Econstudentlog

Circadian Rhythms (I)

“Circadian rhythms are found in nearly every living thing on earth. They help organisms time their daily and seasonal activities so that they are synchronized to the external world and the predictable changes in the environment. These biological clocks provide a cross-cutting theme in biology and they are incredibly important. They influence everything, from the way growing sunflowers track the sun from east to west, to the migration timing of monarch butterflies, to the morning peaks in cardiac arrest in humans. […] Years of work underlie most scientific discoveries. Explaining these discoveries in a way that can be understood is not always easy. We have tried to keep the general reader in mind but in places perseverance on the part of the reader may be required. In the end we were guided by one of our reviewers, who said: ‘If you want to understand calculus you have to show the equations.’”

The above quote is from the book‘s foreword. I really liked this book and I was close to giving it five stars on goodreads. Below I have added some observations and links related to the first few chapters of the book’s coverage (as noted in my review on goodreads the second half of the book is somewhat technical, and I’ve not yet decided if I’ll be blogging that part of the book in much detail, if at all).

“There have been over a trillion dawns and dusks since life began some 3.8 billion years ago. […] This predictable daily solar cycle results in regular and profound changes in environmental light, temperature, and food availability as day follows night. Almost all life on earth, including humans, employs an internal biological timer to anticipate these daily changes. The possession of some form of clock permits organisms to optimize physiology and behaviour in advance of the varied demands of the day/night cycle. Organisms effectively ‘know’ the time of day. Such internally generated daily rhythms are called ‘circadian rhythms’ […] Circadian rhythms are embedded within the genomes of just about every plant, animal, fungus, algae, and even cyanobacteria […] Organisms that use circadian rhythms to anticipate the rotation of the earth are thought to have a major advantage over both their competitors and predators. For example, it takes about 20–30 minutes for the eyes of fish living among coral reefs to switch vision from the night to daytime state. A fish whose eyes are prepared in advance for the coming dawn can exploit the new environment immediately. The alternative would be to wait for the visual system to adapt and miss out on valuable activity time, or emerge into a world where it would be more difficult to avoid predators or catch prey until the eyes have adapted. Efficient use of time to maximize survival almost certainly provides a large selective advantage, and consequently all organisms seem to be led by such anticipation. A circadian clock also stops everything happening within an organism at the same time, ensuring that biological processes occur in the appropriate sequence or ‘temporal framework’. For cells to function properly they need the right materials in the right place at the right time. Thousands of genes have to be switched on and off in order and in harmony. […] All of these processes, and many others, take energy and all have to be timed to best effect by the millisecond, second, minute, day, and time of year. Without this internal temporal compartmentalization and its synchronization to the external environment our biology would be in chaos. […] However, to be biologically useful, these rhythms must be synchronized or entrained to the external environment, predominantly by the patterns of light produced by the earth’s rotation, but also by other rhythmic changes within the environment such as temperature, food availability, rainfall, and even predation. These entraining signals, or time-givers, are known as zeitgebers. The key point is that circadian rhythms are not driven by an external cycle but are generated internally, and then entrained so that they are synchronized to the external cycle.”

“It is worth emphasizing that the concept of an internal clock, as developed by Richter and Bünning, has been enormously powerful in furthering our understanding of biological processes in general, providing a link between our physiological understanding of homeostatic mechanisms, which try to maintain a constant internal environment despite unpredictable fluctuations in the external environment […], versus the circadian system which enables organisms to anticipate periodic changes in the external environment. The circadian system provides a predictive 24-hour baseline in physiological parameters, which is then either defended or temporarily overridden by homeostatic mechanisms that accommodate an acute environmental challenge. […] Zeitgebers and the entrainment pathway synchronize the internal day to the astronomical day, usually via the light/dark cycle, and multiple output rhythms in physiology and behaviour allow appropriately timed activity. The multitude of clocks within a multicellular organism can all potentially tick with a different phase angle […], but usually they are synchronized to each other and by a central pacemaker which is in turn entrained to the external world via appropriate zeitgebers. […] Most biological reactions vary greatly with temperature and show a Q10 temperature coefficient of about 2 […]. This means that the biological process or reaction rate doubles as a consequence of increasing the temperature by 10°C up to a maximum temperature at which the biological reaction stops. […] a 10°C temperature increase doubles muscle performance. By contrast, circadian rhythms exhibit a Q10 close to 1 […] Clocks without temperature compensation are useless. […] Although we know that circadian clocks show temperature compensation, and that this phenomenon is a conserved feature across all circadian rhythms, we have little idea how this is achieved.”

