have focused largely on remission after gastric bypass or relied on data from clinical trials, which have limited generalizability. Therefore, we conducted a retrospective cohort study to describe the incidence rates and variables associated with remission among adults with type 2 diabetes who received usual care, excluding bariatric surgery, in a large, ethnically diverse population. […] 122,781 individuals met our study criteria, yielding 709,005 person-years of total follow-up time.”

“Our definitions of remission were based on the 2009 ADA consensus statement (10). “Partial remission” of diabetes was defined as having two or more consecutive subdiabetic HbA1c measurements, all of which were in the range of 5.7–6.4% [39–46 mmol/mol] over a period of at least 12 months. “Complete remission” was defined as having two or more consecutive normoglycemic HbA1c measurements, all of which were <5.7% [<39 mmol/mol] over a period of at least 12 months. “Prolonged remission” was defined as having two or more consecutive normoglycemic HbA1c measurements, all of which were <5.7% [<39 mmol/mol] over a period of at least 60 months. Each definition of remission requires the absence of pharmacologic treatment during the defined observation period.”

“The average age of participants was 62 years, 47.1% were female, and 51.6% were nonwhite […]. The mean (SD) interval between HbA1c tests in the remission group was 256 days (139 days). The mean interval (SD) between HbA1c tests among patients not in the remission group was 212 days (118 days). The median time since the diagnosis of diabetes in our cohort was 5.9 years, and the average baseline HbA1c level was 7.4% [57 mmol/mol]. The 18,684 individuals (15.2%) in the subset with new-onset diabetes, defined as ≤2 years since diagnosis, were younger, were more likely to have their diabetes controlled by diet, and had fewer comorbidities […] The incidence densities of partial, complete, and prolonged remission in the full cohort were 2.8 (95% CI 2.6–2.9), 0.24 (95% CI 0.20–0.28), and 0.04 (95% CI 0.01–0.06) cases per 1,000 person-years, respectively […] The 7-year cumulative incidences of partial, complete, and prolonged remission were 1.5% (95% CI 1.4–1.5%), 0.14% (95% CI 0.12–0.16%), and 0.01% (95% CI 0.003–0.02%), respectively. The 7-year cumulative incidence of any remission decreased with longer time since diagnosis from a high of 4.6% (95% CI 4.3–4.9%) for individuals diagnosed with diabetes in the past 2 years to a low of 0.4% (95% CI 0.3–0.5%) in those diagnosed >10 years ago. The 7-year cumulative incidence of any remission was much lower for individuals using insulin (0.05%; 95% CI 0.03–0.1%) or oral agents (0.3%; 95% CI 0.2–0.3%) at baseline compared with diabetes patients not using medication at baseline (12%; 95% CI 12–13%).”

“In this large cohort of insured adults with type 2 diabetes not treated with bariatric surgery, we found that 1.5% of individuals with recent evidence of clinical diabetes achieved at least partial remission over a 7-year period. If these results were generalized to the 25.6 million U.S. adults living with type 2 diabetes in 2010 (25), they would suggest that 384,000 adults could experience remission over the next 7 years. However, the rate of prolonged remission was extremely rare (0.007%), translating into only 1,800 adults in the U.S. experiencing remission lasting at least 5 years. To provide context, 1.7% of the cohort died, while only 0.8% experienced any level of remission, during the calendar year 2006. Thus, the chances of dying were higher than the chances of any remission. […] Although remission of type 2 diabetes is uncommon, it does occur in patients who have not undergone surgical interventions. […] Our analysis shows that remission is rare and variable. The likelihood of remission is more common among individuals with early-onset diabetes and those not treated with glucose-lowering medications at the point of diabetes diagnosis. Although rare, remission can also occur in individuals with more severe diabetes and those previously treated with insulin.”

iv. Blood pressure control for diabetic retinopathy (Cochrane review).

“Diabetic retinopathy is a common complication of diabetes and a leading cause of visual impairment and blindness. Research has established the importance of blood glucose control to prevent development and progression of the ocular complications of diabetes. Simultaneous blood pressure control has been advocated for the same purpose, but findings reported from individual studies have supported varying conclusions regarding the ocular benefit of interventions on blood pressure. […] The primary aim of this review was to summarize the existing evidence regarding the effect of interventions to control or reduce blood pressure levels among diabetics on incidence and progression of diabetic retinopathy, preservation of visual acuity, adverse events, quality of life, and costs. A secondary aim was to compare classes of anti-hypertensive medications with respect to the same outcomes.”

“We included 15 RCTs, conducted primarily in North America and Europe, that had enrolled 4157 type 1 and 9512 type 2 diabetic participants, ranging from 16 to 2130 participants in individual trials. […] Study designs, populations, interventions, and lengths of follow-up (range one to nine years) varied among the included trials. Overall, the quality of the evidence for individual outcomes was low to moderate.”

“The evidence from these trials supported a benefit of more intensive blood pressure control intervention with respect to 4- to 5-year incidence of diabetic retinopathy (estimated risk ratio (RR) 0.80; 95% confidence interval (CI) 0.71 to 0.92) and the combined outcome of incidence and progression (estimated RR 0.78; 95% CI 0.63 to 0.97). The available evidence provided less support for a benefit with respect to 4- to 5-year progression of diabetic retinopathy (point estimate was closer to 1 than point estimates for incidence and combined incidence and progression, and the CI overlapped 1; estimated RR 0.88; 95% CI 0.73 to 1.05). The available evidence regarding progression to proliferative diabetic retinopathy or clinically significant macular edema or moderate to severe loss of best-corrected visual acuity did not support a benefit of intervention on blood pressure: estimated RRs and 95% CIs 0.95 (0.83 to 1.09) and 1.06 (0.85 to 1.33), respectively, after 4 to 5 years of follow-up. Findings within subgroups of trial participants (type 1 and type 2 diabetics; participants with normal blood pressure levels at baseline and those with elevated levels) were similar to overall findings.”

“The available evidence supports a beneficial effect of intervention to reduce blood pressure with respect to preventing diabetic retinopathy for up to 4 to 5 years. However, the lack of evidence to support such intervention to slow progression of diabetic retinopathy or to prevent other outcomes considered in this review, along with the relatively modest support for the beneficial effect on incidence, weakens the conclusion regarding an overall benefit of intervening on blood pressure solely to prevent diabetic retinopathy.”

v. Early Atherosclerosis Relates to Urinary Albumin Excretion and Cardiovascular Risk Factors in Adolescents With Type 1 Diabetes: Adolescent Type 1 Diabetes cardio-renal Intervention Trial (AdDIT).

“Children with type 1 diabetes are at greatly increased risk for the development of both renal and cardiovascular disease in later life (1,2). Evidence is accumulating that these two complications may have a common pathophysiology, with endothelial dysfunction a key early event.

Microalbuminuria is a recognized marker of endothelial damage (3) and predicts progression to proteinuria and diabetic nephropathy, as well as to atherosclerosis (4) and increased cardiovascular risk (5). It is, however, rare in adolescents with type 1 diabetes who more often have higher urinary albumin excretion rates within the normal range, which are associated with later progression to microalbuminuria and proteinuria (6).”

“The Adolescent Type 1 Diabetes cardio-renal Intervention Trial (AdDIT) (10) is designed to examine the impact of minor differences in albumin excretion in adolescents on the initiation and progression of cardiovascular and renal disease. The primary cardiovascular end point in AdDIT is carotid intima-media thickness (cIMT). Subclinical atherosclerosis can be detected noninvasively using high-resolution ultrasound to measure the intima-media thickness (IMT) of the carotid arteries, which predicts cardiovascular morbidity and mortality (11,12). […] The primary aim of this study was to examine the relationship of increased urinary albumin excretion and cardiovascular risk factors in adolescents with type 1 diabetes with structural arterial wall changes. We hypothesized that even minor increases in albumin excretion would be associated with early atherosclerosis but that this would be detectable only in the abdominal aorta. […] A total of 406 adolescents, aged 10–16 years, with type 1 diabetes for more than 1 year, recruited in five centers across Australia, were enrolled in this cross-sectional study”.

“Structural changes in the aorta and carotid arteries could be detected in >50% of adolescents with type 1 diabetes […] The difference in aIMT [aortic intima-media thickness] between type 1 diabetic patients and age- and sex-matched control subjects was equivalent to that seen with a 5- to 6-year age increase in the type 1 diabetic patients. […] Aortic IMT was […] able to better differentiate adolescents with type 1 diabetes from control subjects than was carotid wall changes. Aortic IMT enabled detection of the very early wall changes that are present with even small differences in urinary albumin excretion. This not only supports the concept of early intervention but provides a link between renal and cardiovascular disease.

The independent relationship between aIMT and urinary albumin excretion extends our knowledge of the pathogenesis of cardiovascular and renal disease in type 1 diabetes by showing that the first signs of the development of cardiovascular disease and diabetic nephropathy are related. The concept that microalbuminuria is a marker of a generalized endothelial damage, as well as a marker of renal disease, has been recognized for >20 years (3,20,21). Endothelial dysfunction is the first critical step in the development of atherosclerosis (22). Early rises in urinary albumin excretion precede the development of microalbuminuria and proteinuria (23). It follows that the first structural changes of atherosclerosis could relate to the first biochemical changes of diabetic nephropathy. To our knowledge, this is the first study to provide evidence of this.”

“In conclusion, atherosclerosis is detectable from early adolescence in type 1 diabetes. Its early independent associations are male sex, age, systolic blood pressure, LDL cholesterol, and, importantly, urinary albumin excretion. […] Early rises in urinary albumin excretion during adolescence not only are important for determining risk of progression to microalbuminuria and diabetic nephropathy but also may alert the clinician to increased risk of cardiovascular disease.”

vi. Impact of Islet Autoimmunity on the Progressive β-Cell Functional Decline in Type 2 Diabetes.

“Historically, type 2 diabetes (T2D) has not been considered to be immune mediated. However, many notable discoveries in recent years have provided evidence to support the concept of immune system involvement in T2D pathophysiology (15). Immune cells have been identified in the pancreases of phenotypic T2D patients (35). Moreover, treatment with interleukin-1 receptor agonist improves β-cell function in T2D patients (68). These studies suggest that β-cell damage/destruction mediated by the immune system may be a component of T2D pathophysiology.

Although the β-cell damage and destruction in autoimmune diabetes is most likely T-cell mediated (T), immune markers of autoimmune diabetes have primarily centered on the presence of circulating autoantibodies (Abs) to various islet antigens (915). Abs commonly positive in type 1 diabetes (T1D), especially GAD antibody (GADA) and islet cell Abs (ICA), have been shown to be more common in patients with T2D than in nondiabetic control populations, and the presence of multiple islet Abs, such as GADA, ICA, and tyrosine phosphatase-2 (insulinoma-associated protein 2 [IA-2]), have been demonstrated to be associated with an earlier need for insulin treatment in adult T2D patients (14,1620).”

“In this study, we observed development of islet autoimmunity, measured by islet Abs and islet-specific T-cell responses, in 61% of the phenotypic T2D patients. We also observed a significant association between positive islet-reactive T-cell responses and a more rapid decline in β-cell function as assessed by FCP and glucagon-SCP responses. […] The results of this pilot study led us to hypothesize that islet autoimmunity is present or will develop in a large portion of phenotypic T2D patients and that the development of islet autoimmunity is associated with a more rapid decline in β-cell function. Moreover, the prevalence of islet autoimmunity in most previous studies is grossly underestimated because these studies have not tested for islet-reactive T cells in T2D patients but have based the presence of autoimmunity on antibody testing alone […] The results of this pilot study suggest important changes to our understanding of T2D pathogenesis by demonstrating that the prevalence of islet autoimmune development is not only more prevalent in T2D patients than previously estimated but may also play an important role in β-cell dysfunction in the T2D disease process.”

September 18, 2017 Posted by | Cancer/oncology, Cardiology, Diabetes, Epidemiology, Immunology, Medicine, Nephrology, Neurology, Ophthalmology, Studies | Leave a comment

Ophthalmology – National EM Board Review Course

The lecture covers a lot of different stuff. Some links:

Blepharitis.
Dacryocystitis.
Dacryoadenitis.
Chalazion.
Orbital Cellulitis.
Cranial Nerves III, IV, and VI: The Oculomotor System.
Argyll Robertson pupil.
Marcus Gunn pupil.
Horner syndrome.
Third nerve palsy.
Homonymous hemianopsia.
Central Retinal Artery Occlusion.
Central Retinal Vein Occlusion.
Optic Neuritis.
Retinal detachment.
Temporal Arteritis.
Conjunctivitis.
Epidemic Keratoconjunctivitis (EKC).
Uveitis.
Hypopyon.
Keratitis.
Herpes Zoster Ophthalmicus.
Subconjunctival Hemorrhage.
Corneal Abrasion.
Corneal Laceration.
Globe Rupture.
Acute Angle-Closure Glaucoma.
Hyphema.
Endophthalmitis.
Retrobulbar hemorrhage.

September 15, 2017 Posted by | Lectures, Medicine, Ophthalmology, Pharmacology | Leave a comment

A few diabetes papers of interest

i. Impact of Parental Socioeconomic Status on Excess Mortality in a Population-Based Cohort of Subjects With Childhood-Onset Type 1 Diabetes.

“Numerous reports have shown that individuals with lower SES during childhood have increased morbidity and all-cause mortality at all ages (10–14). Although recent epidemiological studies have shown that all-cause mortality in patients with T1D increases with lower SES in the individuals themselves (15,16), the association between parental SES and mortality among patients with childhood-onset T1D has not been reported to the best of our knowledge. Our hypothesis was that low parental SES additionally increases mortality in subjects with childhood-onset T1D. In this study, we used large population-based Swedish databases to 1) explore in a population-based study how parental SES affects mortality in a patient with childhood-onset T1D, 2) describe and compare how the effect differs among various age-at-death strata, and 3) assess whether the adult patient’s own SES affects mortality independently of parental SES.”

“The Swedish Childhood Diabetes Registry (SCDR) is a dynamic population-based cohort reporting incident cases of T1D since 1 July 1977, which to date has collected >16,000 prospective cases. […] All patients recorded in the SCDR from 1 January 1978 to 31 December 2008 were followed until death or 31 December 2010. The cohort was subjected to crude analyses and stratified analyses by age-at-death groups (0–17, 18–24, and ≥25 years). Time at risk was calculated from date of birth until death or 31 December 2010. Kaplan-Meier analyses and log-rank tests were performed to compare the effect of low maternal educational level, low paternal educational level, and family income support (any/none). Cox regression analyses were performed to estimate and compare the hazard ratios (HRs) for the socioeconomic variables and to adjust for the potential confounding variables age at onset and sex.”

“The study included 14,647 patients with childhood-onset T1D. A total of 238 deaths (male 154, female 84) occurred in 349,762 person-years at risk. The majority of mortalities occurred among the oldest age-group (≥25 years of age), and most of the deceased subjects had onset of T1D at the ages of 10–14.99 years […]. Mean follow-up was 23.9 years and maximum 46.5 years. The overall standardized mortality ratio up to the age of 47 years was 2.3 (95% CI 1.35–3.63); for females, it was 2.6 (1.28–4.66) and for males, 2.1 (1.27–3.49). […] Analyses on the effect of low maternal educational level showed an increased mortality for male patients (HR 1.43 [95% CI 1.01–2.04], P = 0.048) and a nonsignificant increased mortality for female patients (1.21 [0.722–2.018], P = 0.472). Paternal educational level had no significant effect on mortality […] Having parents who ever received income support was associated with an increased risk of death in both males (HR 1.89 [95% CI 1.36–2.64], P < 0.001) and females (2.30 [1.43–3.67], P = 0.001) […] Excluding the 10% of patients with the highest accumulated income support to parents during follow-up showed that having parents who ever received income support still was a risk factor for mortality.”

“A Cox model including maternal educational level together with parental income support, adjusting for age at onset and sex, showed that having parents who received income support was associated with a doubled mortality risk (HR 1.96 [95% CI 1.49–2.58], P < 0.001) […] In a Cox model including the adult patient’s own SES, having parents who received income support was still an independent risk factor in the younger age-at-death group (18–24 years). Among those who died at age ≥25 years of age, the patient’s own SES was a stronger predictor for mortality (HR 2.46 [95% CI 1.54–3.93], P < 0.001)”

“Despite a well-developed health-care system in Sweden, overall mortality up to the age of 47 years is doubled in both males and females with childhood-onset T1D. These results are in accordance with previous Swedish studies and reports from other comparable countries […] Previous studies indicated that low SES during childhood is associated with low glycemic control and diabetes-related morbidity in patients with T1D (8,9), and the current study implies that mortality in adulthood is also affected by parental SES. […] The findings, when stratified by age-at-death group, show that adult patients’ own need of income support independently predicted mortality in those who died at ≥25 years of age, whereas among those who died in the younger age-group (18–24 years), parental requirement of income support was still a strong independent risk factor. None of the present SES measures seem to predict mortality in the ages 0–17 years perhaps due to low numbers and, thus, power.”

ii. Exercise Training Improves but Does Not Normalize Left Ventricular Systolic and Diastolic Function in Adolescents With Type 1 Diabetes.

“Adults and adolescents with type 1 diabetes have reduced exercise capacity (810), which increases their risk for cardiovascular morbidity and mortality (11). The causes for this reduced exercise capacity are unclear. However, recent studies have shown that adolescents with type 1 diabetes have lower stroke volume during exercise, which has been attributed to alterations in left ventricular function (9,10). Reduced left ventricular compliance resulting in an inability to fill the left ventricle appropriately during exercise has been shown to contribute to the lower stroke volume during exercise in both adults and adolescents with type 1 diabetes (12).

Exercise training is recommended as part of the management of type 1 diabetes. However, the effects of exercise training on left ventricular function at rest and during exercise in adolescents with type 1 diabetes have not been investigated. In particular, it is unclear whether exercise training improves cardiac hemodynamics during exercise in adolescents with diabetes. Therefore, we aimed to assess left ventricular volumes at rest and during exercise in a group of adolescents with type 1 diabetes compared with adolescents without diabetes before and after a 20-week exercise-training program. We hypothesized that exercise training would improve exercise capacity and exercise stroke volume in adolescents with diabetes.”