“The systematic study of circadian rhythms only really started in the 1950s, and the pioneering studies of Colin Pittendrigh brought coherence to this emerging new discipline. […] From [a] mass of emerging data, Pittendrigh had key insights and defined the essential properties of circadian rhythms across all life. Namely that: all circadian rhythms are endogenous and show near 24-hour rhythms in a biological process (biochemistry, physiology, or behaviour); they persist under constant conditions for several cycles; they are entrained to the astronomical day via synchronizing zeitgebers; and they show temperature compensation such that the period of the oscillation does not alter appreciably with changes in environmental temperature. Much of the research since the 1950s has been the translation of these formalisms into biological structures and processes, addressing such questions as: What is the clock and where is it located within the intracellular processes of the cell? How can a set of biochemical reactions produce a regular self-sustaining rhythm that persists under constant conditions and has a period of about 24 hours? How is this internal oscillation synchronized by zeitgebers such as light to the astronomical day? Why is the clock not altered by temperature, speeding up when the environment gets hotter and slowing down in the cold? How is the information of the near 24-hour rhythm communicated to the rest of the organism?”

“There have been hundreds of studies showing that a broad range of activities, both physical and cognitive, vary across the 24-hour day: tooth pain is lowest in the morning; proofreading is best performed in the evening; labour pains usually begin at night and most natural births occur in the early morning hours. The accuracy of short and long badminton serves is higher in the afternoon than in the morning and evening. Accuracy of first serves in tennis is better in the morning and afternoon than in the evening, although speed is higher in the evening than in the morning. Swimming velocity over 50 metres is higher in the evening than in the morning and afternoon. […] The majority of studies report that performance increases from morning to afternoon or evening. […] Typical ‘optimal’ times of day for physical or cognitive activity are gathered routinely from population studies […]. However, there is considerable individual variation. Peak performance will depend upon age, chronotype, time zone, and for behavioural tasks how many hours the participant has been awake when conducting the task, and even the nature of the task itself. As a general rule, the circadian modulation of cognitive functioning results in an improved performance over the day for younger adults, while in older subjects it deteriorates. […] On average the circadian rhythms of an individual in their late teens will be delayed by around two hours compared with an individual in their fifties. As a result the average teenager experiences considerable social jet lag, and asking a teenager to get up at 07.00 in the morning is the equivalent of asking a 50-year-old to get up at 05.00 in the morning.”

“Day versus night variations in blood pressure and heart rate are among the best-known circadian rhythms of physiology. In humans, there is a 24-hour variation in blood pressure with a sharp rise before awakening […]. Many cardiovascular events, such as sudden cardiac death, myocardial infarction, and stroke, display diurnal variations with an increased incidence between 06.00 and 12.00 in the morning. Both atrial and ventricular arrhythmias appear to exhibit circadian patterning as well, with a higher frequency during the day than at night. […] Myocardial infarction (MI) is two to three times more frequent in the morning than at night. In the early morning, the increased systolic blood pressure and heart rate results in an increased energy and oxygen demand by the heart, while the vascular tone of the coronary artery rises in the morning, resulting in a decreased coronary blood flow and oxygen supply. This mismatch between supply and demand underpins the high frequency of onset of MI. Plaque blockages are more likely to occur in the morning as platelet surface activation markers have a circadian pattern producing a peak of thrombus formation and platelet aggregation. The resulting hypercoagulability partially underlies the morning onset of MI.”

“A critical area where time of day matters to the individual is the optimum time to take medication, a branch of medicine that has been termed ‘chronotherapy’. Statins are a family of cholesterol-lowering drugs which inhibit HMGCR-reductase […] HMGCR is under circadian control and is highest at night. Hence those statins with a short half-life, such as simvastatin and lovastatin, are most effective when taken before bedtime. In another clinical domain entirely, recent studies have shown that anti-flu vaccinations given in the morning provoke a stronger immune response than those given in the afternoon. The idea of using chronotherapy to improve the efficacy of anti-cancer drugs has been around for the best part of 30 years. […] In experimental models more than thirty anti-cancer drugs have been found to vary in toxicity and efficacy by as much as 50 per cent as a function of time of administration. Although Lévi and others have shown the advantages to treating individual patients by different timing regimes, few hospitals have taken it up. One reason is that the best time to apply many of these treatments is late in the day or during the night, precisely when most hospitals lack the infrastructure and personnel to deliver such treatments.”