RESEARCH DESIGN AND METHODS Fifty-three adolescents with type 1 diabetes (aged 15.6 years) were divided into two groups: exercise training (n = 38) and nontraining (n = 15). Twenty-two healthy adolescents without diabetes (aged 16.7 years) were included and, with the 38 participants with type 1 diabetes, participated in a 20-week exercise-training intervention. Assessments included VO2max and body composition. Left ventricular parameters were obtained at rest and during acute exercise using MRI.

RESULTS Exercise training improved aerobic capacity (10%) and stroke volume (6%) in both trained groups, but the increase in the group with type 1 diabetes remained lower than trained control subjects. […]

CONCLUSIONS These data demonstrate that in adolescents, the impairment in left ventricular function seen with type 1 diabetes can be improved, although not normalized, with regular intense physical activity. Importantly, diastolic dysfunction, a common mechanism causing heart failure in older subjects with diabetes, appears to be partially reversible in this age group.”

“This study confirms that aerobic capacity is reduced in [diabetic] adolescents and that this, at least in part, can be attributed to impaired left ventricular function and a blunted cardiac response to exercise (9). Importantly, although an aerobic exercise-training program improved the aerobic capacity and cardiac function in adolescents with type 1 diabetes, it did not normalize them to the levels seen in the training group without diabetes. Both left ventricular filling and contractility improved after exercise training in adolescents with diabetes, suggesting that aerobic fitness may prevent or delay the well-described impairment in left ventricular function in diabetes (9,10).

The increase in peak aerobic capacity (∼12%) seen in this study was consistent with previous exercise interventions in adults and adolescents with diabetes (14). However, the baseline peak aerobic capacity was lower in the participants with diabetes and improved with training to a level similar to the baseline observed in the participants without diabetes; therefore, trained adolescents with diabetes remained less fit than equally trained adolescents without diabetes. This suggests there are persistent differences in the cardiovascular function in adolescents with diabetes that are not overcome by exercise training.”

“Although regular exercise potentially could improve HbA1c, the majority of studies have failed to show this (3134). Exercise training improved aerobic capacity in this study without affecting glucose control in the participants with diabetes, suggesting that the effects of glycemic status and exercise training may work independently to improve aerobic capacity.”

….

iii. Change in Medical Spending Attributable to Diabetes: National Data From 1987 to 2011.

“Diabetes care has changed substantially in the past 2 decades. We examined the change in medical spending and use related to diabetes between 1987 and 2011. […] Using the 1987 National Medical Expenditure Survey and the Medical Expenditure Panel Surveys in 2000–2001 and 2010–2011, we compared per person medical expenditures and uses among adults ≥18 years of age with or without diabetes at the three time points. Types of medical services included inpatient care, emergency room (ER) visits, outpatient visits, prescription drugs, and others. We also examined the changes in unit cost, defined by the expenditure per encounter for medical services.”

RESULTS The excess medical spending attributed to diabetes was $2,588 (95% CI, $2,265 to $3,104), $4,205 ($3,746 to $4,920), and $5,378 ($5,129 to $5,688) per person, respectively, in 1987, 2000–2001, and 2010–2011. Of the $2,790 increase, prescription medication accounted for 55%; inpatient visits accounted for 24%; outpatient visits accounted for 15%; and ER visits and other medical spending accounted for 6%. The growth in prescription medication spending was due to the increase in both the volume of use and unit cost, whereas the increase in outpatient expenditure was almost entirely driven by more visits. In contrast, the increase in inpatient and ER expenditures was caused by the rise of unit costs. […] The increase was observed across all components of medical spending, with the greatest absolute increase in the spending on prescription medications ($1,528 increase), followed by inpatient visits ($680 increase) and outpatient visits ($430 increase). The absolute change in the spending on ER and other medical services use was relatively small. In relative terms, the spending on ER visits grew more than five times, faster than that of prescription medication and other medical components. […] Among the total annual diabetes-attributable medical spending, the spending on inpatient and outpatient visits dropped from 40% and 23% to 31% and 19%, respectively, between 1987 and 2011, whereas spending on prescription medication increased from 27% to 41%.”

“The unit costs rose universally in all five measures of medical care in adults with and without diabetes. For each hospital admission, diabetes patients spent significantly more than persons without diabetes. The gap increased from $1,028 to $1,605 per hospital admission between 1987 and 2001, and dropped slightly to $1,360 per hospital admission in 2011. Diabetes patients also had higher spending per ER visit and per purchase of prescription medications.”

“From 1999 to 2011, national data suggest that growth in the use and price of prescription medications in the general population is 2.6% and 3.6% per year, respectively; and the growth has decelerated in recent years (22). Our analysis suggests that the growth rates in the use and prices of prescription medications for diabetes patients are considerably higher. The higher rate of growth is likely, in part, due to the growing emphasis on achieving glycemic targets, the use of newer medications, and the use of multidrug treatment strategies in modern diabetes care practice (23,24). In addition, the growth of medication spending is fueled by the rising prices per drug, particularly the drugs that are newly introduced in the market. For example, the prices for newer drug classes such as glitazones, dipeptidyl peptidase-4 inhibitors, and incretins have been 8 to 10 times those of sulfonylureas and 5 to 7 times those of metformin (9).”

“Between 1987 and 2011, medical spending increased both in persons with and in persons without diabetes; and the increase was substantially greater among persons with diabetes. As a result, the medical spending associated with diabetes nearly doubled. The growth was primarily driven by the spending in prescription medications. Further studies are needed to assess the cost-effectiveness of increased spending on drugs.”

iv. Determinants of Adherence to Diabetes Medications: Findings From a Large Pharmacy Claims Database.

“Adults with type 2 diabetes are often prescribed multiple medications to treat hyperglycemia, diabetes-associated conditions such as hypertension and dyslipidemia, and other comorbidities. Medication adherence is an important determinant of outcomes in patients with chronic diseases. For those with diabetes, adherence to medications is associated with better control of intermediate risk factors (14), lower odds of hospitalization (3,57), lower health care costs (5,79), and lower mortality (3,7). Estimates of rates of adherence to diabetes medications vary widely depending on the population studied and how adherence is defined. One review found that adherence to oral antidiabetic agents ranged from 36 to 93% across studies and that adherence to insulin was ∼63% (10).”

“Using a large pharmacy claims database, we assessed determinants of adherence to oral antidiabetic medications in >200,000 U.S. adults with type 2 diabetes. […] We selected a cohort of members treated for diabetes with noninsulin medications (oral agents or GLP-1 agonists) in the second half of 2010 who had continuous prescription benefits eligibility through 2011. Each patient was followed for 12 months from their index diabetes claim date identified during the 6-month targeting period. From each patient’s prescription history, we collected the date the prescription was filled, how many days the supply would last, the National Drug Code number, and the drug name. […] Given the difficulty in assessing insulin adherence with measures such as medication possession ratio (MPR), we excluded patients using insulin when defining the cohort.”

“We looked at a wide range of variables […] Predictor variables were defined a priori and grouped into three categories: 1) patient factors including age, sex, education, income, region, past exposure to therapy (new to diabetes therapy vs. continuing therapy), and concurrent chronic conditions; 2) prescription factors including refill channel (retail vs. mail order), total pill burden per day, and out of pocket costs; and 3) prescriber factors including age, sex, and specialty. […] Our primary outcome of interest was adherence to noninsulin antidiabetic medications. To assess adherence, we calculated an MPR for each patient. The ratio captures how often patients refill their medications and is a standard metric that is consistent with the National Quality Forum’s measure of adherence to medications for chronic conditions. MPR was defined as the proportion of days a patient had a supply of medication during a calendar year or equivalent period. We considered patients to be adherent if their MPR was 0.8 or higher, implying that they had their medication supplies for at least 80% of the days. An MPR of 0.8 or above is a well-recognized index of adherence (11,12). Studies have suggested that patients with chronic diseases need to achieve at least 80% adherence to derive the full benefits of their medications (13). […] [W]e [also] determined whether a patient was persistent, that is whether they had not discontinued or had at least a 45-day gap in their targeted therapy.”

“Previous exposure to diabetes therapy had a significant impact on adherence. Patients new to therapy were 61% less likely to be adherent to their diabetes medication. There was also a clear age effect. Patients 25–44 years of age were 49% less likely to be adherent when compared with patients 45–64 years of age. Patients aged 65–74 years were 27% more likely to be adherent, and those aged 75 years and above were 41% more likely to be adherent when compared with the 45–64 year age-group. Men were significantly more likely to be adherent than women […I dislike the use of the word ‘significant’ in such contexts; there is a difference in the level of adherence, but it is not large in absolute terms; the male vs female OR is 1.14 (CI 1.12-1.16) – US]. Education level and household income were both associated with adherence. The higher the estimated academic achievement, the more likely the patient was to be adherent. Patients completing graduate school were 41% more likely to be adherent when compared with patients with a high school equivalent education. Patients with an annual income >$60,000 were also more likely to be adherent when compared with patients with a household income <$30,000.”

“The largest effect size was observed for patients obtaining their prescription antidiabetic medications by mail. Patients using the mail channel were more than twice as likely to be adherent to their antidiabetic medications when compared with patients filling their prescriptions at retail pharmacies. Total daily pill burden was positively associated with antidiabetic medication adherence. For each additional pill a patient took per day, adherence to antidiabetic medications increased by 22%. Patient out-of-pocket costs were negatively associated with adherence. For each additional $15 in out-of-pocket costs per month, diabetes medication adherence decreased by 11%. […] We found few meaningful differences in patient adherence according to prescriber factors.”

“In our study, characteristics that suggest a “healthier” patient (being younger, new to diabetes therapy, and taking few other medications) were all associated with lower odds of adherence to antidiabetic medications. This suggests that acceptance of a chronic illness diagnosis and the potential consequences may be an important, but perhaps overlooked, determinant of medication-taking behavior. […] Our findings regarding income and costs are important reminders that prescribers should consider the impact of medication costs on patients with diabetes. Out-of-pocket costs are an important determinant of adherence to statins (26) and a self-reported cause of underuse of medications in one in seven insured patients with diabetes (27). Lower income has previously been shown to be associated with poor adherence to diabetes medications (15) and a self-reported cause of cost-related medication underuse (27).”

v. The Effect of Alcohol Consumption on Insulin Sensitivity and Glycemic Status: A Systematic Review and Meta-analysis of Intervention Studies.

“Moderate alcohol consumption, compared with abstaining and heavy drinking, is related to a reduced risk of type 2 diabetes (1,2). Although the risk is reduced with moderate alcohol consumption in both men and women, the association may differ for men and women. In a meta-analysis, consumption of 24 g alcohol/day reduced the risk of type 2 diabetes by 40% among women, whereas consumption of 22 g alcohol/day reduced the risk by 13% among men (1).

The association of alcohol consumption with type 2 diabetes may be explained by increased insulin sensitivity, anti-inflammatory effects, or effects of adiponectin (3). Several intervention studies have examined the effect of moderate alcohol consumption on these potential underlying pathways. A meta-analysis of intervention studies by Brien et al. (4) showed that alcohol consumption significantly increased adiponectin levels but did not affect inflammatory factors. Unfortunately, the effect of alcohol consumption on insulin sensitivity has not been summarized quantitatively. A review of cross-sectional studies by Hulthe and Fagerberg (5) suggested a positive association between moderate alcohol consumption and insulin sensitivity, although the three intervention studies included in their review did not show an effect (68). Several other intervention studies also reported inconsistent results (9,10). Consequently, consensus is lacking about the effect of moderate alcohol consumption on insulin sensitivity. Therefore, we aimed to conduct a systematic review and meta-analysis of intervention studies investigating the effect of alcohol consumption on insulin sensitivity and other relevant glycemic measures.”

“22 articles met criteria for inclusion in the qualitative synthesis. […] Of the 22 studies, 15 used a crossover design and 7 a parallel design. The intervention duration of the studies ranged from 2 to 12 weeks […] Of the 22 studies, 2 were excluded from the meta-analysis because they did not include an alcohol-free control group (14,19), and 4 were excluded because they did not have a randomized design […] Overall, 14 studies were included in the meta-analysis”

“A random-effects model was used because heterogeneity was present (P < 0.01, I2 = 91%). […] For HbA1c, a random-effects model was used because the I2 statistic indicated evidence for some heterogeneity (I2 = 30%).” [Cough, you’re not supposed to make these decisions that way, coughUS. This is not the first time I’ve seen this approach applied, and I don’t like it; it’s bad practice to allow the results of (frequently under-powered) heterogeneity tests to influence model selection decisions. As Bohrenstein and Hedges point out in their book, “A report should state the computational model used in the analysis and explain why this model was selected. A common mistake is to use the fixed-effect model on the basis that there is no evidence of heterogeneity. As [already] explained […], the decision to use one model or the other should depend on the nature of the studies, and not on the significance of this test”]

“This meta-analysis shows that moderate alcohol consumption did not affect estimates of insulin sensitivity or fasting glucose levels, but it decreased fasting insulin concentrations and HbA1c. Sex-stratified analysis suggested that moderate alcohol consumption may improve insulin sensitivity and decrease fasting insulin concentrations in women but not in men. The meta-regression suggested no influence of dosage and duration on the results. However, the number of studies may have been too low to detect influences by dosage and duration. […] The primary finding that alcohol consumption does not influence insulin sensitivity concords with the intervention studies included in the review of Hulthe and Fagerberg (5). This is in contrast with observational studies suggesting a significant association between moderate alcohol consumption and improved insulin sensitivity (34,35). […] We observed lower levels of HbA1c in subjects consuming moderate amounts of alcohol compared with abstainers. This has also been shown in several observational studies (39,43,44). Alcohol may decrease HbA1c by suppressing the acute rise in blood glucose after a meal and increasing the early insulin response (45). This would result in lower glucose concentrations over time and, thus, lower HbA1c concentrations. Unfortunately, the underlying mechanism of glycemic control by alcohol is not clearly understood.”

vi. Predictors of Lower-Extremity Amputation in Patients With an Infected Diabetic Foot Ulcer.

“Infection is a frequent complication of diabetic foot ulcers, with up to 58% of ulcers being infected at initial presentation at a diabetic foot clinic, increasing to 82% in patients hospitalized for a diabetic foot ulcer (1). These diabetic foot infections (DFIs) are associated with poor clinical outcomes for the patient and high costs for both the patient and the health care system (2). Patients with a DFI have a 50-fold increased risk of hospitalization and 150-fold increased risk of lower-extremity amputation compared with patients with diabetes and no foot infection (3). Among patients with a DFI, ∼5% will undergo a major amputation and 20–30% a minor amputation, with the presence of peripheral arterial disease (PAD) greatly increasing amputation risk (46).”

“As infection of a diabetic foot wound heralds a poor outcome, early diagnosis and treatment are important. Unfortunately, systemic signs of inflammation such as fever and leukocytosis are often absent even with a serious foot infection (10,11). As local signs and symptoms of infection are also often diminished, because of concomitant peripheral neuropathy and ischemia (12), diagnosing and defining resolution of infection can be difficult.”

“The system developed by the International Working Group on the Diabetic Foot (IWGDF) and the Infectious Diseases Society of America (IDSA) provides criteria for the diagnosis of infection of ulcers and classifies it into three categories: mild, moderate, or severe. The system was validated in three relatively small cohorts of patients […] The European Study Group on Diabetes and the Lower Extremity (Eurodiale) prospectively studied a large cohort of patients with a diabetic foot ulcer (17), enabling us to determine the prognostic value of the IWGDF system for clinically relevant lower-extremity amputations. […] We prospectively studied 575 patients with an infected diabetic foot ulcer presenting to 1 of 14 diabetic foot clinics in 10 European countries. […] Among these patients, 159 (28%) underwent an amputation. […] Patients were followed monthly until healing of the foot ulcer(s), major amputation, or death — up to a maximum of 1 year.”

“One hundred and ninety-nine patients had a grade 2 (mild) infection, 338 a grade 3 (moderate), and 38 a grade 4 (severe). Amputations were performed on 159 (28%) patients (126 minor and 33 major) within the year of follow-up; 103 patients (18%) underwent amputations proximal to and including the hallux. […] The independent predictors of any amputation were as follows: periwound edema, HR 2.01 (95% CI 1.33–3.03); foul smell, HR 1.74 (1.17–2.57); purulent and nonpurulent exudate, HR 1.67 (1.17–2.37) and 1.49 (1.02–2.18), respectively; deep ulcer, HR 3.49 (1.84–6.60); positive probe-to-bone test, HR 6.78 (3.79–12.15); pretibial edema, HR 1.53 (1.02–2.31); fever, HR 2.00 (1.15–3.48); elevated CRP levels but less than three times the upper limit of normal, HR 2.74 (1.40–5.34); and elevated CRP levels more than three times the upper limit, HR 3.84 (2.07–7.12). […] In comparison with mild infection, the presence of a moderate infection increased the hazard for any amputation by a factor of 2.15 (95% CI 1.25–3.71) and 3.01 (1.51–6.01) for amputations excluding the lesser toes. For severe infection, the hazard for any amputation increased by a factor of 4.12 (1.99–8.51) and for amputations excluding the lesser toes by a factor of 5.40 (2.20–13.26). Larger ulcer size and presence of PAD were also independent predictors of both any amputation and amputations excluding the lesser toes, with HRs between 1.81 and 3 (and 95% CIs between 1.05 and 6.6).”

“Previously published studies that have aimed to identify independent risk factors for lower-extremity amputation in patients with a DFI have noted an association with older age (5,22), the presence of fever (5), elevated acute-phase reactants (5,22,23), higher HbA1c levels (24), and renal insufficiency (5,22).”

“The new risk scores we developed for any amputation, and amputations excluding the lesser toes had higher prognostic capability, based on the area under the ROC curve (0.80 and 0.78, respectively), than the IWGDF system (0.67) […] which is currently the only one in use for infected diabetic foot ulcers. […] these Eurodiale scores were developed based on the available data of our cohort, and they will need to be validated in other populations before any firm conclusions can be drawn. The advantage of these newly developed scores is that they are easier for clinicians to perform […] These newly developed risk scores can be readily used in daily clinical practice without the necessity of obtaining additional laboratory testing.”

September 12, 2017 Posted by | Cardiology, Diabetes, Economics, Epidemiology, Health Economics, Infectious disease, Medicine, Microbiology, Statistics | Leave a comment

Gastroenterology – Amal Mattu

If I hadn’t just read Horowitz & Samsom’s book I’m fairly sure this lecture would have been difficult to follow, but a lot of the stuff covered here is (naturally) closely related to the stuff covered in that book; this is mostly a revision lecture aimed at reminding you of stuff you already (supposedly?) know and/or dealing with topics closely related to stuff you already know, I don’t think it’s the right lecture for someone who knows very little about gastroenterology. I like Mattu’s approach to lecturing; this lecture was both fun and enjoyable to watch, despite (?) including a lot of information.

A few links to stuff covered/mentioned in the lecture:

Mediastinitis.
Boerhaave syndrome.
Does This Patient Have a Severe Upper Gastrointestinal Bleed? (JAMA).
Acute Liver Failure (NEJM review article).
Charcot’s cholangitis triad.
Ranson criteria.
Volvulus.
Crohn’s disease.
Ulcerative colitis.
Abdominal aortic aneurysm.
Mesenteric ischemia.
Shigella infection.
Amebiasis.
Clostridium perfringens.
Pseudomembranous colitis.

September 11, 2017 Posted by | Gastroenterology, Lectures, Medicine, Microbiology | Leave a comment

Gastrointestinal Function in Diabetes (II)

Some more observations from the book below.

“In comparison with other parts of the gastrointestinal tract, the human oesophagus is a relatively simple organ with relatively simple functions. Despite this simplicity, disordered oesophageal function is not uncommon. […] The human oesophagus is a muscular tube that connects the pharyngeal cavity to the stomach. […] The most important functions of the human oesophagus and its sphincters are to propel swallowed food boluses to the stomach and to prevent gastro-oesophageal and oesophagopharyngeal reflux. […] Whereas the passage of liquid and solid food boluses through the oesophagus, and even acid gastrooesophageal reflux, are usually not perceived, the likelihood of perception is greater under pathological circumstances […] However, the relationship between oesophageal perception and stimulation is highly variable, e.g. patients with severe oesophagitis may deny any oesophageal symptom, while others with an endoscopically normal oesophagus may suffer from severe reflux symptoms.”

“While it is clear that oesophageal dysfunction occurs frequently in diabetes mellitus, there is considerable variation in the reported prevalence between different studies. […] Numerous studies have shown that oesophageal transit, as measured with radionuclide techniques, is slower in patients with diabetes than in age- and sex-matched healthy controls […] oesophageal transit appears to be delayed in 40–60% of patients with long-standing diabetes […] Although information relating to the prevalence of manometric abnormalities of the oesophagus [relevant link] is limited, the available data indicate that these are evident in approximately 50% of patients with diabetes […] A variety of oesophageal motor abnormalities has been demonstrated in patients with diabetes mellitus […]. These include a decreased amplitude […] and number […] of peristaltic contractions […], and an increased incidence of simultaneous […] and nonpropagated [10] contractions, as well as abnormal wave forms [17,30,32]. […] there is unequivocal evidence of damage to the extrinsic nerve supply to the oesophagus in diabetes mellitus. The results of examination of the oesophagus in 20 patients who died from diabetes disclosed histologic abnormalities in 18 of them […] The available information indicates that the prevalence of gastro-oesophageal reflux disease is higher in diabetes. Murray and co-workers studied 20 diabetic patients (14 type 1, six type 2), of whom nine (45%) were found to have excessive gastro-oesophageal acid reflux […] In a larger study of 50 type 1 diabetic patients without symptoms or history of gastro-oesophageal disease, abnormal gastro-oesophageal reflux, defined as a percentage of time with esophageal pH < 4 exceeding 3.5%, was detected in 14 patients (28%) [37].”

“Several studies have shown that the gastrointestinal motor responses to various stimuli are impaired during acute hyperglycaemia in both healthy subjects and diabetic patients […] acute hyperglycaemia reduces LOS [lower oesophageal sphincter, US] pressure and impairs oesophageal motility […] Several studies have shown that abnormal oesophageal motility is more frequent in diabetic patients who have evidence of peripheral or autonomic neuropathy than in those without […] In one of the largest studies that focused on the relationship between neuropathy and disordered oesophageal function, 50 […] insulin-requiring diabetics were stratified into three groups: (a) patients without peripheral neuropathy (n = 18); (b) patients with peripheral neuropathy but no autonomic neuropathy (n = 20); and (c) patients with both peripheral and autonomic neuropathy (n = 12). Radionuclide oesophageal emptying was found to be abnormal in 55%, 70% and 83% of patients in groups A, B and C, respectively [17]. […] It must be emphasised, however, that although several studies have provided evidence for the existence of a relationship between disordered oesophageal function and diabetic autonomic neuropathy, this relationship is relatively weak [13,14,17,27,37,49].”

“There is considerable disagreement in the literature as to the prevalence of symptoms of oesophageal dysfunction in diabetes mellitus. Some publications indicate that patients with diabetes mellitus usually do not complain about oesophageal symptoms, even when severe oesophageal dysfunction is present. […] However, in other studies a high prevalence of oesophageal symptoms in diabetics has been documented. For example, 27% of 137 unselected diabetics attending an outpatient clinic admitted to having dysphagia when specifically asked […] The poor association between oesophageal dysfunction and symptoms in patients with diabetes may reflect impaired perception of oesophageal stimuli caused by neuropathic abnormalities in afferent pathways. The development of symptoms and signs of gastro-oesophageal reflux disease in diabetics may in part be counteracted by a decrease in gastric acid secretion [59]. […] [However] oesophageal acid exposure is increased in about 40% of diabetics and it is known that the absence of reflux symptoms does not exclude the presence of severe oesophagitis and/or Barrett’s metaplasia. Due to impaired oesophageal perception, the proportion of asymptomatic patients with reflux disease may be higher in the presence of diabetes than when diabetes is absent. It might, therefore, be argued that a screening upper gastrointestinal endoscopy should be performed in diabetic patients, even when no oesophageal or gastric symptoms are reported. However, [a] more cost-effective
and realistic approach may be to perform endoscopy in diabetics with other risk factors for reflux disease, in particular severe obesity.
[…] Since upper gastrointestinal symptoms correlate poorly with objective abnormalities of gastrointestinal motor function in diabetes, the symptomatic benefit that could be expected from correction of these motor abnormalities is questionable. […] Little or nothing is known about the prognosis of disordered oesophageal function in diabetes. Long-term follow-up studies are lacking.

“Abnormally delayed gastric emptying, or gastroparesis, was once considered to be a rare sequela of diabetes mellitus, occurring occasionally in patients who had long-standing diabetes complicated by symptomatic autonomic neuropathy, and inevitably associated with both intractable upper gastrointestinal symptoms and a poor prognosis [1]. Consequent upon the development of a number of techniques to quantify gastric motility […] and the rapid expansion of knowledge relating to both normal and disordered gastric motor function in humans over the last ∼ 20 years, it is now recognised that these concepts are incorrect. […] Delayed gastric emptying represents a frequent, and clinically important, complication of diabetes mellitus. […] Cross-sectional studies […] have established that gastric emptying of solid, or nutrient liquid, meals is abnormally slow in some 30–50% of outpatients with longstanding type 1 [7–20] or type 2 [20–26] diabetes […]. Early studies, using insensitive barium contrast techniques to quantify gastric emptying, clearly underestimated the prevalence substantially [1,27]. The reported prevalence of delayed gastric emptying is highest when gastric emptying of both solid and nutrient-containing liquids (or semi-solids) are measured, either simultaneously or on separate occasions [17,28,29], as there is a relatively poor correlation between gastric emptying of solids and liquids in diabetes [28–30]. […] It is now recognised that delayed gastric emptying also occurs frequently (perhaps about 30%) in children and adolescents with type 1 diabetes [37–39]. […] intragastric meal distribution is also frequently abnormal in outpatients with diabetes, with increased retention of food in both the proximal and distal stomach [31,33]. The former may potentially be important in the aetiology of gastro-oesophageal reflux [34], which appears to occur more frequently in patients with diabetes […] Diabetic gastroparesis is often associated with motor dysfunction in other areas of the gut, e.g. oesophageal transit is delayed in some 50% of patients with long-standing diabetes [8].”

“Overall patterns of gastric emptying are critically dependent on the physical and chemical composition of a meal, so that there are substantial differences between solids, semi-solids, nutrient liquids and non-nutrient liquids [70]. […] The major factor regulating gastric emptying of nutrients (liquids and ‘liquefied’ solids) is feedback inhibition, triggered by receptors that are distributed throughout the small intestine [72]; as a result of this inhibition, nutrient-containing liquids usually empty from the stomach at an overall rate of about 2 kcal/min, after an initial emptying phase that may be somewhat faster [73]. These small intestinal receptors also respond to pH, osmolality and distension, as well as nutrient content. […] While the differential emptying rates of solids, nutrient and non-nutrient liquids when ingested alone is well established, there is much less information about the interaction between different meal components. When liquids and solids are consumed together, liquids empty preferentially (∼ 80% before the solid starts to empty) […] and the presence of a solid meal results in an overall slowing of a simultaneously ingested liquid [71,75,76]. Therefore, while it is clear that the stomach can, to some extent, regulate the emptying of liquids and solids separately, the mechanisms by which this is accomplished remain poorly defined. Extracellular fat has a much lower density than water and is liquid at body temperature. The pattern of gastric emptying of fat, and its effects on emptying of other meal components are, therefore, dependent on posture — in the left lateral posture oil accumulates in the stomach and empties early, which markedly delays emptying of a nutrient liquid [77]. Gastric emptying is also influenced by patterns of previous nutrient intake. In healthy young and older subjects, supplementation of the diet with glucose is associated with acceleration of gastric emptying of glucose [78,79], while short-term starvation slows gastric emptying”.

“[I]n animal models of diabetes a number of morphological changes are evident in the autonomic nerves supplying the gut and the myenteric plexus, including a reduction in the number of myelinated axons in the vagosympathetic trunk and neurons in the dorsal root ganglia, abnormalities in neurotransmitters […] as well as a reduced number of interstitial cells of Cajal in the fundus and antrum [89–92]. In contrast, there is hitherto little evidence of a fixed pathological process in the neural tissue of humans with diabetes […] While a clear-cut association between disordered gastrointestinal function in diabetes mellitus and the presence of autonomic neuropathy remains to be established, it is now recognised that acute changes in the blood glucose concentration have a substantial, and reversible, effect on gastric (as well as oesophageal, intestinal, gallbladder and anorectal) motility, in both healthy subjects and patients with diabetes […] Marked hyperglycaemia (blood glucose concentration ∼ 15 mmol/l) affects motility in every region of the gastrointestinal tract [103]. […] In healthy subjects [114] and patients with uncomplicated type 1 diabetes […] gastric emptying is accelerated markedly during hypoglycaemia […] this response is likely to be important in the counterregulation of hypoglycaemia. It is not known whether the magnitude of the effect of hypoglycaemia on gastric emptying is influenced by gastroparesis and/or autonomic neuropathy. Recent studies have established that changes in the blood glucose concentration within the normal postprandial range also influence gastric emptying and motility [104–106]; emptying of solids and nutrient-containing liquids is slower at a blood glucose of 8 mmol/l than at 4 mmol/l in both healthy subjects and patients with type 1 diabetes […] Recent studies suggest that the rate of gastric emptying is a significant factor in postprandial hypotension. The latter, which may lead to syncope and falls, is an important clinical problem, particularly in the elderly and patients with autonomic dysfunction (usually diabetes mellitus), occurring more frequently than orthostatic hypotension [154].”

“Gastric emptying is potentially an important determinant of oral drug absorption; most orally administered drugs (including alcohol) are absorbed more slowly from the stomach than from the small intestine because the latter has a much greater surface area [179,180]. Thus, delayed gastric emptying (particularly that of tablets or capsules, which are not degraded easily in the stomach) and a reduction in antral phase 3 activity, may potentially lead to fluctuations in the serum concentrations of orally administered drugs. This may be particularly important when a rapid onset of drug effect is desirable, as with some oral hypoglycaemic drugs […]. There is relatively little information about drug absorption in patients with diabetic gastroparesis [179] and additional studies are required.”

“Glycated haemoglobin is influenced by both fasting and postprandial glucose levels; while their relative contributions have not been defined precisely [181], it is clear that improved overall glycaemic control, as assessed by glycated haemoglobin, can be achieved by lowering postprandial blood glucose concentrations, even at the expense of higher fasting glucose levels [182]. Accordingly, the control of postprandial blood glucose levels, as opposed to glycated haemoglobin, now represents a specific target for treatment […] It remains to be established whether postprandial glycaemia per se, including the magnitude of postprandial hyperglycaemic spikes, has a distinct role in the pathogenesis of diabetic complications, but there is increasing data to support this concept [181,183,184]. It is also possible that the extent of blood glucose fluctuations is an independent determinant of the risk for long-term diabetic complications [184]. […] postprandial blood glucose levels are potentially determined by a number of factors, including preprandial glucose concentrations, the glucose content of a meal, small intestinal delivery and absorption of nutrients, insulin secretion, hepatic glucose metabolism and peripheral insulin sensitivity. Although the relative contribution of these factors remains controversial, and is likely to vary with time after a meal, it is now recognised that gastric emptying accounts for at least 35% of the variance in peak glucose levels after oral glucose (75 g) in both healthy individuals and patients with type 2 diabetes […] It is also clear that even modest perturbations in gastric emptying of carbohydrate have a major effect on postprandial glycaemia [76,79]. […] it appears that much of the observed variation in the glycaemic response to different food types (‘glycaemic indices’) in both normal subjects and patients with diabetes is attributable to differences in rates of gastric emptying [103]. […] In type 1 patients with gastroparesis […] less insulin is initially required to maintain euglycaemia after a meal when compared to those with normal gastric emptying [187]. […] There are numerous uncontrolled reports supporting the concept […] that in type 1 patients gastroparesis is a risk factor for poor glycaemic control.”

“The potential for the modulation of gastric emptying, by dietary or pharmacological means, to minimise postprandial glucose excursions and optimise glycaemic control, represents a novel approach to the optimisation of glycaemic control in diabetes, which is now being explored actively. It is important to appreciate that the underlying strategies are likely to differ fundamentally between type 1 and type 2 diabetes. In type 1 diabetes, interventions that improve the coordination between nutrient absorption and the action of exogenous insulin are likely to be beneficial, even in those patients who have delayed gastric emptying, i.e. by accelerating or even slowing gastric emptying, so that the rate of nutrient delivery (and hence absorption) is more predictable. In contrast, in type 2 diabetes, it may be anticipated that slowing of the absorption of nutrients would be desirable […] In the treatment of type 2 diabetes mellitus, dietary modifications potentially represent a more attractive and cost-effective approach than drugs […] A number of dietary strategies may slow carbohydrate absorption […] an increase in dietary fibre […] Fat is a potent inhibitor of gastric emptying and […] these effects may be dependent on posture [77]; there is the potential for relatively small quantities of fat given immediately before consumption of, or with, a meal to slow gastric emptying of other meal components, so that the postprandial rise in blood glucose is minimised [210] (this is analogous to the slowing of alcohol absorption and liquid gastric emptying when alcohol is ingested after a solid meal, rather than in the fasted state [75]). […] there is evidence that the suppression of subsequent food intake by the addition of fat to a meal may exceed the caloric value of the fat load [212]. In the broadest sense, the glycaemic response to a meal is also likely to be critically dependent on whether food from the previous meal is still present in the stomach and/or small intestine at the time of its ingestion, so that glucose tolerance may be expected to be worse in the fasted state […] than after a meal.”

“At present it is not known whether normalisation of gastric emptying in either type 1 or type 2 patients with gastroparesis improves glycaemic control. […] prokinetic drugs would not be expected to have a beneficial effect on glycaemic control in type 2 patients who are not using insulin. Erythromycin may, however, as a result of its interaction with motilin receptors, also stimulate insulin secretion (and potentially improve glycaemic control by this mechanism) in type 2 diabetes [220] […] It should […] be recognised that any drug that slows gastric emptying has the potential to induce or exacerbate upper gastrointestinal symptoms, delay oral drug absorbtion and impair the counter-regulation of glycaemia. […] At present, the use of prokinetic drugs (mainly cisapride, domperidone, metoclopramide and erythromycin) forms the mainstay of therapy [167,244–259], and most patients will require drug treatment. In general, these drugs all result in dose-related improvements in gastric emptying after acute administration […] The response to prokinetic therapy (magnitude of acceleration in gastric emptying) tends to be greater when gastric emptying is more delayed. It should be recognised that relatively few controlled studies have evaluated the effects of ‘prolonged’ (> 8 weeks) prokinetic therapy, that in many studies the sample sizes have been small, and that the assessments of gastrointestinal symptoms have, not infrequently, been suboptimal; furthermore, the results of some of these studies have been negative [32]. There have hitherto been relatively few randomised controlled trials of high quality, and those that are available differ substantially in design. […] In general, there is a poor correlation between effects on symptoms and gastric emptying — prokinetic drugs may improve symptoms by effects unrelated to acceleration of gastric emptying or central anti-emetic properties [254].”

“Autoimmune factors are well recognised to play a role in the aetiology of type 1 diabetes [316,317]. In such patients there is an increased prevalence of autoimmune aggression against non-endocrine tissues, including the gastric mucosa. The reported prevalence of parietal cell antibodies in patients with type 1 diabetes is in the range 5–28%, compared to 1.4–12% in non-diabetic controls […] The autoimmune response to parietal cell antibodies may lead to atrophic gastritis, pernicious anaemia and iron deficiency anaemia […] Parietal cell antibodies can inhibit the secretion of intrinsic factor, which is necessary for the absorption of vitamin B12, potentially resulting in pernicious anaemia. The prevalence of latent and overt pernicious anaemia in type 1 diabetes has been reported to be 1.6–4% and 0.4%, respectively […] screening for parietal cell antibodies in patients with type 1 diabetes currently appears inappropriate. However, there should be a low threshold for further investigation in those patients presenting with anaemia”.

September 1, 2017 Posted by | Books, Diabetes, Gastroenterology, Immunology, Medicine, Neurology | Leave a comment

Gastrointestinal Function in Diabetes (I)

“During the last 15–20 years, primarily as a result of the application of novel investigative techniques, there has been a rapid expansion of knowledge relating to the function of the gastrointestinal tract in diabetes mellitus. These insights have been substantial and have led to the recognition that gastrointestinal function represents a hitherto inappropriately neglected, as well as important, aspect of diabetes management. In particular, disordered gastrointestinal motor and sensory function occur frequently in both type 1 and type 2 diabetes and may be associated with significant clinical sequelae. Recent epidemiological studies have established that there is a high prevalence of gastrointestinal symptoms in the diabetic population and that these are associated with impaired quality of life. Furthermore, upper gastrointestinal motility, even when normal, is central to the regulation of postprandial blood glucose concentrations. Hence, diabetes and the gastrointestinal tract are inextricably linked. […] This book, which to our knowledge represents the first of its kind, was stimulated by the need to consolidate these advances, to illuminate an area that is perceived as increasingly important, but somewhat difficult to understand. […] The book aims to be comprehensive and to present the relevant information in context for both the clinician and clinical researcher. There are nine chapters: five are organ-specific, relating to oesophageal, gastric, intestinal, anorectal and hepatobiliary function; the four other chapters address epidemiological aspects of gastrointestinal function in diabetes, the effects of diabetes mellitus on gastrointestinal function in animal models, the impact of gastrointestinal function on glycaemic control, and the evaluation of gastrointestinal autonomic function. All of the authors are recognised internationally for their expertise in the field”.

I added this book to my list of favourite books on goodreads – it’s a great book, from which I learned a lot.

I have added some more quotes and observations from the book below, as well as a few comments.

“Population-based studies of gastrointestinal symptoms in diabetic patients have been relatively few and the results conflicting […] To date, a total of nine population-based studies have been undertaken evaluating gastrointestinal symptoms in subjects with diabetes mellitus […] Depending on the population studied, the prevalence of symptoms has varied considerably in patients with both type 1 and type 2 diabetes mellitus. […] there is evidence that gastrointestinal symptoms are linked with diabetes mellitus, but the prevalence over and above the general population is at most only modestly increased. Some studies have failed to detect an association between diabetes and gastrointestinal symptoms, but several confounders may have obscured the findings. For example, it is well documented that chronic gastrointestinal symptoms are common in non-diabetics in the community, presumably due to functional gastrointestinal disorders such as the irritable bowel syndrome [33,34]. Moreover, the presence of diabetic complications and possibly long-term glycaemic control appear to be important factors in symptom onset [31,32]. This may explain the difficulty in establishing a firm link between diabetes and chronic gastrointestinal complaints in population-based studies.”

It is perhaps important to interpose already at this early stage of the coverage that diabetes seems to be related to many changes in gastrointestinal function that do not necessarily cause symptoms which lead to patient complaints, but which even so may still affect individuals with the disease in a variety of ways. For example drug metabolism may be altered in diabetics secondary to hyperglycemia-induced delayed gastric emptying, which can naturally be very important in some situations (drugs don’t work, or don’t work when they’re supposed to). Symptomatic disease is important to observe and address, but there are many other aspects that may be relevant as well. The symptomatology of diabetes-related gastrointestinal changes is of course complicated by the fact that nervous system involvement is an important player, and a player we know from other contexts may both generate symptoms (in this setting you’d e.g. think of altered peristalsis in severe neuropathy, causing constipation) and may also lead to an absence of symptoms in settings where symptoms would otherwise have been present (‘silent ischemia‘ is common in diabetics). I may or may not go much more into these topics, there’s a lot of interesting stuff in this book.

“In patients with long-standing type 1 and type 2 diabetes, the prevalence of delayed gastric emptying of a nutrient meal is reported to range from 27% to 40% [40–42] and the prevalence is similar in insulin-dependent and non-insulindependent diabetes mellitus […]. In a minority of patients (less than 10%) with long-standing diabetes, gastric emptying is accelerated [42–44]. […] A number of studies have shown that acute changes in blood glucose concentrations can have a profound effect on motor function throughout the gastrointestinal tract in both normal subjects and patients with diabetes mellitus [54]. Recent studies have demonstrated that the blood glucose concentration may also modulate the perception of sensations arising from the gastrointestinal tract [56–58]. However, there is relatively little information about the mechanisms mediating the effects of the blood glucose concentration on gastrointestinal motility. While some studies have implicated impaired glycaemic control in the genesis of chronic gastrointestinal symptoms [24,31], this remains controversial.”

“As part of the Medical Outcomes Study, that determined the impact of nine different chronic illnesses upon HRQL [Health-Related Quality of Life, US], Stewart et al. [90] used the Short Form (SF-20) of the General Health Survey to evaluate HRQL ratings in 9385 patients, 844 of whom had diabetes […] gastrointestinal disorders had a more negative impact on HRQL than all other conditions with the exception of heart disease [90]. Others have reported similar findings [120,121]. […] A study of diabetic patients undergoing transplantation [122] indicated that, of all the factors likely to compromise HRQL, the single most important one was gastrointestinal dysfunction.”

“In animal studies of gastrointestinal function in diabetes mellitus, most information has been generated using insulinopenic rats with severe hyperglycaemia; around one-third of the literature has been generated using BB rats (autoimmune spontaneous diabetic) and two-thirds using streptozotocin (STZ; chemically-induced) diabetic models. In the choice of these animal models, an assumption appears to have been often made that hyperglycaemia per se, or at least some aspect of the metabolic disturbance secondary to insulin lack, is the aetiopathologic insult. A common hypothesis is that neurotoxicity of the autonomic nervous system, secondary to this metabolic insult, is responsible for the gastrointestinal effects of diabetes. This hypothesis is described here as the ‘autonomic neuropathic’ hypothesis.”

“Central nervous structures, especially those in the brain stem […] are implicated in the normal autonomic control of gastrointestinal function […] over two-thirds of the literature regarding gastrointestinal dysfunction in diabetes is derived from chemically-induced models in which, alarmingly, much of the reported gut dysfunction could be an artifact of selective damage to central structures. It is now recognised that there are major differences in gastrointestinal function between animals in which β-cell damage was caused by chemical means and those in which damage was a result of an autoimmune process. These differences prompt an examination of the extent to which gastrointestinal dysfunction in some models is a consequence of diabetes per se, perhaps applicable to human disease, as opposed to being a consequence of damage to specific central structures.”

“The […] most accepted hypothesis in the past to explain gastrointestinal dysfunction in diabetes has been the proposal that autonomic neuropathy has disturbed the normal regulation of gut function. But there are recently identified disturbances in several of the neurohormones found in gut in different diabetic states. Several of these, including amylin, GLP-1 and PYY have effects on gut function, and should now be considered in explanations of diabetes-associated changes in gut function. […] A ‘neurocrine’ alternative to the neuropathic hypothesis focuses on the possibility that absolute or relative deficiency of the pancreatic β-cell hormone, amylin, may be of importance in the aetiology of disordered gastrointestinal function in diabetes. […] STZ diabetic rats most often show increased gastric acid secretion [63,64] and increased rates of ulceration [65–71]. This effect is exacerbated by fasting [67] and is reversed by hyperglycaemia [72] but not by insulin replacement [73]. It thus appears that insulin lack is not the ulcerogenic stimulus, and raises the possibility that absence of gastric-inhibitory factors (e.g. amylin, PYY, GLP-1), which may be absent or reduced in diabetes, could be implicated. […] autoimmune type 1 diabetic BB rats [76] and autoimmune non-obese diabetic (NOD) mice [77] in which the gastric mucosa is not an immune target, also show a marked increase in gastric erosions. The constancy of findings of acid hypersecretion and ulceration in insulinopenic diabetes invoked by diverse insults (chemical and autoimmune) indicates that this gastrointestinal disturbance is a direct consequence of the diabetes, and perhaps of β-cell deficiency. […] Amylin […] is a potent inhibitor of gastric acid secretion [88], independent of changes in plasma glucose [89] and prevents gastric erosion in response to a number of irritants [90–92]. These effects appear to be specific to amylin […] It is possible that amylin deficiency could be implicated in a propensity to ulceration in some forms of diabetes. It is unclear whether such a propensity exists in type 1 diabetic adults. However, type 1 diabetic children are reported to have a three- to four-fold elevation in rate of peptic disease [93].”

“Changes in intestinal mucosal function are observed in diabetic rodents, but it is unclear whether these are intrinsic and contributory to the disease process, or are secondary to the disease. […] It […] appears likely […] that diabetes-associated changes in gut enzyme expression represent a response to some aspect of the diabetic state, since they occur in both chemically-induced and genetic models, and are reversible with vigorous treatment of the diabetes. […] While there appear to be no reports that quantify the relationship between acid secretion and rates of nutrient assimilation, there is evidence that type 1 diabetes, in animal models at least, is characterised by disturbed acid regulation.”

“[D]isordered gastrointestinal motility has long been recognised as a frequent feature in diabetic patients who also exhibit neuropathy [125]. Disturbances in gastrointestinal function have been estimated by some to have a prevalence of ∼ 30% (range 5–60% [126–128]). Both peripheral and autonomic [126–128] neuropathy are frequent complications of diabetes mellitus. Since the autonomic nervous system (ANS) plays a prominent role in the regulation of gut motility, a prevailing hypothesis has been that autonomic neuropathic dysfunction could account for much of this disturbance. […] Motor disturbances associated with autonomic neuropathy include dilation of the oesophagus, gastrointestinal stasis, accumulation of digesta and constipation, mainly signs associated with vagal (parasympathetic) dysfunction. There are also reports of faecal incontinence, related to decreased sphincter pressure, and diarrhoea.”

“The best-characterised signs of damage to the autonomic nervous system during diabetes are morphological […] For example, the number of myelinated axons in the vagosympathetic trunk is decreased in diabetic rats [131], as is the number of neurones in dorsal root ganglia and peripheral postganglionic sympathetic nerves. […] In addition to alterations in numbers and morphology of axons, the tissue around the axons is also often disturbed. […] It is of interest that autonomic neuropathy can be prevented or partially reversed by rigorous glycaemic control [137], suggesting that hyperglycaemia per se is of major aetiological importance in autonomic neuropathy. […] Morphological evidence of neuropathy in BB rats includes axonal degeneration, irregularity of myelin sheaths and Mullerian degeneration […] It has been proposed that periodic hypoglycaemia in BB rats may induce Wallerian degeneration and reduced conduction velocity […] while abnormalities associated with chronic hyperglycaemia include sensory (afferent) axonopathy […] The secretion of a number of neuroendocrine substances may be decreased in diabetes. Glucagon, pancreatic polypeptide, gastrin, somatostatin and gastric inhibitory peptide levels are reportedly reduced in the gastrointestinal tract of diabetic patients […] In addition to peripheral autonomic neuropathy, neurons within the central nervous system are also reported to be damaged in animal models of diabetes, including areas […] which are important in controlling those parts of the autonomic nervous system that innervate the gut.”

“Despite ample evidence of morphologic and functional changes in nerves of rodent models of type 1 diabetes mellitus, it is not clear to what extent these changes underly the gastrointestinal dysfunction evident in these animals. Coincidence of neuropathic and gastrointestinal changes does not necessarily prove a causal association between autonomic neuropathy and gastrointestinal dysfunction in diabetes. […] recently recognised neuroendocrine disturbances in diabetes, especially of the β-cell hormone amylin, provide an alternative to the neuropathic hypothesis […] In considering primary endocrine changes associated with type 1 diabetes mellitus, it should be recognised that the central pathogenic event is a selective and near-absolute autoimmune destruction of pancreatic β-cells. Other cell types in the islets, and other tissues, are preserved. The only confirmed hormones currently known to be specific to pancreatic β-cells are insulin and amylin [251]. Recent evidence also suggests that C-peptide, cleaved from proinsulin during intracellular processing and co-secreted with insulin, may also be biologically active [252] […] It is therefore only insulin, C-peptide and amylin that disappear following the selective destruction of β-cells. The implications of this statement are profound; all diabetes-associated sequelae are somehow related to the absence of these (and/or other possibly undiscovered) hormones, whether directly or indirectly […]. Since insulin has minimal direct effect on gut function, until recently the most plausible explanation linking β-cell destruction to changes in gastrointestinal functions was a neuropathic effect secondary to hyperglycaemia. With the recent discovery of multiple physiological gastrointestinal effects of the second β-cell hormone, amylin [255], a plausible alternate explanation of gut dysfunction following β-cell loss has emerged. That is, instead of being due to insulin lack, some gut dysfunction in insulinopenic diabetes may instead be due to the loss of its co-secreted partner, amylin. […] While insulin and amylin are essentially absent in type 1 diabetes, in states of impaired glucose tolerance and early type 2 diabetes, each of these hormones may in fact be hypersecreted […] The ZDF rat is a model of insulin resistance, with some strains developing type 2 diabetes. These animals, which hypersecrete from pancreatic β-cells, exhibit both hyperinsulinaemia and hyperamylinaemia.”

If amylin is hypersecreted in type 2 diabetics and the hormone is absent in type 1 and you do population studies on mixed populations of type 1 and type 2 patients and try to figure out what is going on, you’re going to have some potential issues. The picture seems not too dissimilar to what you see when you look at bone disease in diabetes; type 1s have a high fracture risk, type 2s also have a higher than normal fracture risk, but ‘the effect of diabetes’ is in fact very different in the two groups (in part – but certainly not only – because most type 2s are overweight or obese, and overweight decreases the fracture risk). Some of the relevant pathways of pathophysiological interest are identical in the two patient populations (this is also the case here; acute hyperglycemia is known to cause delayed gastric emptying even in non-diabetics), some are completely different – it’s a mess. This is one reason why I don’t think the confusing results of some of the population studies included early in the book’s coverage – which I decided not to cover in detail here – are necessarily all that surprising.

“Many gastrointestinal reflexes are glucose-sensitive, reflecting their often unrecognised glucoregulatory (restricting elevations of glucose during hyperglycaemia) and counter-regulatory functions (promoting elevation of glucose during hypoglycaemia). Glucose-sensitive effects include inhibition of food intake, control of gastric emptying rate, and regulation of gastric acid secretion and pancreatic enzyme secretion […] Some gastrointestinal manifestations of diabetes may therefore be secondary, and compensatory, to markedly disturbed plasma glucose concentrations. […] It has emerged in recent years that several of the most potent of nearly 60 reported biological actions of amylin [286] are gastrointestinal effects that appear to collectively restrict nutrient influx and promote glucose tolerance. These include inhibition of gastric emptying, inhibition of food intake, inhibition of digestive functions (pancreatic enzyme secretion, gastric acid secretion and bile ejection), and inhibition of nutrient-stimulated glucagon secretion. […] In rats, amylin is the most potent of any known mammalian peptide in slowing gastric emptying […] An amylin agonist (pramlintide), several GLP-1 agonists and exendin-4 are being explored as potential therapies for the treatment of diabetes, with inhibition of gastric emptying being recognised as a mode of therapeutic action. […] The concept of the gut as an organ of metabolic control is yet to be widely accepted, and antidiabetic drugs that moderate nutrient uptake as a mode of therapy have only begun to emerge. A potential advantage such therapies hold over those that enhance insulin action, is their general glucose dependence and low propensity to (per se) induce hypoglycaemia.”

August 29, 2017 Posted by | Books, Diabetes, Gastroenterology, Medicine, Neurology | Leave a comment

Utility of Research Autopsies for Understanding the Dynamics of Cancer

A few links:
Pancreatic cancer.
Jaccard index.
Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer.
Epitope.
Tissue-specific mutation accumulation in human adult stem cells during life.
Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis.

August 25, 2017 Posted by | Cancer/oncology, Genetics, Immunology, Lectures, Medicine, Statistics | Leave a comment

Quantifying tumor evolution through spatial computational modeling

Two general remarks: 1. She talks very fast, in my opinion unpleasantly fast – the lecture would have been at least slightly easier to follow if she’d slowed down a little. 2. A few of the lectures uploaded in this lecture series (from the IAS Mathematical Methods in Cancer Evolution and Heterogeneity Workshop) seem to have some sound issues; in this lecture there are multiple 1-2 seconds long ‘chunks’ where the sound drops out and some words are lost. This is really annoying, and a similar problem (which was likely ‘the same problem’) previously lead me to quit another lecture in the series; however in this case I decided to give it a shot anyway, and I actually think it’s not a big deal; the sound-losses are very short in duration, and usually no more than one or two words are lost so you can usually figure out what was said. During this lecture there was incidentally also some issues with the monitor roughly 27 minutes in, but this isn’t a big deal as no information was lost and unlike the people who originally attended the lecture you can just skip ahead approximately one minute (that was how long it took to solve that problem).

A few relevant links to stuff she talks about in the lecture:

A Big Bang model of human colorectal tumor growth.
Approximate Bayesian computation.
Site frequency spectrum.
Identification of neutral tumor evolution across cancer types.
Using tumour phylogenetics to identify the roots of metastasis in humans.

August 22, 2017 Posted by | Cancer/oncology, Evolutionary biology, Genetics, Lectures, Mathematics, Medicine, Statistics | Leave a comment

A few diabetes papers of interest

i. Rates of Diabetic Ketoacidosis: International Comparison With 49,859 Pediatric Patients With Type 1 Diabetes From England, Wales, the U.S., Austria, and Germany.

“Rates of DKA in youth with type 1 diabetes vary widely nationally and internationally, from 15% to 70% at diagnosis (4) to 1% to 15% per established patient per year (911). However, data from systematic comparisons between countries are limited. To address this gap in the literature, we analyzed registry and audit data from three organizations: the Prospective Diabetes Follow-up Registry (DPV) in Germany and Austria, the National Paediatric Diabetes Audit (NPDA) in England and Wales, and the T1D Exchange (T1DX) in the U.S. These countries have similarly advanced, yet differing, health care systems in which data on DKA and associated factors are collected. Our goal was to identify indicators of risk for DKA admissions in pediatric patients with >1-year duration of disease with an aim to better understand where targeted preventive programs might lead to a reduction in the frequency of this complication of management of type 1 diabetes.”

RESULTS The frequency of DKA was 5.0% in DPV, 6.4% in NPDA, and 7.1% in T1DX […] Mean HbA1c was lowest in DPV (63 mmol/mol [7.9%]), intermediate in T1DX (69 mmol/mol [8.5%]), and highest in NPDA (75 mmol/mol [9.0%]). […] In multivariable analyses, higher odds of DKA were found in females (odds ratio [OR] 1.23, 99% CI 1.10–1.37), ethnic minorities (OR 1.27, 99% CI 1.11–1.44), and HbA1c ≥7.5% (≥58 mmol/mol) (OR 2.54, 99% CI 2.09–3.09 for HbA1c from 7.5 to <9% [58 to <75 mmol/mol] and OR 8.74, 99% CI 7.18–10.63 for HbA1c ≥9.0% [≥75 mmol/mol]).”

Poor metabolic control is obviously very important, but it’s important to remember that poor metabolic control is in itself an outcome that needs to be explained. I would note that the mean HbA1c values here, especially that 75 mmol/mol one, seem really high; this is not a very satisfactory level of glycemic control and corresponds to an average glucose level of 12 mmol/l. And that’s a population average, meaning that many individuals have values much higher than this. Actually the most surprising thing to me about these data is that the DKA event rates are not much higher than they are, considering the level of metabolic control achieved. Another slightly surprising finding is that teenagers (13-17 yrs) were not actually all that much more likely to have experienced DKA than small children (0-6 yrs); the OR is only ~1.5. Of course this can not be taken as an indication that DKA in teenagers do not make up a substantial proportion of the total amount of DKA events in pediatric samples, as the type 1 prevalence is much higher in teenagers than in small children (incidence peaks in adolescence).

“In 2004–2009 in the U.S., the mean hospital cost per pediatric DKA admission was $7,142 (range $4,125–11,916) (6), and insurance claims data from 2007 reported an excess of $5,837 in annual medical expenditures for youth with insulin-treated diabetes with DKA compared with those without DKA (7). In Germany, pediatric patients with diabetes with DKA had diabetes-related costs that were up to 3.6-fold higher compared with those without DKA (8).”

“DKA frequency was lower in pump users than in injection users (OR 0.84, 99% CI 0.76–0.93). Heterogeneity in the association with DKA between registries was seen for pump use and age category, and the overall rate should be interpreted accordingly. A lower rate of DKA in pump users was only found in T1DX, in contrast to no association of pump use with DKA in DPV or NPDA. […] In multivariable analyses […], age, type 1 diabetes duration, and pump use were not significantly associated with DKA in the fully adjusted model. […] pump use was associated with elevated odds of DKA in the <6-year-olds and in the 6- to <13-year-olds but with reduced odds of DKA in the 13- to <18-year-olds.”

Pump use should probably all else equal increase the risk of DKA, but all else is never equal and in these data pump users actually had a lower DKA event rate than did diabetics treated with injections. One should not conclude from this finding that pump use decreases the risk of DKA, selection bias and unobserved heterogeneities are problems which it is almost impossible to correct for in an adequate way – I find it highly unlikely that selection bias is only a potential problem in the US (see below). There are many different ways selection bias can be a relevant problem, financial- and insurance-related reasons (relevant particularly in the US and likely the main factors the authors are considering) are far from the only potential problems; I could thus easily imagine selection dynamics playing a major role even in a hypothetical setting where all new-diagnosed children were started on pump therapy as a matter of course. In such a setting you might have a situation where very poorly controlled individuals would have 10 DKA events in a short amount of time because they didn’t take the necessary amount of blood glucose tests/disregarded alarms/forgot or postponed filling up the pump when it’s near-empty/failed to switch the battery in time/etc. etc., and then what might happen would be that the diabetologist/endocrinologist would then proceed to recommend these patients doing very poorly on pump treatment to switch to injection therapy, and what you would end up with would be a compliant/motivated group of patients on pump therapy and a noncompliant/poorly motivated group on injection therapy. This would happen even if everybody started on pump therapy and so pump therapy exposure was completely unrelated to outcomes. Pump therapy requires more of the patient than does injection therapy, and if the patient is unwilling/unable to put in the work required that treatment option will fail. In my opinion the default here should be that these treatment groups are (‘significantly’) different, not that they are similar.

A few more quotes from the paper:

“The major finding of these analyses is high rates of pediatric DKA across the three registries, even though DKA events at the time of diagnosis were not included. In the prior 12 months, ∼1 in 20 (DPV), 1 in 16 (NPDA), and 1 in 14 (T1DX) pediatric patients with a duration of diabetes ≥1 year were diagnosed with DKA and required treatment in a health care facility. Female sex, ethnic minority status, and elevated HbA1c were consistent indicators of risk for DKA across all three registries. These indicators of increased risk for DKA are similar to previous reports (10,11,18,19), and our rates of DKA are within the range in the pediatric diabetes literature of 1–15% per established patient per year (10,11).

Compared with patients receiving injection therapy, insulin pump use was associated with a lower risk of DKA only in the U.S. in the T1DX, but no difference was seen in the DPV or NPDA. Country-specific factors on the associations of risk factors with DKA require further investigation. For pump use, selection bias may play a role in the U.S. The odds of DKA in pump users was not increased in any registry, which is a marked difference from some (10) but not all historic data (20).”

ii. Effect of Long-Acting Insulin Analogs on the Risk of Cancer: A Systematic Review of Observational Studies.

NPH insulin has been the mainstay treatment for type 1 diabetes and advanced type 2 diabetes since the 1950s. However, this insulin is associated with an increased risk of nocturnal hypoglycemia, and its relatively short half-life requires frequent administration (1,2). Consequently, structurally modified insulins, known as long-acting insulin analogs (glargine and detemir), were developed in the 1990s to circumvent these limitations. However, there are concerns that long-acting insulin analogs may be associated with an increased risk of cancer. Indeed, some laboratory studies showed long-acting insulin analogs were associated with cancer cell proliferation and protected against apoptosis via their higher binding affinity to IGF-I receptors (3,4).

In 2009, four observational studies associated the use of insulin glargine with an increased risk of cancer (58). These studies raised important concerns but were also criticized for important methodological shortcomings (913). Since then, several observational studies assessing the association between long-acting insulin analogs and cancer have been published but yielded inconsistent findings (1428). […] Several meta-analyses of observational studies have investigated the association between insulin glargine and cancer risk (3437). These meta-analyses assessed the quality of included studies, but the methodological issues particular to pharmacoepidemiologic research were not fully considered. In addition, given the presence of important heterogeneity in this literature, the appropriateness of pooling the results of these studies remains unclear. We therefore conducted a systematic review of observational studies examining the association between long-acting insulin analogs and cancer incidence, with a particular focus on methodological strengths and weaknesses of these studies.”

“[W]e assessed the quality of studies for key components, including time-related biases (immortal time, time-lag, and time-window), inclusion of prevalent users, inclusion of lag periods, and length of follow-up between insulin initiation and cancer incidence.

Immortal time bias is defined by a period of unexposed person-time that is misclassified as exposed person-time or excluded, resulting in the exposure of interest appearing more favorable (40,41). Time-lag bias occurs when treatments used later in the disease management process are compared with those used earlier for less advanced stages of the disease. Such comparisons can result in confounding by disease duration or severity of disease if duration and severity of disease are not adequately considered in the design or analysis of the study (29). This is particularly true for chronic disease with dynamic treatment processes such as type 2 diabetes. Currently, American and European clinical guidelines suggest using basal insulin (e.g., NPH, glargine, and detemir) as a last line of treatment if HbA1c targets are not achieved with other antidiabetic medications (42). Therefore, studies that compare long-acting insulin analogs to nonbasal insulin may introduce confounding by disease duration. Time-window bias occurs when the opportunity for exposure differs between case subjects and control subjects (29,43).

The importance of considering a lag period is necessary for latency considerations (i.e., a minimum time between treatment initiation and the development of cancer) and to minimize protopathic and detection bias. Protopathic bias, or reverse causation, is present when a medication (exposure) is prescribed for early symptoms related to the outcome of interest, which can lead to an overestimation of the association. Lagging the exposure by a predefined time window in cohort studies or excluding exposures in a predefined time window before the event in case-control studies is a means of minimizing this bias (44). Detection bias is present when the exposure leads to higher detection of the outcome of interest due to the increased frequency of clinic visits (e.g., newly diagnosed patients with type 2 diabetes or new users of another antidiabetic medication), which also results in an overestimation of risk (45). Thus, including a lag period, such as starting follow-up after 1 year of the initiation of a drug, simultaneously considers a latency period while also minimizing protopathic and detection bias.”

“We systematically searched MEDLINE and EMBASE from 2000 to 2014 to identify all observational studies evaluating the relationship between the long-acting insulin analogs and the risk of any and site-specific cancers (breast, colorectal, prostate). […] 16 cohort and 3 case-control studies were included in this systematic review (58,1428). All studies evaluated insulin glargine, with four studies also investigating insulin detemir (15,17,25,28). […] The study populations ranged from 1,340 to 275,164 patients […]. The mean or median durations of follow-up and age ranged from 0.9 to 7.0 years and from 52.3 to 77.4 years, respectively. […] Thirteen of 15 studies reported no association between insulin glargine and detemir and any cancer. Four of 13 studies reported an increased risk of breast cancer with insulin glargine. In the quality assessment, 7 studies included prevalent users, 11 did not consider a lag period, 6 had time-related biases, and 16 had short (<5 years) follow-up.”

“Of the 19 studies in this review, immortal time bias may have been introduced in one study based on the time-independent exposure and cohort entry definitions that were used in this cohort study […] Time-lag bias may have occurred in four studies […] A variation of time-lag bias was observed in a cohort study of new insulin users (28). For the exposure definition, highest duration since the start of insulin use was compared with the lowest. It is expected that the risk of cancer would increase with longer duration of insulin use; however, the opposite was reported (with RRs ranging from 0.50 to 0.90). The protective association observed could be due to competing risks (e.g., death from cardiovascular-related events) (47,48). Patients with diabetes have a higher risk of cardiovascular-related deaths compared with patients with no diabetes (49,50). Therefore, patients with diabetes who die of cardiovascular-related events do not have the opportunity to develop cancer, resulting in an underestimation of the risk of cancer. […] Time-window bias was observed in two studies (18,22). […] HbA1c and diabetes duration were not accounted for in 15 of the 19 studies, resulting in likely residual confounding (7,8,1418,2026,28). […] Seven studies included prevalent users of insulin (8,15,18,20,21,23,25), which is problematic because of the corresponding depletion of susceptible subjects in other insulin groups compared with long-acting insulin analogs. Protopathic or detection bias could have resulted in 11 of the 19 studies because a lag period was not incorporated in the study design (6,7,1416,1821,23,28).”

CONCLUSIONS The observational studies examining the risk of cancer associated with long-acting insulin analogs have important methodological shortcomings that limit the conclusions that can be drawn. Thus, uncertainty remains, particularly for breast cancer risk.”

iii. Impact of Socioeconomic Status on Cardiovascular Disease and Mortality in 24,947 Individuals With Type 1 Diabetes.

“Socioeconomic status (SES) is a powerful predictor of cardiovascular disease (CVD) and death. We examined the association in a large cohort of patients with type 1 diabetes. […] Clinical data from the Swedish National Diabetes Register were linked to national registers, whereby information on income, education, marital status, country of birth, comorbidities, and events was obtained. […] Type 1 diabetes was defined on the basis of epidemiologic data: treatment with insulin and a diagnosis at the age of 30 years or younger. This definition has been validated as accurate in 97% of the cases listed in the register (14).”

“We included 24,947 patients. Mean (SD) age and follow-up was 39.1 (13.9) and 6.0 (1.0) years. Death and fatal/nonfatal CVD occurred in 926 and 1378 individuals. Compared with being single, being married was associated with 50% lower risk of death, cardiovascular (CV) death, and diabetes-related death. Individuals in the two lowest quintiles had twice as great a risk of fatal/nonfatal CVD, coronary heart disease, and stroke and roughly three times as great a risk of death, diabetes-related death, and CV death as individuals in the highest income quintile. Compared with having ≤9 years of education, individuals with a college/university degree had 33% lower risk of fatal/nonfatal stroke.”

“Individuals with 10–12 years of education were comparable at baseline (considering distribution of age and sex) with those with a college/university degree […]. Individuals with a college/university degree had higher income, had 5 mmol/mol lower HbA1c, were more likely to be married/cohabiting, used insulin pump more frequently (17.5% vs. 14.5%), smoked less (5.8% vs. 13.1%), and had less albuminuria (10.8% vs. 14.2%). […] Women had substantially lower income and higher education, were more often married, used insulin pump more frequently, had less albuminuria, and smoked more frequently than men […] Individuals with high income were more likely to be married/cohabiting, had lower HbA1c, and had lower rates of smoking as well as albuminuria”.

CONCLUSIONS Low SES increases the risk of CVD and death by a factor of 2–3 in type 1 diabetes.”

“The effect of SES was striking despite rigorous adjustments for risk factors and confounders. Individuals in the two lowest income quintiles had two to three times higher risk of CV events and death than those in the highest income quintile. Compared with low educational level, having high education was associated with ∼30% lower risk of stroke. Compared with being single, individuals who were married/cohabiting had >50% lower risk of death, CV death, and diabetes-related death. Immigrants had 20–40% lower risk of fatal/nonfatal CVD, all-cause death, and diabetes-related death. Additionally, we show that males had 44%, 63%, and 29% higher risk of all-cause death, CV death, and diabetes-related death, respectively.

Despite rigorous adjustments for covariates and equitable access to health care at a negligible cost (20,21), SES and sex were robust predictors of CVD disease and mortality in type 1 diabetes; their effect was comparable with that of smoking, which represented an HR of 1.56 (95% CI 1.29–1.91) for all-cause death. […] Our study shows that men with type 1 diabetes are at greater risk of CV events and death compared with women. This should be viewed in the light of a recent meta-analysis of 26 studies, which showed higher excess risk in women compared with men. Overall, women had 40% greater excess risk of all-cause mortality, and twice the excess risk of fatal/nonfatal vascular events, compared with men (29). Thus, whereas the excess risk (i.e., the risk of patients with diabetes compared with the nondiabetic population) of vascular disease is higher in women with diabetes, we show that men with diabetes are still at substantially greater risk of all-cause death, CV death, and diabetes death compared with women with diabetes. Other studies are in line with our findings (10,11,13,3032).”

iv. Interventions That Restore Awareness of Hypoglycemia in Adults With Type 1 Diabetes: A Systematic Review and Meta-analysis.

“Hypoglycemia remains the major limiting factor toward achieving good glycemic control (1). Recurrent hypoglycemia reduces symptomatic and hormone responses to subsequent hypoglycemia (2), associated with impaired awareness of hypoglycemia (IAH). IAH occurs in up to one-third of adults with type 1 diabetes (T1D) (3,4), increasing their risk of severe hypoglycemia (SH) sixfold (3) and contributing to substantial morbidity, with implications for employment (5), driving (6), and mortality. Distribution of risk of SH is skewed: one study showed that 5% of subjects accounted for 54% of all SH episodes, with IAH one of the main risk factors (7). “Dead-in-bed,” related to nocturnal hypoglycemia, is a leading cause of death in people with T1D <40 years of age (8).”

“This systematic review assessed the clinical effectiveness of treatment strategies for restoring hypoglycemia awareness (HA) and reducing SH risk in those with IAH and performed a meta-analysis, where possible, for different approaches in restoring awareness in T1D adults. Interventions to restore HA were broadly divided into three categories: educational (inclusive of behavioral), technological, and pharmacotherapeutic. […] Forty-three studies (18 randomized controlled trials, 25 before-and-after studies) met the inclusion criteria, comprising 27 educational, 11 technological, and 5 pharmacological interventions. […] A meta-analysis for educational interventions on change in mean SH rates per person per year was performed. Combining before-and-after and RCT studies, six studies (n = 1,010 people) were included in the meta-analysis […] A random-effects meta-analysis revealed an effect size of a reduction in SH rates of 0.44 per patient per year with 95% CI 0.253–0.628. [here’s the forest plot, US] […] Most of the educational interventions were observational and mostly retrospective, with few RCTs. The overall risk of bias is considered medium to high and the study quality moderate. Most, if not all, of the RCTs did not use double blinding and lacked information on concealment. The strength of association of the effect of educational interventions is moderate. The ability of educational interventions to restore IAH and reduce SH is consistent and direct with educational interventions showing a largely positive outcome. There is substantial heterogeneity between studies, and the estimate is imprecise, as reflected by the large CIs. The strength of evidence is moderate to high.”

v. Trends of Diagnosis-Specific Work Disability After Newly Diagnosed Diabetes: A 4-Year Nationwide Prospective Cohort Study.

“There is little evidence to show which specific diseases contribute to excess work disability among those with diabetes. […] In this study, we used a large nationwide register-based data set, which includes information on work disability for all working-age inhabitants of Sweden, in order to investigate trends of diagnosis-specific work disability (sickness absence and disability pension) among people with diabetes for 4 years directly after the recorded onset of diabetes. We compared work disability trends among people with diabetes with trends among those without diabetes. […] The register data of diabetes medication and in- and outpatient hospital visits were used to identify all recorded new diabetes cases among the population aged 25–59 years in Sweden in 2006 (n = 14,098). Data for a 4-year follow-up of ICD-10 physician-certified sickness absence and disability pension days (2007‒2010) were obtained […] Comparisons were made using a random sample of the population without recorded diabetes (n = 39,056).”

RESULTS The most common causes of work disability were mental and musculoskeletal disorders; diabetes as a reason for disability was rare. Most of the excess work disability among people with diabetes compared with those without diabetes was owing to mental disorders (mean difference adjusted for confounding factors 18.8‒19.8 compensated days/year), musculoskeletal diseases (12.1‒12.8 days/year), circulatory diseases (5.9‒6.5 days/year), diseases of the nervous system (1.8‒2.0 days/year), and injuries (1.0‒1.2 days/year).”

CONCLUSIONS The increased risk of work disability among those with diabetes is largely attributed to comorbid mental, musculoskeletal, and circulatory diseases. […] Diagnosis of diabetes as the cause of work disability was rare.”

August 19, 2017 Posted by | Cancer/oncology, Cardiology, Diabetes, Health Economics, Medicine, Statistics | Leave a comment

Infectious Disease Surveillance (III)

I have added some more observations from the book below.

“Zoonotic diseases are infections transmitted between animals and humans […]. A recent survey identified more than 1,400 species of human disease–causing agents, over half (58%) of which were zoonotic [2]. Moreover, nearly three-quarters (73%) of infectious diseases considered to be emerging or reemerging were zoonotic [2]. […] In many countries there is minimal surveillance for live animal imports or imported wildlife products. Minimal surveillance prevents the identification of wildlife trade–related health risks to the public, agricultural industry, and native wildlife [36] and has led to outbreaks of zoonotic diseases […] Southeast Asia [is] a hotspot for emerging zoonotic diseases because of rapid population growth, high population density, and high biodiversity […] influenza virus in particular is of zoonotic importance as multiple human infections have resulted from animal exposure [77–79].”

“[R]abies is an important cause of death in many countries, particularly in Africa and Asia [85]. Rabies is still underreported throughout the developing world, and 100-fold underreporting of human rabies is estimated for most of Africa [44]. Reasons for underreporting include lack of public health personnel, difficulties in identifying suspect animals, and limited laboratory capacity for rabies testing. […] Brucellosis […] is transmissible to humans primarily through consumption of unpasteurized milk or dairy products […] Brucella is classified as a category B bioterrorism agent [90] because of its potential for aerosolization [I should perhaps here mention that the book coverage does overlaps a bit with that of Fong & Alibek’s book – which I covered here – but that I decided against covering those topics in much detail here – US] […] The key to preventing brucellosis in humans is to control or eliminate infections in animals [91–93]; therefore, veterinarians are crucial to the identification, prevention, and control of brucellosis [89]. […] Since 1954 [there has been] an ongoing eradication program involving surveillance testing of cattle at slaughter, testing at livestock markets, and whole-herd testing on the farm [in the US] […] Except for endemic brucellosis in wildlife in the Greater Yellowstone Area, all 50 states and territories in the United States are free of bovine brucellosis [94].”

“Because of its high mortality rate in humans in the absence of early treatment, Y. pestis is viewed as one of the most pathogenic human bacteria [101]. In the United States, plague is most often found in the Southwest where it is transmitted by fleas and maintained in rodent populations [102]. Deer mice and voles typically serve as maintenance hosts [and] these animals are often resistant to plague [102]. In contrast, in amplifying host species such as prairie dogs, ground squirrels, chipmunks, and wood rats, plague spreads rapidly and results in high mortality [103]. […] Human infections with Y. pestis can result in bubonic, pneumonic, or septicemic plague, depending on the route of exposure. Bubonic plague is most common; however, pneumonic plague poses a more serious public health risk since it can be easily transmitted person-to-person through inhalation of aerosolized bacteria […] Septicemic plague is characterized by bloodstream infection with Y. pestis and can occur secondary to pneumonic or bubonic forms of infection or as a primary infection [6,60].
Plague outbreaks are often correlated with animal die-offs in the area [104], and rodent control near human residences is important to prevent disease [103]. […] household pets can be an important route of plague transmission and flea control in dogs and cats is an important prevention measure [105]. Plague surveillance involves monitoring three populations for infection: vectors (e.g., fleas), humans, and rodents [106]. In the past 20 years, the numbers of human cases of plague reported in the United States have varied from 1 to 17 cases per year [90]. […]
Since rodent species are the main reservoirs of the bacteria, these animals can be used for sentinel surveillance to provide an early warning of the public health risk to humans [106]. […] Rodent die-offs can often be an early indicator of a plague outbreak”.

“Zoonotic disease surveillance is crucial for protection of human and animal health. An integrated, sustainable system that collects data on incidence of disease in both animals and humans is necessary to ensure prompt detection of zoonotic disease outbreaks and a timely and focused response [34]. Currently, surveillance systems for animals and humans [operate] largely independently [34]. This results in an inability to rapidly detect zoonotic diseases, particularly novel emerging diseases, that are detected in the human population only after an outbreak occurs [109]. While most industrialized countries have robust disease surveillance systems, many developing countries currently lack the resources to conduct both ongoing and real-time surveillance [34,43].”

“Acute hepatitis of any cause has similar, usually indistinguishable, signs and symptoms. Acute illness is associated with fever, fatigue, nausea, abdominal pain, followed by signs of liver dysfunction, including jaundice, light to clay-colored stool, dark urine, and easy bruising. The jaundice, dark urine, and abnormal stool are because of the diminished capacity of the inflamed liver to handle the metabolism of bilirubin, which is a breakdown product of hemoglobin released as red blood cells are normally replaced. In severe hepatitis that is associated with fulminant liver disease, the liver’s capacity to produce clotting factors and to clear potential toxic metabolic products is severely impaired, with resultant bleeding and hepatic encephalopathy. […] An effective vaccine to prevent hepatitis A has been available for more than 15 years, and incidence rates of hepatitis A are dropping wherever it is used in routine childhood immunization programs. […] Currently, hepatitis A vaccine is part of the U.S. childhood immunization schedule recommended by the Advisory Committee on Immunization Practices (ACIP) [31].”

Chronic hepatitis — persistent and ongoing inflammation that can result from chronic infection — usually has minimal to no signs or symptoms […] Hepatitis B and C viruses cause acute hepatitis as well as chronic hepatitis. The acute component is often not recognized as an episode of acute hepatitis, and the chronic infection may have little or no symptoms for many years. With hepatitis B, clearance of infection is age related, as is presentation with symptoms. Over 90% of infants exposed to HBV develop chronic infection, while <1% have symptoms; 5–10% of adults develop chronic infection, but 50% or more have symptoms associated with acute infection. Among those who acquire hepatitis C, 15–45% clear the infection; the remainder have lifelong infection unless treated specifically for hepatitis C.”

“[D]ata are only received on individuals accessing care. Asymptomatic acute infection and poor or unavailable measurements for high risk populations […] have resulted in questionable estimates of the prevalence and incidence of hepatitis B and C. Further, a lack of understanding of the different types of viral hepatitis by many medical providers [18] has led to many undiagnosed individuals living with chronic infection, who are not captured in disease surveillance systems. […] Evaluation of acute HBV and HCV surveillance has demonstrated a lack of sensitivity for identifying acute infection in injection drug users; it is likely that most cases in this population go undetected, even if they receive medical care [36]. […] Best practices for conducting surveillance for chronic hepatitis B and C are not well established. […] The role of health departments in responding to infectious diseases is typically responding to acute disease. Response to chronic HBV infection is targeted to prevention of transmission to contacts of those infected, especially in high risk situations. Because of the high risk of vertical transmission and likely development of chronic disease in exposed newborns, identification and case management of HBV-infected pregnant women and their infants is a high priority. […] For a number of reasons, states do not conduct uniform surveillance for chronic hepatitis C. There is not agreement as to the utility of surveillance for chronic HCV infection, as it is a measurement of prevalent rather than incident cases.”

“Among all nationally notifiable diseases, three STDs (chlamydia, gonorrhea, and syphilis) are consistently in the top five most commonly reported diseases annually. These three STDs made up more than 86% of all reported diseases in the United States in 2010 [2]. […] The true burden of STDs is likely to be higher, as most infections are asymptomatic [4] and are never diagnosed or reported. A synthesis of a variety of data sources estimated that in 2008 there were over 100 million prevalent STDs and nearly 20 million incident STDs in the United States [5]. […] Nationally, 72% of all reported STDs are among persons aged 15–24 years [3], and it is estimated that 1 in 4 females aged 14–19 has an STD [7]. […] In 2011, the rates of chlamydia, gonorrhea, and primary and secondary syphilis among African-­Americans were, respectively, 7.5, 16.9, and 6.7 times the rates among whites [3]. Additionally, men who have sex with men (MSM) are disproportionately infected with STDs. […] several analyses have shown risk ratios above 100 for the associations between being an MSM and having syphilis or HIV [9,10]. […] Many STDs can be transmitted congenitally during pregnancy or birth. In 2008, over 400,000 neonatal deaths and stillbirths were associated with syphilis worldwide […] untreated chlamydia and gonorrhea can cause ophthalmia neonatorum in newborns, which can result in blindness [13]. The medical and societal costs for STDs are high. […] One estimate in 2008 put national costs at $15.6 billion [15].”

“A significant challenge in STD surveillance is that the term “STD” encompasses a variety of infections. Currently, there are over 35 pathogens that can be transmitted sexually, including bacteria […] protozoa […] and ectoparasites […]. Some infections can cause clinical syndromes shortly after exposure, whereas others result in no symptoms or have a long latency period. Some STDs can be easily diagnosed using self-collected swabs, while others require a sample of blood or a physical examination by a clinician. Consequently, no one particular surveillance strategy works for all STDs. […] The asymptomatic nature of most STDs limits inferences from case­-based surveillance, since in order to be counted in this system an infection must be diagnosed and reported. Additionally, many infections never result in disease. For example, an estimated 90% of human papillomavirus (HPV) infections resolve on their own without sequelae [24]. As such, simply counting infections may not be appropriate, and sequelae must also be monitored. […] Strategies for STD surveillance include case reporting; sentinel surveillance; opportunistic surveillance, including use of administrative data and positivity in screened populations; and population-­based studies […] the choice of strategy depends on the type of STD and the population of interest.”

“Determining which diseases and conditions should be included in mandatory case reporting requires balancing the benefits to the public health system (e.g., utility of the data) with the costs and burdens of case reporting. While many epidemiologists and public health practitioners follow the mantra “the more data, the better,” the costs (in both dollars and human resources) of developing and maintaining a robust case­-based reporting system can be large. Case­-based surveillance has been mandated for chlamydia, gonorrhea, syphilis, and chancroid nationally; but expansion of state­-initiated mandatory reporting for other STDs is controversial.”

August 18, 2017 Posted by | Books, Epidemiology, Immunology, Infectious disease, Medicine | Leave a comment

Type 1 Diabetes Is Associated With an Increased Risk of Fracture Across the Life Span

Type 1 Diabetes Is Associated With an Increased Risk of Fracture Across the Life Span: A Population-Based Cohort Study Using The Health Improvement Network (THIN).

I originally intended to include this paper in a standard diabetes post like this one, but the post gradually got more and more unwieldy as I added more stuff and so in the end I decided – like in this case – that it might be a better idea to just devote an entire post to the paper and then postpone my coverage of some of the other papers included in the post.

I’ve talked about this stuff before, but I’m almost certain the results of this paper were not included in Czernik and Fowlkes’ book as this paper was published at almost exactly the same time as was the book. It provides further support of some of the observations included in C&F’s publication. This is a very large and important study in the context of the relationship between type 1 diabetes and skeletal health. I have quoted extensively from the paper below, and also added some observations of my own along the way in order to provide a little bit of context where it might be needed:

“There is an emerging awareness that diabetes adversely affects skeletal health and that type 1 diabetes affects the skeleton more severely than type 2 diabetes (5). Studies in humans and animal models have identified a number of skeletal abnormalities associated with type 1 diabetes, including deficits in bone mineral density (BMD) (6,7) and bone structure (8), decreased markers of bone formation (9,10), and variable alterations in markers of bone resorption (10,11).

Previous studies and two large meta-analyses reported that type 1 diabetes is associated with an increased risk of fracture (1219). However, most of these studies were conducted in older adults and focused on hip fractures. Importantly, most affected individuals develop type 1 diabetes in childhood, before the attainment of peak bone mass, and therefore may be at increased risk of fracture throughout their life span. Moreover, because hip fractures are rare in children and young adults, studies limited to this outcome may underestimate the overall fracture burden in type 1 diabetes.

We used The Health Improvement Network (THIN) database to conduct a population-based cohort study to determine whether type 1 diabetes is associated with increased fracture incidence, to delineate age and sex effects on fracture risk, and to determine whether fracture site distribution is altered in participants with type 1 diabetes compared with participants without diabetes. […] 30,394 participants aged 0–89 years with type 1 diabetes were compared with 303,872 randomly selected age-, sex-, and practice-matched participants without diabetes. Cox regression analysis was used to determine hazard ratios (HRs) for incident fracture in participants with type 1 diabetes. […] A total of 334,266 participants, median age 34 years, were monitored for 1.9 million person-years. HR were lowest in males and females age <20 years, with HR 1.14 (95% CI 1.01–1.29) and 1.35 (95% CI 1.12–1.63), respectively. Risk was highest in men 60–69 years (HR 2.18 [95% CI 1.79–2.65]), and in women 40–49 years (HR 2.03 [95% CI 1.73–2.39]). Lower extremity fractures comprised a higher proportion of incident fractures in participants with versus those without type 1 diabetes (31.1% vs. 25.1% in males, 39.3% vs. 32% in females; P < 0.001). Secondary analyses for incident hip fractures identified the highest HR of 5.64 (95% CI 3.55–8.97) in men 60–69 years and the highest HR of 5.63 (95% CI 2.25–14.11) in women 30–39 years.”

“Conditions identified by diagnosis codes as covariates of interest were hypothyroidism, hyperthyroidism, adrenal insufficiency, celiac disease, inflammatory bowel disease, vitamin D deficiency, fracture before the start of the follow-up period, diabetic retinopathy, and diabetic neuropathy. All variables, with the exception of prior fracture, were treated as time-varying covariates. […] Multivariable Cox regression analysis was used to assess confounding by covariates of interest. Final models were stratified by age category (<20, 20–29, 30–39, 40–49, 50–59, 60–69, and ≥70 years) after age was found to be a significant predictor of fracture and to violate the assumption of proportionality of hazards […] Within each age stratum, models were again assessed for proportionality of hazards and further stratified where appropriate.”

A brief note on a few of those covariates. Some of them are obvious, other perhaps less so. Retinopathy is probably included mainly due to the associated vision issues, rather than some sort of direct pathophysiological linkage between the conditions; vision problems may increase the risk of falls, particularly in the elderly, and falls increase the fracture risk (they note this later on in the paper). Neuropathy could in my opinion affect risk in multiple ways, not only through an increased fall risk, but either way it certainly makes a lot of sense to include that variable if it’s available. Thyroid disorders can cause bone problems, and the incidence of thyroid disorders is elevated in type 1 – to the extent that e.g. the Oxford Handbook of Clinical Medicine recommends screening people with diabetes mellitus for abnormalities in thyroid function on the annual review. Both Addison‘s (adrenal insufficiency) and thyroid disorders in type 1 diabetics may be specific components of a more systemic autoimmune disease (relevant link here, see the last paragraph), by some termed autoimmune polyendocrine syndromes. When you treat people with Addison’s you give them glucocorticoids, and this treatment can have deleterious effects on bone density especially in the long run – they note in the paper that exposure to corticosteroids is a significant fracture predictor in their models, which is not surprising. In one of the chapters included in Horowitz & Samson‘s book (again, I hope to cover it in more detail later…) the authors note that the combination of coeliac disease and diabetes may lead to protein malabsorption (among other things), which can obviously affect bone health, and they also observe e.g. that common lab abnormalities found in patients with coeliac include “low levels of haemoglobin, albumin, calcium, potassium, magnesium and iron” and furthermore that “extra-intestinal symptoms [include] muscle cramps, bone pain due to osteoporotic fractures or osteomalacia” – coeliac is obviously relevant here, especially as the condition is much more common in type 1 diabetics than in non-diabetics (“The prevalence of coeliac disease in type 1 diabetic children varies from 1.0% to 3.5%, which is at least 15 times higher than the prevalence among children without diabetes” – also an observation from H&S’s book, chapter 5).

Moving on…

“During the study period, incident fractures occurred in 2,615 participants (8.6%) with type 1 diabetes compared with 18,624 participants (6.1%) without diabetes. […] The incidence in males was greatest in the 10- to 20-year age bracket, at 297.2 and 261.3 fractures per 10,000 person-years in participants with and without type 1 diabetes, respectively. The fracture incidence in women was greatest in the 80- to 90-year age bracket, at 549.1 and 333.9 fractures per 10,000 person-years in participants with and without type 1 diabetes, respectively.”

It’s important to note that the first percentages reported above (8.6% vs 6.1%) may be slightly misleading as the follow-up periods for the two groups were dissimilar; type 1s in the study were on average followed for a shorter amount of time than were the controls (4.7 years vs 3.89 years), meaning that raw incident fracture risk estimates like these cannot be translated directly into person-year estimates. The risk differential is thus at least slightly higher than these percentages would suggest. A good view of how the person-year risk difference evolves as a function of age/time are displayed in the paper’s figure 2.

“Hip fractures alone comprised 5.5% and 11.6% of all fractures in males and females with type 1 diabetes, compared with 4.1% and 8.6% in males and females without diabetes (P = 0.04 for males and P = 0.001 for females). Participants with type 1 diabetes with a lower extremity fracture were more likely to have retinopathy (30% vs. 22.5%, P < 0.001) and neuropathy (5.4% vs. 2.9%, P = 0.001) compared with those with fractures at other sites. The median average HbA1c did not differ between the two groups.”

I’ll reiterate this because it’s important: They care about lower-extremity fractures because some of those kinds of fractures, especially hip fractures, have a really poor prognosis. It’s not that it’s annoying and you’ll need a cast; I’ve seen estimates suggesting that roughly one-third of diabetics who sustain a hip fracture die within a year; a prognosis like that is much worse than many cancers. A few relevant observations from Czernik and Fowlkes:

“Together, [studies conducted during the last 15 years on type 1 diabetics] demonstrate an unequivocally increased fracture risk at the hip [compared to non-diabetic controls], with most demonstrating a six to ninefold increase in relative risk. […] type I DM patients have hip fractures at a younger age on average, with a mean of 43 for women and 41 for men in one study. Almost 7 % of people with type I DM can be expected to have sustained a hip fracture by age 65 [7] […] Patients with DM and hip fracture are at a higher risk of mortality than patients without DM, with 1-year rates as high as 32 % vs. 13 % of nondiabetic patients”.

Back to the paper:

“Incident hip fracture risk was increased in all age categories for female participants with type 1 diabetes, and in age categories >30 years in men. […] Type 1 diabetes remained significantly associated with fracture after adjustment for covariates in all previously significant sex and age strata, with the exception of women aged 40–49. […] Each 1% (11 mmol/mol) greater average HbA1c level was associated with a 5% greater risk of incident fracture in males and an 11% greater risk of fracture in females. Diabetic neuropathy was a significant risk factor for incident fracture in males (HR 1.33; 95% CI 1.03–1.72) and females (HR 1.52; 95% CI 1.19–1.92); however, diabetic retinopathy was significant only in males (HR 1.13; 95% CI 1.01–1.28). […] The presence of celiac disease was associated with an increased risk of fractures in females, with an HR of 1.8 (95% CI 1.18–2.76), but not in males. A higher BMI was protective against fracture. Smoking was a risk factor for fracture in males in the 13,763 participants with type 1 diabetes with smoking and BMI data available for analysis.”

The Hba1c-link was interesting to me because the relationships between glycemic control and fracture risk has in other contexts been somewhat unclear; one problem is that Hba1c levels in the lower ranges increase the risk of hypoglycemic episodes, and such episodes may increase the risk of fractures, so even if chronic hyperglycemia is bad for bone health if you don’t have access e.g. to event-level/-rate data on hypoglycemic episodes confounding may be an issue causing a (very plausible) chronic hyperglycemia-fracture risk link to perhaps be harder to detect than it otherwise might have been. It’s of note that these guys did not have access to data on hypoglycemic episodes. They observe later in the paper that: “If hypoglycemia was a major contributing factor, we might have expected a negative effect of HbA1c on fracture risk; our data indicated the opposite.” I don’t think you can throw out hypoglycemia as a contributing factor that easily.

Anyway, a few final observations from the paper:

CONCLUSIONS Type 1 diabetes was associated with increased risk of incident fracture that began in childhood and extended across the life span. Participants with type 1 diabetes sustained a disproportionately greater number of lower extremity fractures. These findings have important public health implications, given the increasing prevalence of type 1 diabetes and the morbidity and mortality associated with hip fractures.”

“To our knowledge, this is the first study to show that the increased fracture risk in type 1 diabetes begins in childhood. This finding has important implications for researchers planning future studies and for clinicians caring for patients in this population. Although peak bone mass is attained by the end of the third decade of life, peak bone accrual occurs in adolescence in conjunction with the pubertal growth spurt (31). This critical time for bone accrual may represent a period of increased skeletal vulnerability and also a window of opportunity for the implementation of therapies to improve bone formation (32). This is an especially important consideration in the population with type 1 diabetes, because the incidence of this disease peaks in early adolescence. Three-quarters of individuals will develop the condition before 18 years of age, and therefore before attainment of peak bone mass (33). The development and evaluation of therapies aimed at increasing bone formation and strength in adolescence may lead to a lifelong reduction in fracture risk.”

“The underlying mechanism for the increased fracture risk in patients with type 1 diabetes is not fully understood. Current evidence suggests that bone quantity and quality may both be abnormal in this condition. Clinical studies using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography have identified mild to modest deficits in BMD and bone structure in both pediatric and adult participants with type 1 diabetes (6,8,34). Deficits in BMD are unlikely to be the only factor contributing to skeletal fragility in type 1 diabetes, however, as evidenced by a recent meta-analysis that found that the increased fracture risk seen in type 1 diabetes could not be explained by deficits in BMD alone (16). Recent cellular and animal models have shown that insulin signaling in osteoblasts and osteoblast progenitor cells promotes postnatal bone acquisition, suggesting that the insulin deficiency inherent in type 1 diabetes is a significant contributor to the pathogenesis of skeletal disease (35). Other proposed mechanisms contributing to skeletal fragility in type 1 diabetes include chronic hyperglycemia (36), impaired production of IGF-1 (37), and the accumulation of advanced glycation end products in bone (38). Our results showed that a higher average HbA1c was associated with an increased risk of fracture in participants with type 1 diabetes, supporting the hypothesis that chronic hyperglycemia and its sequelae contribute to skeletal fragility.”

“In summary, our study found that participants of all ages with type 1 diabetes were at increased risk of fracture. The adverse effect of type 1 diabetes on the skeleton is an underrecognized complication that is likely to grow into a significant public health burden given the increasing incidence and prevalence of this disease. […] Our novel finding that children with type 1 diabetes were already at increased risk of fracture suggests that therapeutic interventions aimed at children and adolescents may have an important effect on reducing lifelong fracture risk.”

August 15, 2017 Posted by | Diabetes, Epidemiology, Medicine, Studies | Leave a comment

Depression and Heart Disease (II)

Below I have added some more observations from the book, which I gave four stars on goodreads.

“A meta-analysis of twin (and family) studies estimated the heritability of adult MDD around 40% [16] and this estimate is strikingly stable across different countries [17, 18]. If measurement error due to unreliability is taken into account by analysing MDD assessed on two occasions, heritability estimates increase to 66% [19]. Twin studies in children further show that there is already a large genetic contribution to depressive symptoms in youth, with heritability estimates varying between 50% and 80% [20–22]. […] Cardiovascular research in twin samples has suggested a clear-cut genetic contribution to hypertension (h2 = 61%) [30], fatal stroke (h2 = 32%) [31] and CAD (h2 = 57% in males and 38% in females) [32]. […] A very important, and perhaps underestimated, source of pleiotropy in the association of MDD and CAD are the major behavioural risk factors for CAD: smoking and physical inactivity. These factors are sometimes considered ‘environmental’, but twin studies have shown that such behaviours have a strong genetic component [33–35]. Heritability estimates for [many] established risk factors [for CAD – e.g. BMI, smoking, physical inactivity – US] are 50% or higher in most adult twin samples and these estimates remain remarkably similar across the adult life span [41–43].”

“The crucial question is whether the genetic factors underlying MDD also play a role in CAD and CAD risk factors. To test for an overlap in the genetic factors, a bivariate extension of the structural equation model for twin data can be used [57]. […] If the depressive symptoms in a twin predict the IL-6 level in his/her co-twin, this can only be explained by an underlying factor that affects both depression and IL-6 levels and is shared by members of a family. If the prediction is much stronger in MZ than in DZ twins, this signals that the underlying factor is their shared genetic make-up, rather than their shared (family) environment. […] It is important to note clearly here that genetic correlations do not prove the existence of pleiotropy, because genes that influence MDD may, through causal effects of MDD on CAD risk, also become ‘CAD genes’. The absence of a genetic correlation, however, can be used to falsify the existence of genetic pleiotropy. For instance, the hypothesis that genetic pleiotropy explains part of the association between depressive symptoms and IL-6 requires the genetic correlation between these traits to be significantly different from zero. [Furthermore,] the genetic correlation should have a positive value. A negative genetic correlation would signal that genes that increase the risk for depression decrease the risk for higher IL-6 levels, which would go against the genetic pleiotropy hypothesis. […] Su et al. [26] […] tested pleiotropy as a possible source of the association of depressive symptoms with Il-6 in 188 twin pairs of the Vietnam Era Twin (VET) Registry. The genetic correlation between depressive symptoms and IL-6 was found to be positive and significant (RA = 0.22, p = 0.046)”

“For the association between MDD and physical inactivity, the dominant hypothesis has not been that MDD causes a reduction in regular exercise, but instead that regular exercise may act as a protective factor against mood disorders. […] we used the twin method to perform a rigorous test of this popular hypothesis [on] 8558 twins and their family members using their longitudinal data across 2-, 4-, 7-, 9- and 11-year follow-up periods. In spite of sufficient statistical power, we found only the genetic correlation to be significant (ranging between *0.16 and *0.44 for different symptom scales and different time-lags). The environmental correlations were essentially zero. This means that the environmental factors that cause a person to take up exercise do not cause lower anxiety or depressive symptoms in that person, currently or at any future time point. In contrast, the genetic factors that cause a person to take up exercise also cause lower anxiety or depressive symptoms in that person, at the present and all future time points. This pattern of results falsifies the causal hypothesis and leaves genetic pleiotropy as the most likely source for the association between exercise and lower levels of anxiety and depressive symptoms in the population at large. […] Taken together, [the] studies support the idea that genetic pleiotropy may be a factor contributing to the increased risk for CAD in subjects suffering from MDD or reporting high counts of depressive symptoms. The absence of environmental correlations in the presence of significant genetic correlations for a number of the CAD risk factors (CFR, cholesterol, inflammation and regular exercise) suggests that pleiotropy is the sole reason for the association between MDD and these CAD risk factors, whereas for other CAD risk factors (e.g. smoking) and CAD incidence itself, pleiotropy may coexist with causal effects.”

“By far the most tested polymorphism in psychiatric genetics is a 43-base pair insertion or deletion in the promoter region of the serotonin transporter gene (5HTT, renamed SLC6A4). About 55% of Caucasians carry a long allele (L) with 16 repeat units. The short allele (S, with 14 repeat units) of this length polymorphism repeat (LPR) reduces transcriptional efficiency, resulting in decreased serotonin transporter expression and function [83]. Because serotonin plays a key role in one of the major theories of MDD [84], and because the most prescribed antidepressants act directly on this transporter, 5HTT is an obvious candidate gene for this disorder. […] The dearth of studies attempting to associate the 5HTTLPR to MDD or related personality traits tells a revealing story about the fate of most candidate genes in psychiatric genetics. Many conflicting findings have been reported, and the two largest studies failed to link the 5HTTLPR to depressive symptoms or clinical MDD [85, 86]. Even at the level of reviews and meta-analyses, conflicting conclusions have been drawn about the role of this polymorphism in the development of MDD [87, 88]. The initially promising explanation for discrepant findings – potential interactive effects of the 5HTTLPR and stressful life events [89] – did not survive meta-analysis [90].”

“Across the board, overlooking the wealth of candidate gene studies on MDD, one is inclined to conclude that this approach has failed to unambiguously identify genetic variants involved in MDD […]. Hope is now focused on the newer GWA [genome wide association] approach. […] At the time of writing, only two GWA studies had been published on MDD [81, 95]. […] In theory, the strategy to identify potential pleiotropic genes in the MDD–CAD relationship is extremely straightforward. We simply select the genes that occur in the lists of confirmed genes from the GWA studies for both traits. In practice, this is hard to do, because genetics in psychiatry is clearly lagging behind genetics in cardiology and diabetes medicine. […] What is shown by the reviewed twin studies is that some genetic variants may influence MDD and CAD risk factors. This can occur through one of three mechanisms: (a) the genetic variants that increase the risk for MDD become part of the heritability of CAD through a causal effect of MDD on CAD risk factors (causality); (b) the genetic variants that increase the risk for CAD become part of the heritability of MDD through a direct causal effect of CAD on MDD (reverse causality); (c) the genetic variants influence shared risk factors that independently increase the risk for MDD as well as CAD (pleiotropy). I suggest that to fully explain the MDD–CAD association we need to be willing to be open to the possibility that these three mechanisms co-exist. Even in the presence of true pleiotropic effects, MDD may influence CAD risk factors, and having CAD in turn may worsen the course of MDD.”

“Patients with depression are more likely to exhibit several unhealthy behaviours or avoid other health-promoting ones than those without depression. […] Patients with depression are more likely to have sleep disturbances [6]. […] sleep deprivation has been linked with obesity, diabetes and the metabolic syndrome [13]. […] Physical inactivity and depression display a complex, bidirectional relationship. Depression leads to physical inactivity and physical inactivity exacerbates depression [19]. […] smoking rates among those with depression are about twice that of the general population [29]. […] Poor attention to self-care is often a problem among those with major depressive disorder. In the most severe cases, those with depression may become inattentive to their personal hygiene. One aspect of this relationship that deserves special attention with respect to cardiovascular disease is the association of depression and periodontal disease. […] depression is associated with poor adherence to medical treatment regimens in many chronic illnesses, including heart disease. […] There is some evidence that among patients with an acute coronary syndrome, improvement in depression is associated with improvement in adherence. […] Individuals with depression are often socially withdrawn or isolated. It has been shown that patients with heart disease who are depressed have less social support [64], and that social isolation or poor social support is associated with increased mortality in heart disease patients [65–68]. […] [C]linicians who make recommendations to patients recovering from a heart attack should be aware that low levels of social support and social isolation are particularly common among depressed individuals and that high levels of social support appear to protect patients from some of the negative effects of depression [78].”

“Self-efficacy describes an individual’s self-confidence in his/her ability to accomplish a particular task or behaviour. Self-efficacy is an important construct to consider when one examines the psychological mechanisms linking depression and heart disease, since it influences an individual’s engagement in behaviour and lifestyle changes that may be critical to improving cardiovascular risk. Many studies on individuals with chronic illness show that depression is often associated with low self-efficacy [95–97]. […] Low self-efficacy is associated with poor adherence behaviour in patients with heart failure [101]. […] Much of the interest in self-efficacy comes from the fact that it is modifiable. Self-efficacy-enhancing interventions have been shown to improve cardiac patients’ self-efficacy and thereby improve cardiac health outcomes [102]. […] One problem with targeting self-efficacy in depressed heart disease patients is [however] that depressive symptoms reduce the effects of self-efficacy-enhancing interventions [105, 106].”

“Taken together, [the] SADHART and ENRICHD [studies] suggest, but do not prove, that antidepressant drug therapy in general, and SSRI treatment in particular, improve cardiovascular outcomes in depressed post-acute coronary syndrome (ACS) patients. […] even large epidemiological studies of depression and antidepressant treatment are not usually informative, because they confound the effects of depression and antidepressant treatment. […] However, there is one Finnish cohort study in which all subjects […] were followed up through a nationwide computerised database [17]. The purpose of this study was not to examine the relationship between depression and cardiac mortality, but rather to look at the relationship between antidepressant use and suicide. […] unexpectedly, ‘antidepressant use, and especially SSRI use, was associated with a marked reduction in total mortality (=49%, p < 0.001), mostly attributable to a decrease in cardiovascular deaths’. The study involved 15 390 patients with a mean follow-up of 3.4 years […] One of the marked differences between the SSRIs and the earlier tricyclic antidepressants is that the SSRIs do not cause cardiac death in overdose as the tricyclics do [41]. There has been literature that suggested that tricyclics even at therapeutic doses could be cardiotoxic and more problematic than SSRIs [42, 43]. What has been surprising is that both in the clinical trial data from ENRICHD and the epidemiological data from Finland, tricyclic treatment has also been associated with a decreased risk of mortality. […] Given that SSRI treatment of depression in the post-ACS period is safe, effective in reducing depressed mood, able to improve health behaviours and may reduce subsequent cardiac morbidity and mortality, it would seem obvious that treating depression is strongly indicated. However, the vast majority of post-ACS patients will not see a psychiatrically trained professional and many cases are not identified [33].”

“That depression is associated with cardiovascular morbidity and mortality is no longer open to question. Similarly, there is no question that the risk of morbidity and mortality increases with increasing severity of depression. Questions remain about the mechanisms that underlie this association, whether all types of depression carry the same degree of risk and to what degree treating depression reduces that risk. There is no question that the benefits of treating depression associated with coronary artery disease far outweigh the risks.”

“Two competing trends are emerging in research on psychotherapy for depression in cardiac patients. First, the few rigorous RCTs that have been conducted so far have shown that even the most efficacious of the current generation of interventions produce relatively modest outcomes. […] Second, there is a growing recognition that, even if an intervention is highly efficacious, it may be difficult to translate into clinical practice if it requires intensive or extensive contacts with a highly trained, experienced, clinically sophisticated psychotherapist. It can even be difficult to implement such interventions in the setting of carefully controlled, randomised efficacy trials. Consequently, there are efforts to develop simpler, more efficient interventions that can be delivered by a wider variety of interventionists. […] Although much more work remains to be done in this area, enough is already known about psychotherapy for comorbid depression in heart disease to suggest that a higher priority should be placed on translation of this research into clinical practice. In many cases, cardiac patients do not receive any treatment for their depression.”

August 14, 2017 Posted by | Books, Cardiology, Diabetes, Genetics, Medicine, Pharmacology, Psychiatry, Psychology | Leave a comment

Depression and Heart Disease (I)

I’m currently reading this book. It’s a great book, with lots of interesting observations.

Below I’ve added some quotes from the book.

“Frasure-Smith et al. [1] demonstrated that patients diagnosed with depression post MI [myocardial infarction, US] were more than five times more likely to die from cardiac causes by 6 months than those without major depression. At 18 months, cardiac mortality had reached 20% in patients with major depression, compared with only 3% in non-depressed patients [5]. Recent work has confirmed and extended these findings. A meta-analysis of 22 studies of post-MI subjects found that post-MI depression was associated with a 2.0–2.5 increased risk of negative cardiovascular outcomes [6]. Another meta-analysis examining 20 studies of subjects with MI, coronary artery bypass graft (CABG), angioplasty or angiographically documented CAD found a twofold increased risk of death among depressed compared with non-depressed patients [7]. Though studies included in these meta-analyses had substantial methodological variability, the overall results were quite similar [8].”

“Blumenthal et al. [31] published the largest cohort study (N = 817) to date on depression in patients undergoing CABG and measured depression scores, using the CES-D, before and at 6 months after CABG. Of those patients, 26% had minor depression (CES-D score 16–26) and 12% had moderate to severe depression (CES-D score =27). Over a mean follow-up of 5.2 years, the risk of death, compared with those without depression, was 2.4 (HR adjusted; 95% CI 1.4, 4.0) in patients with moderate to severe depression and 2.2 (95% CI 1.2, 4.2) in those whose depression persisted from baseline to follow-up at 6 months. This is one of the few studies that found a dose response (in terms of severity and duration) between depression and death in CABG in particular and in CAD in general.”

“Of the patients with known CAD but no recent MI, 12–23% have major depressive disorder by DSM-III or DSM-IV criteria [20, 21]. Two studies have examined the prognostic association of depression in patients whose CAD was confirmed by angiography. […] In [Carney et al.], a diagnosis of major depression by DSM-III criteria was the best predictor of cardiac events (MI, bypass surgery or death) at 1 year, more potent than other clinical risk factors such as impaired left ventricular function, severity of coronary disease and smoking among the 52 patients. The relative risk of a cardiac event was 2.2 times higher in patients with major depression than those with no depression.[…] Barefoot et al. [23] provided a larger sample size and longer follow-up duration in their study of 1250 patients who had undergone their first angiogram. […] Compared with non-depressed patients, those who were moderately to severely depressed had 69% higher odds of cardiac death and 78% higher odds of all-cause mortality. The mildly depressed had a 38% higher risk of cardiac death and a 57% higher risk of all-cause mortality than non-depressed patients.”

“Ford et al. [43] prospectively followed all male medical students who entered the Johns Hopkins Medical School from 1948 to 1964. At entry, the participants completed questionnaires about their personal and family history, health status and health behaviour, and underwent a standard medical examination. The cohort was then followed after graduation by mailed, annual questionnaires. The incidence of depression in this study was based on the mailed surveys […] 1190 participants [were included in the] analysis. The cumulative incidence of clinical depression in this population at 40 years of follow-up was 12%, with no evidence of a temporal change in the incidence. […] In unadjusted analysis, clinical depression was associated with an almost twofold higher risk of subsequent CAD. This association remained after adjustment for time-dependent covariates […]. The relative risk ratio for CAD development with versus without clinical depression was 2.12 (95% CI 1.24, 3.63), as was their relative risk ratio for future MI (95% CI 1.11, 4.06), after adjustment for age, baseline serum cholesterol level, parental MI, physical activity, time-dependent smoking, hypertension and diabetes. The median time from the first episode of clinical depression to first CAD event was 15 years, with a range of 1–44 years.”

“In the Women’s Ischaemia Syndrome Evaluation (WISE) study, 505 women referred for coronary angiography were followed for a mean of 4.9 years and completed the BDI [46]. Significantly increased mortality and cardiovascular events were found among women with elevated BDI scores, even after adjustment for age, cholesterol, stenosis score on angiography, smoking, diabetes, education, hyper-tension and body mass index (RR 3.1; 95% CI 1.5, 6.3). […] Further compelling evidence comes from a meta-analysis of 28 studies comprising almost 80 000 subjects [47], which demonstrated that, despite heterogeneity and differences in study quality, depression was consistently associated with increased risk of cardiovascular diseases in general, including stroke.”

“The preponderance of evidence strongly suggests that depression is a risk factor for CAD [coronary artery disease, US] development. […] In summary, it is fair to conclude that depression plays a significant role in CAD development, independent of conventional risk factors, and its adverse impact endures over time. The impact of depression on the risk of MI is probably similar to that of smoking [52]. […] Results of longitudinal cohort studies suggest that depression occurs before the onset of clinically significant CAD […] Recent brain imaging studies have indicated that lesions resulting from cerebrovascular insufficiency may lead to clinical depression [54, 55]. Depression may be a clinical manifestation of atherosclerotic lesions in certain areas of the brain that cause circulatory deficits. The depression then exacerbates the onset of CAD. The exact aetiological mechanism of depression and CAD development remains to be clarified.”

“Rutledge et al. [65] conducted a meta-analysis in 2006 in order to better understand the prevalence of depression among patients with CHF and the magnitude of the relationship between depression and clinical outcomes in the CHF population. They found that clinically significant depression was present in 21.5% of CHF patients, varying by the use of questionnaires versus diagnostic interview (33.6% and 19.3%, respectively). The combined results suggested higher rates of death and secondary events (RR 2.1; 95% CI 1.7, 2.6), and trends toward increased health care use and higher rates of hospitalisation and emergency room visits among depressed patients.”

“In the past 15 years, evidence has been provided that physically healthy subjects who suffer from depression are at increased risk for cardiovascular morbidity and mortality [1, 2], and that the occurrence of depression in patients with either unstable angina [3] or myocardial infarction (MI) [4] increases the risk for subsequent cardiac death. Moreover, epidemiological studies have proved that cardiovascular disease is a risk factor for depression, since the prevalence of depression in individuals with a recent MI or with coronary artery disease (CAD) or congestive heart failure has been found to be significantly higher than in the general population [5, 6]. […] findings suggest a bidirectional association between depression and cardiovascular disease. The pathophysiological mechanisms underlying this association are, at present, largely unclear, but several candidate mechanisms have been proposed.”

“Autonomic nervous system dysregulation is one of the most plausible candidate mechanisms underlying the relationship between depression and ischaemic heart disease, since changes of autonomic tone have been detected in both depression and cardiovascular disease [7], and autonomic imbalance […] has been found to lower the threshold for ventricular tachycardia, ventricular fibrillation and sudden cardiac death in patients with CAD [8, 9]. […] Imbalance between prothrombotic and antithrombotic mechanisms and endothelial dysfunction have [also] been suggested to contribute to the increased risk of cardiac events in both medically well patients with depression and depressed patients with CAD. Depression has been consistently associated with enhanced platelet activation […] evidence has accumulated that selective serotonin reuptake inhibitors (SSRIs) reduce platelet hyperreactivity and hyperaggregation of depressed patients [39, 40] and reduce the release of the platelet/endothelial biomarkers ß-thromboglobulin, P-selectin and E-selectin in depressed patients with acute CAD [41]. This may explain the efficacy of SSRIs in reducing the risk of mortality in depressed patients with CAD [42–44].”

“[S]everal studies have shown that reduced endothelium-dependent flow-mediated vasodilatation […] occurs in depressed adults with or without CAD [48–50]. Atherosclerosis with subsequent plaque rupture and thrombosis is the main determinant of ischaemic cardiovascular events, and atherosclerosis itself is now recognised to be fundamentally an inflammatory disease [56]. Since activation of inflammatory processes is common to both depression and cardiovascular disease, it would be reasonable to argue that the link between depression and ischaemic heart disease might be mediated by inflammation. Evidence has been provided that major depression is associated with a significant increase in circulating levels of both pro-inflammatory cytokines, such as IL-6 and TNF-a, and inflammatory acute phase proteins, especially the C-reactive protein (CRP) [57, 58], and that antidepressant treatment is able to normalise CRP levels irrespective of whether or not patients are clinically improved [59]. […] Vaccarino et al. [79] assessed specifically whether inflammation is the mechanism linking depression to ischaemic cardiac events and found that, in women with suspected coronary ischaemia, depression was associated with increased circulating levels of CRP and IL-6 and was a strong predictor of ischaemic cardiac events”

“Major depression has been consistently associated with hyperactivity of the HPA axis, with a consequent overstimulation of the sympathetic nervous system, which in turn results in increased circulating catecholamine levels and enhanced serum cortisol concentrations [68–70]. This may cause an imbalance in sympathetic and parasympathetic activity, which results in elevated heart rate and blood pressure, reduced HRV [heart rate variability], disruption of ventricular electrophysiology with increased risk of ventricular arrhythmias as well as an increased risk of atherosclerotic plaque rupture and acute coronary thrombosis. […] In addition, glucocorticoids mobilise free fatty acids, causing endothelial inflammation and excessive clotting, and are associated with hypertension, hypercholesterolaemia and glucose dysregulation [88, 89], which are risk factors for CAD.”

“Most of the literature on [the] comorbidity [between major depressive disorder (MDD) and coronary artery disease (CAD), US] has tended to favour the hypothesis of a causal effect of MDD on CAD, but reversed causality has also been suggested to contribute. Patients with severe CAD at baseline, and consequently a worse prognosis, may simply be more prone to report mood disturbances than less severely ill patients. Furthermore, in pre-morbid populations, insipid atherosclerosis in cerebral vessels may cause depressive symptoms before the onset of actual cardiac or cerebrovascular events, a variant of reverse causality known as the ‘vascular depression’ hypothesis [2]. To resolve causality, comorbidity between MDD and CAD has been addressed in longitudinal designs. Most prospective studies reported that clinical depression or depressive symptoms at baseline predicted higher incidence of heart disease at follow-up [1], which seems to favour the hypothesis of causal effects of MDD. We need to remind ourselves, however […] [that] [p]rospective associations do not necessarily equate causation. Higher incidence of CAD in depressed individuals may reflect the operation of common underlying factors on MDD and CAD that become manifest in mental health at an earlier stage than in cardiac health. […] [T]he association between MDD and CAD may be due to underlying genetic factors that lead to increased symptoms of anxiety and depression, but may also independently influence the atherosclerotic process. This phenomenon, where low-level biological variation has effects on multiple complex traits at the organ and behavioural level, is called genetic ‘pleiotropy’. If present in a time-lagged form, that is if genetic effects on MDD risk precede effects of the same genetic variants on CAD risk, this phenomenon can cause longitudinal correlations that mimic a causal effect of MDD.”

 

August 12, 2017 Posted by | Books, Cardiology, Genetics, Medicine, Neurology, Pharmacology, Psychiatry, Psychology | Leave a comment

Infectious Disease Surveillance (II)

Some more observation from the book below.

“There are three types of influenza viruses — A, B, and C — of which only types A and B cause widespread outbreaks in humans. Influenza A viruses are classified into subtypes based on antigenic differences between their two surface glycoproteins, hemagglutinin and neuraminidase. Seventeen hemagglutinin subtypes (H1–H17) and nine neuraminidase subtypes (N1–N9) have been identifed. […] The internationally accepted naming convention for influenza viruses contains the following elements: the type (e.g., A, B, C), geographical origin (e.g., Perth, Victoria), strain number (e.g., 361), year of isolation (e.g., 2011), for influenza A the hemagglutinin and neuraminidase antigen description (e.g., H1N1), and for nonhuman origin viruses the host of origin (e.g., swine) [4].”

“Only two antiviral drug classes are licensed for chemoprophylaxis and treatment of influenza—the adamantanes (amantadine and rimantadine) and the neuraminidase inhibitors (oseltamivir and zanamivir). […] Antiviral resistant strains arise through selection pressure in individual patients during treatment [which can lead to treatment failure]. […] they usually do not transmit further (because of impaired virus fitness) and have limited public health implications. On the other hand, primarily resistant viruses have emerged in the past decade and in some cases have completely replaced the susceptible strains. […] Surveillance of severe influenza illness is challenging because most cases remain undiagnosed. […] In addition, most of the influenza burden on the healthcare system is because of complications such as secondary bacterial infections and exacerbations of pre-existing chronic diseases, and often influenza is not suspected as an underlying cause. Even if suspected, the virus could have been already cleared from the respiratory secretions when the testing is performed, making diagnostic confirmation impossible. […] Only a small proportion of all deaths caused by influenza are classified as influenza-related on death certificates. […] mortality surveillance based only on death certificates is not useful for the rapid assessment of an influenza epidemic or pandemic severity. Detection of excess mortality in real time can be done by establishing specific monitoring systems that overcome these delays [such as sentinel surveillance systems, US].”

“Influenza vaccination programs are extremely complex and costly. More than half a billion doses of influenza vaccines are produced annually in two separate vaccine production cycles, one for the Northern Hemisphere and one for the Southern Hemisphere [54]. Because the influenza virus evolves constantly and vaccines are reformulated yearly, both vaccine effectiveness and safety need to be monitored routinely. Vaccination campaigns are also organized annually and require continuous public health efforts to maintain an acceptable level of vaccination coverage in the targeted population. […] huge efforts are made and resources spent to produce and distribute influenza vaccines annually. Despite these efforts, vaccination coverage among those at risk in many parts of the world remains low.”

“The Active Bacterial Core surveillance (ABCs) network and its predecessor have been examples of using surveillance as information for action for over 20 years. ABCs has been used to measure disease burden, to provide data for vaccine composition and recommended-use policies, and to monitor the impact of interventions. […] sites represent wide geographic diversity and approximately reflect the race and urban-to-rural mix of the U.S. population [37]. Currently, the population under surveillance is 19–42 million and varies by pathogen and project. […] ABCs has continuously evolved to address challenging questions posed by the six pathogens (H. influenzae; GAS [Group A Streptococcus], GBS [Group B Streptococcus], S.  pneumoniae, N. meningitidis, and MRSA) and other emerging infections. […] For the six core pathogens, the objectives are (1) to determine the incidence and epidemiologic characteristics of invasive disease in geographically diverse populations in the United States through active, laboratory, and population-based surveillance; (2) to determine molecular epidemiologic patterns and microbiologic characteristics of isolates collected as part of routine surveillance in order to track antimicrobial resistance; (3) to detect the emergence of new strains with new resistance patterns and/or virulence and contribute to development and evaluation of new vaccines; and (4) to provide an infrastructure for surveillance of other emerging pathogens and for conducting studies aimed at identifying risk factors for disease and evaluating prevention policies.”

“Food may become contaminated by over 250 bacterial, viral, and parasitic pathogens. Many of these agents cause diarrhea and vomiting, but there is no single clinical syndrome common to all foodborne diseases. Most of these agents can also be transmitted by nonfoodborne routes, including contact with animals or contaminated water. Therefore, for a given illness, it is often unclear whether the source of infection is foodborne or not. […] Surveillance systems for foodborne diseases provide extremely important information for prevention and control.”

“Since 1995, the Centers for Disease Control and Prevention (CDC) has routinely used an automated statistical outbreak detection algorithm that compares current reports of each Salmonella serotype with the preceding 5-year mean number of cases for the same geographic area and week of the year to look for unusual clusters of infection [5]. The sensitivity of Salmonella serotyping to detect outbreaks is greatest for rare serotypes, because a small increase is more noticeable against a rare background. The utility of serotyping has led to its widespread adoption in surveillance for food pathogens in many countries around the world [6]. […] Today, a new generation of subtyping methods […] is increasing the specificity of laboratory-based surveillance and its power to detect outbreaks […] Molecular subtyping allows comparison of the molecular “fingerprint” of bacterial strains. In the United States, the CDC coordinates a network called PulseNet that captures data from standardized molecular subtyping by PFGE [pulsed field gel electrophoresis]. By comparing new submissions and past data, public health officials can rapidly identify geographically dispersed clusters of disease that would otherwise not be apparent and evaluate them as possible foodborne-disease outbreaks [8]. The ability to identify geographically dispersed outbreaks has become increasingly important as more foods are mass-produced and widely distributed. […] Similar networks have been developed in Canada, Europe, the Asia Pacifc region, Latin America and the Caribbean region, the Middle Eastern region and, most recently, the African region”.

“Food consumption and practices have changed during the past 20 years in the United States, resulting in a shift from readily detectable, point-source outbreaks (e.g., attendance at a wedding dinner), to widespread outbreaks that occur over many communities with only a few illnesses in each community. One of the changes has been establishment of large food-producing facilities that disseminate products throughout the country. If a food product is contaminated with a low level of pathogen, contaminated food products are distributed across many states; and only a few illnesses may occur in each community. This type of outbreak is often difficult to detect. PulseNet has been critical for the detection of widely dispersed outbreaks in the United States [17]. […] The growth of the PulseNet database […] and the use of increasingly sophisticated epidemiological approaches have led to a dramatic increase in the number of multistate outbreaks detected and investigated.”

“Each year, approximately 35 million people are hospitalized in the United States, accounting for 170 million inpatient days [1,2]. There are no recent estimates of the numbers of healthcare-associated infections (HAI). However, two decades ago, HAI were estimated to affect more than 2 million hospital patients annually […] The mortality attributed to these HAI was estimated at about 100,000 deaths annually. […] Almost 85% of HAI in the United States are associated with bacterial pathogens, and 33% are thought to be preventable [4]. […] The primary purpose of surveillance [in the context of HAI] is to alert clinicians, epidemiologists, and laboratories of the need for targeted prevention activities required to reduce HAI rates. HAI surveillance data help to establish baseline rates that may be used to determine the potential need to change public health policy, to act and intervene in clinical settings, and to assess the effectiveness of microbiology methods, appropriateness of tests, and allocation of resources. […] As less than 10% of HAI in the United States occur as recognized epidemics [18], HAI surveillance should not be embarked on merely for the detection of outbreaks.”

“There are two types of rate comparisons — intrahospital and interhospital. The primary goals of intrahospital comparison are to identify areas within the hospital where HAI are more likely to occur and to measure the efficacy of interventional efforts. […] Without external comparisons, hospital infection control departments may [however] not know if the endemic rates in their respective facilities are relatively high or where to focus the limited fnancial and human resources of the infection control program. […] The CDC has been the central aggregating institution for active HAI surveillance in the United States since the 1960s.”

“Low sensitivity (i.e., missed infections) in a surveillance system is usually more common than low specificity (i.e., patients reported to have infections who did not actually have infections).”

“Among the numerous analyses of CDC hospital data carried out over the years, characteristics consistently found to be associated with higher HAI rates include affiliation with a medical school (i.e., teaching vs. nonteaching), size of the hospital and ICU categorized by the number of beds (large hospitals and larger ICUs generally had higher infection rates), type of control or ownership of the hospital (municipal, nonprofit, investor owned), and region of the country [43,44]. […] Various analyses of SENIC and NNIS/NHSN data have shown that differences in patient risk factors are largely responsible for interhospital differences in HAI rates. After controlling for patients’ risk factors, average lengths of stay, and measures of the completeness of diagnostic workups for infection (e.g., culturing rates), the differences in the average HAI rates of the various hospital groups virtually disappeared. […] For all of these reasons, an overall HAI rate, per se, gives little insight into whether the facility’s infection control efforts are effective.”

“Although a hospital’s surveillance system might aggregate accurate data and generate appropriate risk-adjusted HAI rates for both internal and external comparison, comparison may be misleading for several reasons. First, the rates may not adjust for patients’ unmeasured intrinsic risks for infection, which vary from hospital to hospital. […] Second, if surveillance techniques are not uniform among hospitals or are used inconsistently over time, variations will occur in sensitivity and specificity for HAI case finding. Third, the sample size […] must be sufficient. This issue is of concern for hospitals with fewer than 200 beds, which represent about 10% of hospital admissions in the United States. In most CDC analyses, rates from hospitals with very small denominators tend to be excluded [37,46,49]. […] Although many healthcare facilities around the country aggregate HAI surveillance data for baseline establishment and interhospital comparison, the comparison of HAI rates is complex, and the value of the aggregated data must be balanced against the burden of their collection. […] If a hospital does not devote sufficient resources to data collection, the data will be of limited value, because they will be replete with inaccuracies. No national database has successfully dealt with all the problems in collecting HAI data and each varies in its ability to address these problems. […] While comparative data can be useful as a tool for the prevention of HAI, in some instances no data might be better than bad data.”

August 10, 2017 Posted by | Books, Data, Epidemiology, Infectious disease, Medicine, Statistics | Leave a comment