“Flying across multiple time zones and shift work has significant economic benefits, but the costs in terms of ill health are only now becoming clear. Sleep and circadian rhythm disruption (SCRD) is almost always associated with poor health. […] The impact of jet lag has long been known by elite athletes […] even when superbly fit individuals fly across time zones there is a very prolonged disturbance of circadian-driven rhythmic physiology. […] Horses also suffer from jet lag. […] Even bees can get jet lag. […] The misalignments that occur as a result of the occasional transmeridian flight are transient. Shift working represents a chronic misalignment. […] Nurses are one of the best-studied groups of night shift workers. Years of shift work in these individuals has been associated with a broad range of health problems including type II diabetes, gastrointestinal disorders, and even breast and colorectal cancers. Cancer risk increases with the number of years of shift work, the frequency of rotating work schedules, and the number of hours per week working at night [For people who are interested to know more about this, I previously covered a text devoted exclusively to these topics here and here.]. The correlations are so strong that shift work is now officially classified as ‘probably carcinogenic [Group 2A]’ by the World Health Organization. […] the partners and families of night shift workers need to be aware that mood swings, loss of empathy, and irritability are common features of working at night.”

“There are some seventy sleep disorders recognized by the medical community, of which four have been labelled as ‘circadian rhythm sleep disorders’ […] (1) Advanced sleep phase disorder (ASPD) […] is characterized by difficulty staying awake in the evening and difficulty staying asleep in the morning. Typically individuals go to bed and rise about three or more hours earlier than the societal norm. […] (2) Delayed sleep phase disorder (DSPD) is a far more frequent condition and is characterized by a 3-hour delay or more in sleep onset and offset and is a sleep pattern often found in some adolescents and young adults. […] ASPD and DSPD can be considered as pathological extremes of morning or evening preferences […] (3) Freerunning or non-24-hour sleep/wake rhythms occur in blind individuals who have either had their eyes completely removed or who have no neural connection from the retina to the brain. These people are not only visually blind but are also circadian blind. Because they have no means of detecting the synchronizing light signals they cannot reset their circadian rhythms, which freerun with a period of about 24 hours and 10 minutes. So, after six days, internal time is on average 1 hour behind environmental time. (4) Irregular sleep timing has been observed in individuals who lack a circadian clock as a result of a tumour in their anterior hypothalamus […]. Irregular sleep timing is [also] commonly found in older people suffering from dementia. It is an extremely important condition because one of the major factors in caring for those with dementia is the exhaustion of the carers which is often a consequence of the poor sleep patterns of those for whom they are caring. Various protocols have been attempted in nursing homes using increased light in the day areas and darkness in the bedrooms to try and consolidate sleep. Such approaches have been very successful in some individuals […] Although insomnia is the commonly used term to describe sleep disruption, technically insomnia is not a ‘circadian rhythm sleep disorder’ but rather a general term used to describe irregular or disrupted sleep. […] Insomnia is described as a ‘psychophysiological’ condition, in which mental and behavioural factors play predisposing, precipitating, and perpetuating roles. The factors include anxiety about sleep, maladaptive sleep habits, and the possibility of an underlying vulnerability in the sleep-regulating mechanism. […] Even normal ‘healthy ageing’ is associated with both circadian rhythm sleep disorders and insomnia. Both the generation and regulation of circadian rhythms have been shown to become less robust with age, with blunted amplitudes and abnormal phasing of key physiological processes such as core body temperature, metabolic processes, and hormone release. Part of the explanation may relate to a reduced light signal to the clock […]. In the elderly, the photoreceptors of the eye are often exposed to less light because of the development of cataracts and other age-related eye disease. Both these factors have been correlated with increased SCRD.”

“Circadian rhythm research has mushroomed in the past twenty years, and has provided a much greater understanding of the impact of both imposed and illness-related SCRD. We now appreciate that our increasingly 24/7 society and social disregard for biological time is having a major impact upon our health. Understanding has also been gained about the relationship between SCRD and a spectrum of different illnesses. SCRD in illness is not simply the inconvenience of being unable to sleep at an appropriate time but is an agent that exacerbates or causes serious health problems.”

Links:

Circadian rhythm.
Acrophase.
Phase (waves). Phase angle.
Jean-Jacques d’Ortous de Mairan.
Heliotropism.
Kymograph.
John Harrison.
Munich Chronotype Questionnaire.
Chronotype.
Seasonal affective disorder. Light therapy.
Parkinson’s disease. Multiple sclerosis.
Melatonin.

August 25, 2018 - Posted by | Biology, Books, Cancer/oncology, Cardiology, Medicine

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: