Econstudentlog

Networks

I actually think this was a really nice book, considering the format – I gave it four stars on goodreads. One of the things I noticed people didn’t like about it in the reviews is that it ‘jumps’ a bit in terms of topic coverage; it covers a wide variety of applications and analytical settings. I mostly don’t consider this a weakness of the book – even if occasionally it does get a bit excessive – and I can definitely understand the authors’ choice of approach; it’s sort of hard to illustrate the potential the analytical techniques described within this book have if you’re not allowed to talk about all the areas in which they have been – or could be gainfully – applied. A related point is that many people who read the book might be familiar with the application of these tools in specific contexts but have perhaps not thought about the fact that similar methods are applied in many other areas (and they might all of them be a bit annoyed the authors don’t talk more about computer science applications, or foodweb analyses, or infectious disease applications, or perhaps sociometry…). Most of the book is about graph-theory-related stuff, but a very decent amount of the coverage deals with applications, in a broad sense of the word at least, not theory. The discussion of theoretical constructs in the book always felt to me driven to a large degree by their usefulness in specific contexts.

I have covered related topics before here on the blog, also quite recently – e.g. there’s at least some overlap between this book and Holland’s book about complexity theory in the same series (I incidentally think these books probably go well together) – and as I found the book slightly difficult to blog as it was I decided against covering it in as much detail as I sometimes do when covering these texts – this means that I decided to leave out the links I usually include in posts like these.

Below some quotes from the book.

“The network approach focuses all the attention on the global structure of the interactions within a system. The detailed properties of each element on its own are simply ignored. Consequently, systems as different as a computer network, an ecosystem, or a social group are all described by the same tool: a graph, that is, a bare architecture of nodes bounded by connections. […] Representing widely different systems with the same tool can only be done by a high level of abstraction. What is lost in the specific description of the details is gained in the form of universality – that is, thinking about very different systems as if they were different realizations of the same theoretical structure. […] This line of reasoning provides many insights. […] The network approach also sheds light on another important feature: the fact that certain systems that grow without external control are still capable of spontaneously developing an internal order. […] Network models are able to describe in a clear and natural way how self-organization arises in many systems. […] In the study of complex, emergent, and self-organized systems (the modern science of complexity), networks are becoming increasingly important as a universal mathematical framework, especially when massive amounts of data are involved. […] networks are crucial instruments to sort out and organize these data, connecting individuals, products, news, etc. to each other. […] While the network approach eliminates many of the individual features of the phenomenon considered, it still maintains some of its specific features. Namely, it does not alter the size of the system — i.e. the number of its elements — or the pattern of interaction — i.e. the specific set of connections between elements. Such a simplified model is nevertheless enough to capture the properties of the system. […] The network approach [lies] somewhere between the description by individual elements and the description by big groups, bridging the two of them. In a certain sense, networks try to explain how a set of isolated elements are transformed, through a pattern of interactions, into groups and communities.”

“[T]he random graph model is very important because it quantifies the properties of a totally random network. Random graphs can be used as a benchmark, or null case, for any real network. This means that a random graph can be used in comparison to a real-world network, to understand how much chance has shaped the latter, and to what extent other criteria have played a role. The simplest recipe for building a random graph is the following. We take all the possible pair of vertices. For each pair, we toss a coin: if the result is heads, we draw a link; otherwise we pass to the next pair, until all the pairs are finished (this means drawing the link with a probability p = ½, but we may use whatever value of p). […] Nowadays [the random graph model] is a benchmark of comparison for all networks, since any deviations from this model suggests the presence of some kind of structure, order, regularity, and non-randomness in many real-world networks.”

“…in networks, topology is more important than metrics. […] In the network representation, the connections between the elements of a system are much more important than their specific positions in space and their relative distances. The focus on topology is one of its biggest strengths of the network approach, useful whenever topology is more relevant than metrics. […] In social networks, the relevance of topology means that social structure matters. […] Sociology has classified a broad range of possible links between individuals […]. The tendency to have several kinds of relationships in social networks is called multiplexity. But this phenomenon appears in many other networks: for example, two species can be connected by different strategies of predation, two computers by different cables or wireless connections, etc. We can modify a basic graph to take into account this multiplexity, e.g. by attaching specific tags to edges. […] Graph theory [also] allows us to encode in edges more complicated relationships, as when connections are not reciprocal. […] If a direction is attached to the edges, the resulting structure is a directed graph […] In these networks we have both in-degree and out-degree, measuring the number of inbound and outbound links of a node, respectively. […] in most cases, relations display a broad variation or intensity [i.e. they are not binary/dichotomous]. […] Weighted networks may arise, for example, as a result of different frequencies of interactions between individuals or entities.”

“An organism is […] the outcome of several layered networks and not only the deterministic result of the simple sequence of genes. Genomics has been joined by epigenomics, transcriptomics, proteomics, metabolomics, etc., the disciplines that study these layers, in what is commonly called the omics revolution. Networks are at the heart of this revolution. […] The brain is full of networks where various web-like structures provide the integration between specialized areas. In the cerebellum, neurons form modules that are repeated again and again: the interaction between modules is restricted to neighbours, similarly to what happens in a lattice. In other areas of the brain, we find random connections, with a more or less equal probability of connecting local, intermediate, or distant neurons. Finally, the neocortex — the region involved in many of the higher functions of mammals — combines local structures with more random, long-range connections. […] typically, food chains are not isolated, but interwoven in intricate patterns, where a species belongs to several chains at the same time. For example, a specialized species may predate on only one prey […]. If the prey becomes extinct, the population of the specialized species collapses, giving rise to a set of co-extinctions. An even more complicated case is where an omnivore species predates a certain herbivore, and both eat a certain plant. A decrease in the omnivore’s population does not imply that the plant thrives, because the herbivore would benefit from the decrease and consume even more plants. As more species are taken into account, the population dynamics can become more and more complicated. This is why a more appropriate description than ‘foodchains’ for ecosystems is the term foodwebs […]. These are networks in which nodes are species and links represent relations of predation. Links are usually directed (big fishes eat smaller ones, not the other way round). These networks provide the interchange of food, energy, and matter between species, and thus constitute the circulatory system of the biosphere.”

“In the cell, some groups of chemicals interact only with each other and with nothing else. In ecosystems, certain groups of species establish small foodwebs, without any connection to external species. In social systems, certain human groups may be totally separated from others. However, such disconnected groups, or components, are a strikingly small minority. In all networks, almost all the elements of the systems take part in one large connected structure, called a giant connected component. […] In general, the giant connected component includes not less than 90 to 95 per cent of the system in almost all networks. […] In a directed network, the existence of a path from one node to another does not guarantee that the journey can be made in the opposite direction. Wolves eat sheep, and sheep eat grass, but grass does not eat sheep, nor do sheep eat wolves. This restriction creates a complicated architecture within the giant connected component […] according to an estimate made in 1999, more than 90 per cent of the WWW is composed of pages connected to each other, if the direction of edges is ignored. However, if we take direction into account, the proportion of nodes mutually reachable is only 24 per cent, the giant strongly connected component. […] most networks are sparse, i.e. they tend to be quite frugal in connections. Take, for example, the airport network: the personal experience of every frequent traveller shows that direct flights are not that common, and intermediate stops are necessary to reach several destinations; thousands of airports are active, but each city is connected to less than 20 other cities, on average. The same happens in most networks. A measure of this is given by the mean number of connection of their nodes, that is, their average degree.”

“[A] puzzling contradiction — a sparse network can still be very well connected — […] attracted the attention of the Hungarian mathematicians […] Paul Erdős and Alfréd Rényi. They tackled it by producing different realizations of their random graph. In each of them, they changed the density of edges. They started with a very low density: less than one edge per node. It is natural to expect that, as the density increases, more and more nodes will be connected to each other. But what Erdős and Rényi found instead was a quite abrupt transition: several disconnected components coalesced suddenly into a large one, encompassing almost all the nodes. The sudden change happened at one specific critical density: when the average number of links per node (i.e. the average degree) was greater than one, then the giant connected component suddenly appeared. This result implies that networks display a very special kind of economy, intrinsic to their disordered structure: a small number of edges, even randomly distributed between nodes, is enough to generate a large structure that absorbs almost all the elements. […] Social systems seem to be very tightly connected: in a large enough group of strangers, it is not unlikely to find pairs of people with quite short chains of relations connecting them. […] The small-world property consists of the fact that the average distance between any two nodes (measured as the shortest path that connects them) is very small. Given a node in a network […], few nodes are very close to it […] and few are far from it […]: the majority are at the average — and very short — distance. This holds for all networks: starting from one specific node, almost all the nodes are at very few steps from it; the number of nodes within a certain distance increases exponentially fast with the distance. Another way of explaining the same phenomenon […] is the following: even if we add many nodes to a network, the average distance will not increase much; one has to increase the size of a network by several orders of magnitude to notice that the paths to new nodes are (just a little) longer. The small-world property is crucial to many network phenomena. […] The small-world property is something intrinsic to networks. Even the completely random Erdős-Renyi graphs show this feature. By contrast, regular grids do not display it. If the Internet was a chessboard-like lattice, the average distance between two routers would be of the order of 1,000 jumps, and the Net would be much slower [the authors note elsewhere that “The Internet is composed of hundreds of thousands of routers, but just about ten ‘jumps’ are enough to bring an information packet from one of them to any other.”] […] The key ingredient that transforms a structure of connections into a small world is the presence of a little disorder. No real network is an ordered array of elements. On the contrary, there are always connections ‘out of place’. It is precisely thanks to these connections that networks are small worlds. […] Shortcuts are responsible for the small-world property in many […] situations.”

“Body size, IQ, road speed, and other magnitudes have a characteristic scale: that is, an average value that in the large majority of cases is a rough predictor of the actual value that one will find. […] While height is a homogeneous magnitude, the number of social connection[s] is a heterogeneous one. […] A system with this feature is said to be scale-free or scale-invariant, in the sense that it does not have a characteristic scale. This can be rephrased by saying that the individual fluctuations with respect to the average are too large for us to make a correct prediction. […] In general, a network with heterogeneous connectivity has a set of clear hubs. When a graph is small, it is easy to find whether its connectivity is homogeneous or heterogeneous […]. In the first case, all the nodes have more or less the same connectivity, while in the latter it is easy to spot a few hubs. But when the network to be studied is very big […] things are not so easy. […] the distribution of the connectivity of the nodes of the […] network […] is the degree distribution of the graph. […] In homogeneous networks, the degree distribution is a bell curve […] while in heterogeneous networks, it is a power law […]. The power law implies that there are many more hubs (and much more connected) in heterogeneous networks than in homogeneous ones. Moreover, hubs are not isolated exceptions: there is a full hierarchy of nodes, each of them being a hub compared with the less connected ones.”

“Looking at the degree distribution is the best way to check if a network is heterogeneous or not: if the distribution is fat tailed, then the network will have hubs and heterogeneity. A mathematically perfect power law is never found, because this would imply the existence of hubs with an infinite number of connections. […] Nonetheless, a strongly skewed, fat-tailed distribution is a clear signal of heterogeneity, even if it is never a perfect power law. […] While the small-world property is something intrinsic to networked structures, hubs are not present in all kind of networks. For example, power grids usually have very few of them. […] hubs are not present in random networks. A consequence of this is that, while random networks are small worlds, heterogeneous ones are ultra-small worlds. That is, the distance between their vertices is relatively smaller than in their random counterparts. […] Heterogeneity is not equivalent to randomness. On the contrary, it can be the signature of a hidden order, not imposed by a top-down project, but generated by the elements of the system. The presence of this feature in widely different networks suggests that some common underlying mechanism may be at work in many of them. […] the Barabási–Albert model gives an important take-home message. A simple, local behaviour, iterated through many interactions, can give rise to complex structures. This arises without any overall blueprint”.

Homogamy, the tendency of like to marry like, is very strong […] Homogamy is a specific instance of homophily: this consists of a general trend of like to link to like, and is a powerful force in shaping social networks […] assortative mixing [is] a special form of homophily, in which nodes tend to connect with others that are similar to them in the number of connections. By contrast [when] high- and low-degree nodes are more connected to each other [it] is called disassortative mixing. Both cases display a form of correlation in the degrees of neighbouring nodes. When the degrees of neighbours are positively correlated, then the mixing is assortative; when negatively, it is disassortative. […] In random graphs, the neighbours of a given node are chosen completely at random: as a result, there is no clear correlation between the degrees of neighbouring nodes […]. On the contrary, correlations are present in most real-world networks. Although there is no general rule, most natural and technological networks tend to be disassortative, while social networks tend to be assortative. […] Degree assortativity and disassortativity are just an example of the broad range of possible correlations that bias how nodes tie to each other.”

“[N]etworks (neither ordered lattices nor random graphs), can have both large clustering and small average distance at the same time. […] in almost all networks, the clustering of a node depends on the degree of that node. Often, the larger the degree, the smaller the clustering coefficient. Small-degree nodes tend to belong to well-interconnected local communities. Similarly, hubs connect with many nodes that are not directly interconnected. […] Central nodes usually act as bridges or bottlenecks […]. For this reason, centrality is an estimate of the load handled by a node of a network, assuming that most of the traffic passes through the shortest paths (this is not always the case, but it is a good approximation). For the same reason, damaging central nodes […] can impair radically the flow of a network. Depending on the process one wants to study, other definitions of centrality can be introduced. For example, closeness centrality computes the distance of a node to all others, and reach centrality factors in the portion of all nodes that can be reached in one step, two steps, three steps, and so on.”

“Domino effects are not uncommon in foodwebs. Networks in general provide the backdrop for large-scale, sudden, and surprising dynamics. […] most of the real-world networks show a doubled-edged kind of robustness. They are able to function normally even when a large fraction of the network is damaged, but suddenly certain small failures, or targeted attacks, bring them down completely. […] networks are very different from engineered systems. In an airplane, damaging one element is enough to stop the whole machine. In order to make it more resilient, we have to use strategies such as duplicating certain pieces of the plane: this makes it almost 100 per cent safe. In contrast, networks, which are mostly not blueprinted, display a natural resilience to a broad range of errors, but when certain elements fail, they collapse. […] A random graph of the size of most real-world networks is destroyed after the removal of half of the nodes. On the other hand, when the same procedure is performed on a heterogeneous network (either a map of a real network or a scale-free model of a similar size), the giant connected component resists even after removing more than 80 per cent of the nodes, and the distance within it is practically the same as at the beginning. The scene is different when researchers simulate a targeted attack […] In this situation the collapse happens much faster […]. However, now the most vulnerable is the second: while in the homogeneous network it is necessary to remove about one-fifth of its more connected nodes to destroy it, in the heterogeneous one this happens after removing the first few hubs. Highly connected nodes seem to play a crucial role, in both errors and attacks. […] hubs are mainly responsible for the overall cohesion of the graph, and removing a few of them is enough to destroy it.”

“Studies of errors and attacks have shown that hubs keep different parts of a network connected. This implies that they also act as bridges for spreading diseases. Their numerous ties put them in contact with both infected and healthy individuals: so hubs become easily infected, and they infect other nodes easily. […] The vulnerability of heterogeneous networks to epidemics is bad news, but understanding it can provide good ideas for containing diseases. […] if we can immunize just a fraction, it is not a good idea to choose people at random. Most of the times, choosing at random implies selecting individuals with a relatively low number of connections. Even if they block the disease from spreading in their surroundings, hubs will always be there to put it back into circulation. A much better strategy would be to target hubs. Immunizing hubs is like deleting them from the network, and the studies on targeted attacks show that eliminating a small fraction of hubs fragments the network: thus, the disease will be confined to a few isolated components. […] in the epidemic spread of sexually transmitted diseases the timing of the links is crucial. Establishing an unprotected link with a person before they establish an unprotected link with another person who is infected is not the same as doing so afterwards.”

Advertisements

April 3, 2018 Posted by | Biology, Books, Ecology, Engineering, Epidemiology, Genetics, Mathematics, Statistics | Leave a comment

Marine Biology (II)

Below some observations and links related to the second half of the book’s coverage:

[C]oral reefs occupy a very small proportion of the planet’s surface – about 284,000 square kilometres – roughly equivalent to the size of Italy [yet they] are home to an incredibly diversity of marine organisms – about a quarter of all marine species […]. Coral reef systems provide food for hundreds of millions of people, with about 10 per cent of all fish consumed globally caught on coral reefs. […] Reef-building corals thrive best at sea temperatures above about 23°C and few exist where sea temperatures fall below 18°C for significant periods of time. Thus coral reefs are absent at tropical latitudes where upwelling of cold seawater occurs, such as the west coasts of South America and Africa. […] they are generally restricted to areas of clear water less than about 50 metres deep. Reef-building corals are very intolerant of any freshening of seawater […] and so do not occur in areas exposed to intermittent influxes of freshwater, such as near the mouths of rivers, or in areas where there are high amounts of rainfall run-off. This is why coral reefs are absent along much of the tropical Atlantic coast of South America, which is exposed to freshwater discharge from the Amazon and Orinoco Rivers. Finally, reef-building corals flourish best in areas with moderate to high wave action, which keeps the seawater well aerated […]. Spectacular and productive coral reef systems have developed in those parts of the Global Ocean where this special combination of physical conditions converges […] Each colony consists of thousands of individual animals called polyps […] all reef-building corals have entered into an intimate relationship with plant cells. The tissues lining the inside of the tentacles and stomach cavity of the polyps are packed with photosynthetic cells called zooxanthellae, which are photosynthetic dinoflagellates […] Depending on the species, corals receive anything from about 50 per cent to 95 per cent of their food from their zooxanthellae. […] Healthy coral reefs are very productive marine systems. This is in stark contrast to the nutrient-poor and unproductive tropical waters adjacent to reefs. Coral reefs are, in general, roughly one hundred times more productive than the surrounding environment”.

“Overfishing constitutes a significant threat to coral reefs at this time. About an eighth of the world’s population – roughly 875 million people – live within 100 kilometres of a coral reef. Most of the people live in developing countries and island nations and depend greatly on fish obtained from coral reefs as a food source. […] Some of the fishing practices are very harmful. Once the large fish are removed from a coral reef, it becomes increasingly more difficult to make a living harvesting the more elusive and lower-value smaller fish that remain. Fishers thus resort to more destructive techniques such as dynamiting parts of the reef and scooping up the dead and stunned fish that float to the surface. People capturing fish for the tropical aquarium trade will often poison parts of the reef with sodium cyanide which paralyses the fish, making them easier to catch. An unfortunate side effect of this practice is that the poison kills corals. […] Coral reefs have only been seriously studied since the 1970s, which in most cases was well after human impacts had commenced. This makes it difficult to define what might actually constitute a ‘natural’ and healthy coral reef system, as would have existed prior to extensive human impacts.”

“Mangrove is a collective term applied to a diverse group of trees and scrubs that colonize protected muddy intertidal areas in tropical and subtropical regions, creating mangrove forests […] Mangroves are of great importance from a human perspective. The sheltered waters of a mangrove forest provide important nursery areas for juvenile fish, crabs, and shrimp. Many commercial fisheries depend on the existence of healthy mangrove forests, including blue crab, shrimp, spiny lobster, and mullet fisheries. Mangrove forests also stabilize the foreshore and protect the adjacent land from erosion, particularly from the effects of large storms and tsunamis. They also act as biological filters by removing excess nutrients and trapping sediment from land run-off before it enters the coastal environment, thereby protecting other habitats such as seagrass meadows and coral reefs. […] [However] mangrove forests are disappearing rapidly. In a twenty-year period between 1980 and 2000 the area of mangrove forest globally declined from around 20 million hectares to below 15 million hectares. In some specific regions the rate of mangrove loss is truly alarming. For example, Puerto Rico lost about 89 per cent of its mangrove forests between 1930 and 1985, while the southern part of India lost about 96 per cent of its mangroves between 1911 and 1989.”

“[A]bout 80 per cent of the entire volume of the Global Ocean, or roughly one billion cubic kilometres, consists of seawater with depths greater than 1,000 metres […] The deep ocean is a permanently dark environment devoid of sunlight, the last remnants of which cannot penetrate much beyond 200 metres in most parts of the Global Ocean, and no further than 800 metres or so in even the clearest oceanic waters. The only light present in the deep ocean is of biological origin […] Except in a few very isolated places, the deep ocean is a permanently cold environment, with sea temperatures ranging from about 2° to 4°C. […] Since there is no sunlight, there is no plant life, and thus no primary production of organic matter by photosynthesis. The base of the food chain in the deep ocean consists mostly of a ‘rain’ of small particles of organic material sinking down through the water column from the sunlit surface waters of the ocean. This reasonably constant rain of organic material is supplemented by the bodies of large fish and marine mammals that sink more rapidly to the bottom following death, and which provide sporadic feasts for deep-ocean bottom dwellers. […] Since food is a scarce commodity for deep-ocean fish, full advantage must be taken of every meal encountered. This has resulted in a number of interesting adaptations. Compared to fish in the shallow ocean, many deep-ocean fish have very large mouths capable of opening very wide, and often equipped with numerous long, sharp, inward-pointing teeth. […] These fish can capture and swallow whole prey larger than themselves so as not to pass up a rare meal simply because of its size. These fish also have greatly extensible stomachs to accommodate such meals.”

“In the pelagic environment of the deep ocean, animals must be able to keep themselves within an appropriate depth range without using up energy in their food-poor habitat. This is often achieved by reducing the overall density of the animal to that of seawater so that it is neutrally buoyant. Thus the tissues and bones of deep-sea fish are often rather soft and watery. […] There is evidence that deep-ocean organisms have developed biochemical adaptations to maintain the functionality of their cell membranes under pressure, including adjusting the kinds of lipid molecules present in membranes to retain membrane fluidity under high pressure. High pressures also affect protein molecules, often preventing them from folding up into the correct shapes for them to function as efficient metabolic enzymes. There is evidence that deep-ocean animals have evolved pressure-resistant variants of common enzymes that mitigate this problem. […] The pattern of species diversity of the deep-ocean benthos appears to differ from that of other marine communities, which are typically dominated by a small number of abundant and highly visible species which overshadow the presence of a large number of rarer and less obvious species which are also present. In the deep-ocean benthic community, in contrast, no one group of species tends to dominate, and the community consists of a high number of different species all occurring in low abundance. […] In general, species diversity increases with the size of a habitat – the larger the area of a habitat, the more species that have developed ways to successfully live in that habitat. Since the deep-ocean bottom is the largest single habitat on the planet, it follows that species diversity would be expected to be high.”

Seamounts represent a special kind of biological hotspot in the deep ocean. […] In contrast to the surrounding flat, soft-bottomed abyssal plains, seamounts provide a complex rocky platform that supports an abundance of organisms that are distinct from the surrounding deep-ocean benthos. […] Seamounts support a great diversity of fish species […] This [has] triggered the creation of new deep-ocean fisheries focused on seamounts. […] [However these species are generally] very slow-growing and long-lived and mature at a late age, and thus have a low reproductive potential. […] Seamount fisheries have often been described as mining operations rather than sustainable fisheries. They typically collapse within a few years of the start of fishing and the trawlers then move on to other unexplored seamounts to maintain the fishery. The recovery of localized fisheries will inevitably be very slow, if achievable at all, because of the low reproductive potential of these deep-ocean fish species. […] Comparisons of ‘fished’ and ‘unfished’ seamounts have clearly shown the extent of habitat damage and loss of species diversity brought about by trawl fishing, with the dense coral habitats reduced to rubble over much of the area investigated. […] Unfortunately, most seamounts exist in areas beyond national jurisdiction, which makes it very difficult to regulate fishing activities on them, although some efforts are underway to establish international treaties to better manage and protect seamount ecosystems.”

“Hydrothermal vents are unstable and ephemeral features of the deep ocean. […] The lifespan of a typical vent is likely in the order of tens of years. Thus the rich communities surrounding vents have a very limited lifespan. Since many vent animals can live only near vents, and the distance between vent systems can be hundreds to thousands of kilometres, it is a puzzle as to how vent animals escape a dying vent and colonize other distant vents or newly created vents. […] Hydrothermal vents are [however] not the only source of chemical-laden fluids supporting unique chemosynthetic-based communities in the deep ocean. Hydrogen sulphide and methane also ooze from the ocean buttom at some locations at temperatures similar to the surrounding seawater. These so-called ‘cold seeps‘ are often found along continental margins […] The communities associated with cold seeps are similar to hydrothermal vent communities […] Cold seeps appear to be more permanent sources of fluid compared to the ephemeral nature of hot water vents.”

“Seepage of crude oil into the marine environment occurs naturally from oil-containing geological formations below the seabed. It is estimated that around 600,000 tonnes of crude oil seeps into the marine environment each year, which represents almost half of all the crude oil entering the oceans. […] The human activities associated with exploring for and producing oil result in the release on average of an estimated 38,000 tonnes of crude oil into the oceans each year, which is about 6 per cent of the total anthropogenic input of oil into the oceans worldwide. Although small in comparison to natural seepage, crude oil pollution from this source can cause serious damage to coastal ecosystems because it is released near the coast and sometimes in very large, concentrated amounts. […] The transport of oil and oil products around the globe in tankers results in the release of about 150,000 tonnes of oil worldwide each year on average, or about 22 per cent of the total anthropogenic input. […] About 480,000 tonnes of oil make their way into the marine environment each year worldwide from leakage associated with the consumption of oil-derived products in cars and trucks, and to a lesser extent in boats. Oil lost from the operation of cars and trucks collects on paved urban areas from where it is washed off into streams and rivers, and from there into the oceans. Surprisingly, this represents the most significant source of human-derived oil pollution into the marine environment – about 72 per cent of the total. Because it is a very diffuse source of pollution, it is the most difficult to control.”

“Today it has been estimated that virtually all of the marine food resources in the Mediterranean sea have been reduced to less than 50 per cent of their original abundance […] The greatest impact has been on the larger predatory fish, which were the first to be targeted by fishers. […] It is estimated that, collectively, the European fish stocks of today are just one-tenth of their size in 1900. […] In 1950 the total global catch of marine seafood was just less than twenty million tonnes fresh weight. This increased steadily and rapidly until by the late 1980s more than eighty million tonnes were being taken each year […] Starting in the early 1990s, however, yields began to show signs of levelling off. […] By far the most heavily exploited marine fishery in the world is the Peruvian anchoveta (Engraulis ringens) fishery, which can account for 10 per cent or more of the global marine catch of seafood in any particular year. […] The anchoveta is a very oily fish, which makes it less desirable for direct consumption by humans. However, the high oil content makes it ideal for the production of fish meal and fish oil […] the demand for fish meal and fish oil is huge and about a third of the entire global catch of fish is converted into these products rather than consumed directly by humans. Feeding so much fish protein to livestock comes with a considerable loss of potential food energy (around 25 per cent) compared to if it was eaten directly by humans. This could be viewed as a potential waste of available energy for a rapidly growing human population […] around 90 per cent of the fish used to produce fish meal and oil is presently unpalatable to most people and thus unmarketable in large quantities as a human food”.

“On heavily fished areas of the continental shelves, the same parts of the sea floor can be repeatedly trawled many times per year. Such intensive bottom trawling causes great cumulative damage to seabed habitats. The trawls scrape and pulverize rich and complex bottom habitats built up over centuries by living organisms such as tube worms, cold-water corals, and oysters. These habitats are eventually reduced to uniform stretches of rubble and sand. For all intents and purposes these areas are permanently altered and become occupied by a much changed and much less rich community adapted to frequent disturbance.”

“The eighty million tonnes or so of marine seafood caught each year globally equates to about eleven kilograms of wild-caught marine seafood per person on the planet. […] What is perfectly clear […] on the basis of theory backed up by real data on marine fish catches, is that marine fisheries are now fully exploited and that there is little if any headroom for increasing the amount of wild-caught fish humans can extract from the oceans to feed a burgeoning human population. […] This conclusion is solidly supported by the increasingly precarious state of global marine fishery resources. The most recent information from the Food and Agriculture Organization of the United Nations (The State of World Fisheries and Aquaculture 2010) shows that over half (53 per cent of all fish stocks are fully exploited – their current catches are at or close to their maximum sustainable levels of production and there is no scope for further expansion. Another 32 per cent are overexploited and in decline. Of the remaining 15 per cent of stocks, 12 per cent are considered moderately exploited and only 3 per cent underexploited. […] in the mid 1970s 40 per cent of all fish stocks were in [the moderately exploited or unexploited] category as opposed to around 15 per cent now. […] the real question is not so much whether we can get more fish from the sea but whether we can sustain the amount of fish we are harvesting at present”.

Links:

Scleractinia.
Atoll. Fringing reef. Barrier reef.
Corallivore.
Broadcast spawning.
Acanthaster planci.
Coral bleaching. Ocean acidification.
Avicennia germinans. Pneumatophores. Lenticel.
Photophore. Lanternfish. Anglerfish. Black swallower.
Deep scattering layer. Taylor column.
Hydrothermal vent. Black smokers and white smokers. Chemosynthesis. Siboglinidae.
Intertidal zone. Tides. Tidal range.
Barnacle. Mussel.
Clupeidae. Gadidae. Scombridae.

March 16, 2018 Posted by | Biology, Books, Chemistry, Ecology, Evolutionary biology, Geology | Leave a comment

Marine Biology (I)

This book was ‘okay’.

Some quotes and links related to the first half of the book below.

Quotes:

“The Global Ocean has come to be divided into five regional oceans – the Pacific, Atlantic, Indian, Arctic, and Southern Oceans […] These oceans are large, seawater-filled basins that share characteristic structural features […] The edge of each basin consists of a shallow, gently sloping extension of the adjacent continental land mass and is term the continental shelf or continental margin. Continental shelves typically extend off-shore to depths of a couple of hundred metres and vary from several kilometres to hundreds of kilometres in width. […] At the outer edge of the continental shelf, the seafloor drops off abruptly and steeply to form the continental slope, which extends down to depths of 2–3 kilometres. The continental slope then flattens out and gives way to a vast expanse of flat, soft, ocean bottom — the abyssal plain — which extends over depths of about 3–5 kilometres and accounts for about 76 per cent of the Global Ocean floor. The abyssal plains are transected by extensive mid-ocean ridges—underwater mountain chains […]. Mid-ocean ridges form a continuous chain of mountains that extend linearly for 65,000 kilometres across the floor of the Global Ocean basins […]. In some places along the edges of the abyssal plains the ocean bottom is cut by narrow, oceanic trenches or canyons which plunge to extraordinary depths — 3–4 kilometres below the surrounding seafloor — and are thousands of kilometres long but only tens of kilometres wide. […] Seamounts are another distinctive and dramatic feature of ocean basins. Seamounts are typically extinct volcanoes that rise 1,000 or more metres above the surrounding ocean but do not reach the surface of the ocean. […] Seamounts generally occur in chains or clusters in association with mid-ocean ridges […] The Global Ocean contains an estimated 100,000 or so seamounts that rise more than 1,000 metres above the surrounding deep-ocean floor. […] on a planetary scale, the surface of the Global Ocean is moving in a series of enormous, roughly circular, wind-driven current systems, or gyres […] These gyres transport enormous volumes of water and heat energy from one part of an ocean basin to another

“We now know that the oceans are literally teeming with life. Viruses […] are astoundingly abundant – there are around ten million viruses per millilitre of seawater. Bacteria and other microorganisms occur at concentrations of around 1 million per millilitre”

“The water in the oceans is in the form of seawater, a dilute brew of dissolved ions, or salts […] Chloride and sodium ions are the predominant salts in seawater, along with smaller amounts of other ions such as sulphate, magnesium, calcium, and potassium […] The total amount of dissolved salts in seawater is termed its salinity. Seawater typically has a salinity of roughly 35 – equivalent to about 35 grams of salts in one kilogram of seawater. […] Most marine organisms are exposed to seawater that, compared to the temperature extremes characteristic of terrestrial environments, ranges within a reasonably moderate range. Surface waters in tropical parts of ocean basins are consistently warm throughout the year, ranging from about 20–27°C […]. On the other hand, surface seawater in polar parts of ocean basins can get as cold as −1.9°C. Sea temperatures typically decrease with depth, but not in a uniform fashion. A distinct zone of rapid temperature transition is often present that separates warm seawater at the surface from cooler deeper seawater. This zone is called the thermocline layer […]. In tropical ocean waters the thermocline layer is a strong, well-defined and permanent feature. It may start at around 100 metres and be a hundred or so metres thick. Sea temperatures above the thermocline can be a tropical 25°C or more, but only 6–7°C just below the thermocline. From there the temperature drops very gradually with increasing depth. Thermoclines in temperate ocean regions are a more seasonal phenomenon, becoming well established in the summer as the sun heats up the surface waters, and then breaking down in the autumn and winter. Thermoclines are generally absent in the polar regions of the Global Ocean. […] As a rule of thumb, in the clearest ocean waters some light will penetrate to depths of 150-200 metres, with red light being absorbed within the first few metres and green and blue light penetrating the deepest. At certain times of the year in temperate coastal seas light may penetrate only a few tens of metres […] In the oceans, pressure increases by an additional atmosphere every 10 metres […] Thus, an organism living at a depth of 100 metres on the continental shelf experiences a pressure ten times greater than an organism living at sea level; a creature living at 5 kilometres depth on an abyssal plain experiences pressures some 500 times greater than at the surface”.

“With very few exceptions, dissolved oxygen is reasonably abundant throughout all parts of the Global Ocean. However, the amount of oxygen in seawater is much less than in air — seawater at 20°C contains about 5.4 millilitres of oxygen per litre of seawater, whereas air at this temperature contains about 210 millilitres of oxygen per litre. The colder the seawater, the more oxygen it contains […]. Oxygen is not distributed evenly with depth in the oceans. Oxygen levels are typically high in a thin surface layer 10–20 metres deep. Here oxygen from the atmosphere can freely diffuse into the seawater […] Oxygen concentration then decreases rapidly with depth and reaches very low levels, sometimes close to zero, at depths of around 200–1,000 metres. This region is referred to as the oxygen minimum zone […] This zone is created by the low rates of replenishment of oxygen diffusing down from the surface layer of the ocean, combined with the high rates of depletion of oxygen by decaying particulate organic matter that sinks from the surface and accumulates at these depths. Beneath the oxygen minimum zone, oxygen content increases again with depth such that the deep oceans contain quite high levels of oxygen, though not generally as high as in the surface layer. […] In contrast to oxygen, carbon dioxide (CO2) dissolves readily in seawater. Some of it is then converted into carbonic acid (H2CO3), bicarbonate ion (HCO3-), and carbonate ion (CO32-), with all four compounds existing in equilibrium with one another […] The pH of seawater is inversely proportional to the amount of carbon dioxide dissolved in it. […] the warmer the seawater, the less carbon dioxide it can absorb. […] Seawater is naturally slightly alkaline, with a pH ranging from about 7.5 to 8.5, and marine organisms have become well adapted to life within this stable pH range. […] In the oceans, carbon is never a limiting factor to marine plant photosynthesis and growth, as it is for terrestrial plants.”

“Since the beginning of the industrial revolution, the average pH of the Global Ocean has dropped by about 0.1 pH unit, making it 30 per cent more acidic than in pre-industrial times. […] As a result, more and more parts of the oceans are falling below a pH of 7.5 for longer periods of time. This trend, termed ocean acidification, is having profound impacts on marine organisms and the overall functioning of the marine ecosystem. For example, many types of marine organisms such as corals, clams, oysters, sea urchins, and starfish manufacture external shells or internal skeletons containing calcium carbonate. When the pH of seawater drops below about 7.5, calcium carbonate starts to dissolve, and thus the shells and skeletons of these organisms begin to erode and weaken, with obvious impacts on the health of the animal. Also, these organisms produce their calcium carbonate structures by combining calcium dissolved in seawater with carbonate ion. As the pH decreases, more of the carbonate ions in seawater become bound up with the increasing numbers of hydrogen ions, making fewer carbonate ions available to the organisms for shell-forming purposes. It thus becomes more difficult for these organisms to secrete their calcium carbonate structures and grow.”

“Roughly half of the planet’s primary production — the synthesis of organic compounds by chlorophyll-bearing organisms using energy from the sun—is produced within the Global Ocean. On land the primary producers are large, obvious, and comparatively long-lived — the trees, shrubs, and grasses characteristic of the terrestrial landscape. The situation is quite different in the oceans where, for the most part, the primary producers are minute, short-lived microorganisms suspended in the sunlit surface layer of the oceans. These energy-fixing microorganisms — the oceans’ invisible forest — are responsible for almost all of the primary production in the oceans. […] A large amount, perhaps 30-50 per cent, of marine primary production is produced by bacterioplankton comprising tiny marine photosynthetic bacteria ranging from about 0.5 to 2 μm in size. […] light availability and the strength of vertical mixing are important factors limiting primary production in the oceans. Nutrient availability is the other main factor limiting the growth of primary producers. One important nutrient is nitrogen […] nitrogen is a key component of amino acids, which are the building blocks of proteins. […] Photosynthetic marine organisms also need phosphorus, which is a requirement for many important biological functions, including the synthesis of nucleic acids, a key component of DNA. Phosphorus in the oceans comes naturally from the erosion of rocks and soils on land, and is transported into the oceans by rivers, much of it in the form of dissolved phosphate (PO43−), which can be readily absorbed by marine photosynthetic organisms. […] Inorganic nitrogen and phosphorus compounds are abundant in deep-ocean waters. […] In practice, inorganic nitrogen and phosphorus compounds are not used up at exactly the same rate. Thus one will be depleted before the other and becomes the limiting nutrient at the time, preventing further photosynthesis and growth of marine primary producers until it is replenished. Nitrogen is often considered to be the rate-limiting nutrient in most oceanic environments, particularly in the open ocean. However, in coastal waters phosphorus is often the rate-limiting nutrient.”

“The overall pattern of primary production in the Global Ocean depends greatly on latitude […] In polar oceans primary production is a boom-and-bust affair driven by light availability. Here the oceans are well mixed throughout the year so nutrients are rarely limiting. However, during the polar winter there is no light, and thus no primary production is taking place. […] Although limited to a short seasonal pulse, the total amount of primary production can be quite high, especially in the polar Southern Ocean […] In tropical open oceans, primary production occurs at a low level throughout the year. Here light is never limiting but the permanent tropical thermocline prevents the mixing of deep, nutrient-rich seawater with the surface waters. […] open-ocean tropical waters are often referred to as ‘marine deserts’, with productivity […] comparable to a terrestrial desert. In temperate open-ocean regions, primary productivity is linked closely to seasonal events. […] Although occurring in a number of pulses, primary productivity in temperate oceans [is] similar to [that of] a temperate forest or grassland. […] Some of the most productive marine environments occur in coastal ocean above the continental shelves. This is the result of a phenomenon known as coastal upwelling which brings deep, cold, nutrient-rich seawater to the ocean surface, creating ideal conditions for primary productivity […], comparable to a terrestrial rainforest or cultivated farmland. These hotspots of marine productivity are created by wind acting in concert with the planet’s rotation. […] Coastal upwelling can occur when prevailing winds move in a direction roughly parallel to the edge of a continent so as to create offshore Ekman transport. Coastal upwelling is particularly prevalent along the west coasts of continents. […] Since coastal upwelling is dependent on favourable winds, it tends to be a seasonal or intermittent phenomenon and the strength of upwelling will depend on the strength of the winds. […] Important coastal upwelling zones around the world include the coasts of California, Oregon, northwest Africa, and western India in the northern hemisphere; and the coasts of Chile, Peru, and southwest Africa in the southern hemisphere. These regions are amongst the most productive marine ecosystems on the planet.”

“Considering the Global Ocean as a whole, it is estimated that total marine primary production is about 50 billion tonnes of carbon per year. In comparison, the total production of land plants, which can also be estimated using satellite data, is estimated at around 52 billion tonnes per year. […] Primary production in the oceans is spread out over a much larger surface area and so the average productivity per unit of surface area is much smaller than on land. […] the energy of primary production in the oceans flows to higher trophic levels through several different pathways of various lengths […]. Some energy is lost along each step of the pathway — on average the efficiency of energy transfer from one trophic level to the next is about 10 per cent. Hence, shorter pathways are more efficient. Via these pathways, energy ultimately gets transferred to large marine consumers such as large fish, marine mammals, marine turtles, and seabirds.”

“…it has been estimated that in the 17th century, somewhere between fifty million and a hundred million green turtles inhabited the Caribbean Sea, but numbers are now down to about 300,000. Since their numbers are now so low, their impact on seagrass communities is currently small, but in the past, green turtles would have been extraordinarily abundant grazers of seagrasses. It appears that in the past, green turtles thinned out seagrass beds, thereby reducing direct competition among different species of seagrass and allowing several species of seagrass to coexist. Without green turtles in the system, seagrass beds are generally overgrown monocultures of one dominant species. […] Seagrasses are of considerable importance to human society. […] It is therefore of great concern that seagrass meadows are in serious decline globally. In 2003 it was estimated that 15 per cent of the planet’s existing seagrass beds had disappeared in the preceding ten years. Much of this is the result of increasing levels of coastal development and dredging of the seabed, activities which release excessive amounts of sediment into coastal waters which smother seagrasses. […] The number of marine dead zones in the Global Ocean has roughly doubled every decade since the 1960s”.

“Sea ice is habitable because, unlike solid freshwater ice, it is a very porous substance. As sea ice forms, tiny spaces between the ice crystals become filled with a highly saline brine solution resistant to freezing. Through this process a three-dimensional network of brine channels and spaces, ranging from microscopic to several centimetres in size, is created within the sea ice. These channels are physically connected to the seawater beneath the ice and become colonized by a great variety of marine organisms. A significant amount of the primary production in the Arctic Ocean, perhaps up to 50 per cent in those areas permanently covered by sea ice, takes place in the ice. […] Large numbers of zooplanktonic organisms […] swarm about on the under surface of the ice, grazing on the ice community at the ice-seawater interface, and sheltering in the brine channels. […] These under-ice organisms provide the link to higher trophic levels in the Arctic food web […] They are an important food source for fish such as Arctic cod and glacial cod that graze along the bottom of the ice. These fish are in turn fed on by squid, seals, and whales.”

“[T]he Antarctic marine system consists of a ring of ocean about 10° of latitude wide – roughly 1,000 km. […] The Arctic and Antarctic marine systems can be considered geographic opposites. In contrast to the largely landlocked Arctic Ocean, the Southern Ocean surrounds the Antarctic continental land mass and is in open contact with the Atlantic, Indian, and Pacific Oceans. Whereas the Arctic Ocean is strongly influenced by river inputs, the Antarctic continent has no rivers, and so hard-bottomed seabed is common in the Southern Ocean, and there is no low-saline surface layer, as in the Arctic Ocean. Also, in contrast to the Arctic Ocean with its shallow, broad continental shelves, the Antarctic continental shelf is very narrow and steep. […] Antarctic waters are extremely nutrient rich, fertilized by a permanent upwelling of seawater that has its origins at the other end of the planet. […] This continuous upwelling of cold, nutrient-rich seawater, in combination with the long Antarctic summer day length, creates ideal conditions for phytoplankton growth, which drives the productivity of the Antarctic marine system. As in the Arctic, a well-developed sea-ice community is present. Antarctic ice algae are even more abundant and productive than in the Arctic Ocean because the sea ice is thinner, and there is thus more available light for photosynthesis. […] Antarctica’s most important marine species [is] the Antarctic krill […] Krill are very adept at surviving many months under starvation conditions — in the laboratory they can endure more than 200 days without food. During the winter months they lower their metabolic rate, shrink in body size, and revert back to a juvenile state. When food once again becomes abundant in the spring, they grow rapidly […] As the sea ice breaks up they leave the ice and begin feeding directly on the huge blooms of free-living diatoms […]. With so much food available they grow and reproduce quickly, and start to swarm in large numbers, often at densities in excess of 10,000 individuals per cubic metre — dense enough to colour the seawater a reddish-brown. Krill swarms are patchy and vary greatly in size […] Because the Antarctic marine system covers a large area, krill numbers are enormous, estimated at about 600 billion animals on average, or 500 million tonnes of krill. This makes Antarctic krill one of the most abundant animal species on the planet […] Antarctic krill are the main food source for many of Antarctica’s large marine animals, and a key link in a very short and efficient food chain […]. Krill comprise the staple diet of icefish, squid, baleen whales, leopard seals, fur seals, crabeater seals, penguins, and seabirds, including albatross. Thus, a very simple and efficient three-step food chain is in operation — diatoms eaten by krill in turn eaten by a suite of large consumers — which supports the large numbers of large marine animals living in the Southern Ocean.”

Links:

Ocean gyre. North Atlantic Gyre. Thermohaline circulation. North Atlantic Deep Water. Antarctic bottom water.
Cyanobacteria. Diatom. Dinoflagellate. Coccolithophore.
Trophic level.
Nitrogen fixation.
High-nutrient, low-chlorophyll regions.
Light and dark bottle method of measuring primary productivity. Carbon-14 method for estimating primary productivity.
Ekman spiral.
Peruvian anchoveta.
El Niño. El Niño–Southern Oscillation.
Copepod.
Dissolved organic carbon. Particulate organic matter. Microbial loop.
Kelp forest. Macrocystis. Sea urchin. Urchin barren. Sea otter.
Seagrass.
Green sea turtle.
Manatee.
Demersal fish.
Eutrophication. Harmful algal bloom.
Comb jelly. Asterias amurensis.
Great Pacific garbage patch.
Eelpout. Sculpin.
Polynya.
Crabeater seal.
Adélie penguin.
Anchor ice mortality.

March 13, 2018 Posted by | Biology, Books, Botany, Chemistry, Ecology, Geology, Zoology | Leave a comment

The Ice Age (I)

I’m currently reading this book. Some observations and links related to the first half of the book below:

“It is important to appreciate from the outset that the Quaternary ice age was not one long episode of unremitting cold climate. […] By exploring the landforms, sediments, and fossils of the Quaternary Period we can identify glacials: periods of severe cold climate when great ice sheets formed in the high middle latitudes of the northern hemisphere and glaciers and ice caps advanced in mountain regions around the world. We can also recognize periods of warm climate known as interglacials when mean air temperatures in the middle latitudes were comparable to, and sometimes higher than, those of the present. As the climate shifted from glacial to interglacial mode, the large ice sheets of Eurasia and North America retreated allowing forest biomes to re-colonize the ice free landscapes. It is also important to recognize that the ice age isn’t just about advancing and retreating ice sheets. Major environmental changes also took place in the Mediterranean region and in the tropics. The Sahara, for example, became drier, cooler, and dustier during glacial periods yet early in the present interglacial it was a mosaic of lakes and oases with tracts of lush vegetation. A defining feature of the Quaternary Period is the repeated fluctuation in climate as conditions shifted from glacial to interglacial, and back again, during the course of the last 2.5 million years or so. A key question in ice age research is why does the Earth’s climate system shift so dramatically and so frequently?”

“Today we have large ice masses in the Polar Regions, but a defining feature of the Quaternary is the build-up and decay of continental-scale ice sheets in the high middle latitudes of the northern hemisphere. […] the Laurentide and Cordilleran ice sheets […] covered most of Canada and large tracts of the northern USA during glacial stages. Around 22,000 years ago, when the Laurentide ice sheet reached its maximum extent during the most recent glacial stage, it was considerably larger in both surface area and volume (34.8 million km3) than the present-day East and West Antarctic ice sheets combined (27 million km3). With a major ice dome centred on Hudson Bay greater than 4 km thick, it formed the largest body of ice on Earth. This great mass of ice depressed the crust beneath its bed by many hundreds of metres. Now shed of this burden, the crust is still slowly recovering today at rates of up to 1 cm per year. Glacial ice extended out beyond the 38th parallel across the lowland regions of North America. Chicago, Boston, and New York all lie on thick glacial deposits left by the Laurentide ice sheet. […] With huge volumes of water locked up in the ice sheets, global sea level was about 120 m lower than present at the Last Glacial Maximum (LGM), exposing large expanses of continental shelf and creating land bridges that allowed humans, animals, and plants to move between continents. Migration from eastern Russia to Alaska, for example, was possible via the Bering land bridge.”

“Large ice sheets also developed in Europe. […] The British Isles lie in an especially sensitive location on the Atlantic fringe of Europe between latitudes 50 and 60° north. Because of this geography, the Quaternary deposits of Britain record especially dramatic shifts in environmental conditions. The most extensive glaciation saw ice sheets extend as far south as the Thames Valley with wide braided rivers charged with meltwater and sediment from the ice margin. Beyond the glacial ice much of southern Britain would have been a treeless, tundra steppe environment with tracts of permanently frozen ground […]. At the LGM […] [t]he Baltic and North Seas were dry land and Britain was connected to mainland Europe. Beyond the British and Scandinavian ice sheets, much of central and northern Europe was a treeless tundra steppe habitat. […] During warm interglacial stages […] [b]road-leaved deciduous woodland with grassland was the dominant vegetation […]. In the warmest parts of interglacials thermophilous […] insects from the Mediterranean were common in Britain whilst the large mammal fauna of the Last Interglacial (c.130,000 to 115,000 years ago) included even more exotic species such as the short tusked elephant, rhinoceros, and hippopotamus. In some interglacials, the rivers of southern Britain contained molluscs that now live in the Nile Valley. For much of the Quaternary, however, climate would have been in an intermediate state (either warming or cooling) between these glacial and interglacial extremes.”

“Glaciologists make a distinction between three main types of glacier (valley glaciers, ice caps, and ice sheets) on the basis of scale and topographic setting. A glacier is normally constrained by the surrounding topography such as a valley and has a clearly defined source area. An ice cap builds up as a dome-like form on a high plateau or mountain peak and may feed several outlet glaciers to valleys below. Ice sheets notionally exceed 50,000 km2 and are not constrained by topography.”

“We live in unusual times. For more than 90 per cent of its 4.6-billion-year history, Earth has been too warm — even at the poles — for ice sheets to form. Ice ages are not the norm for our planet. Periods of sustained (over several million years) large-scale glaciation can be called glacial epochs. Tillites in the geological record tells us that the Quaternary ice age is just one of at least six great glacial epochs that have taken place over the last three billion years or so […]. The Quaternary itself is the culmination of a much longer glacial epoch that began around 35 million years ago (Ma) when glaciers and ice sheets first formed in Antarctica. This is known as the Cenozoic glacial epoch. There is still much to learn about these ancient glacial epochs, especially the so-called Snowball Earth states of the Precambrian (before 542 Ma) when the boundary conditions for the global climate system were so different to those of today. […] This book is concerned with the Quaternary ice age – it has the richest and most varied records of environmental change. Because its sediments are so recent they have not been subjected to millions of years of erosion or deep burial and metamorphism. […] in aquatic settings, such as lakes and peat bogs, organic materials such as insects, leaves, and seeds, as well as microfossils such as pollen and fungal spores can be exceptionally well preserved in the fossil record. This allows us to create very detailed pictures of past ecosystems under glacial and interglacial conditions. This field of research is known as Quaternary paeloecology.”

“An erratic […] is a piece of rock that has been transported from its place of origin. […] Many erratics stand out because they lie on bedrock that is very different to their source. […] Erratics are normally associated with transport by glaciers or ice sheets, but in the early 19th century mechanisms such as the great deluge or rafting on icebergs were commonly invoked. […] Enormous erratic boulders […] were well known to 18th- and 19th-centery geologists. […] Their origin was a source of lively and protracted debate […] Early observers of Alpine glaciers had noted the presence of large boulders on the surface of active glaciers or forming part of the debris pile at the glacier snout. These were readily explainable, but erratic boulders had long been noted in locations that defied rational explanations. The erratics found at elevations far above their known sources, and in places such as Britain where glaciers were absent, were especially problematic for early students of landscape history. […] A huge deluge […] was commonly invoked to explain the disposition of such boulders and many saw them as more hard evidence in support of the Biblical flood. […] At this time, the Church of England held a strong influence over much of higher education and especially so in Cambridge and Oxford.”

Venetz [in the early 19th century] produced remarkably detailed topographic maps of lateral and terminal moraines that lay far down valley of the modern glaciers. He was able to show that many glaciers had advanced and retreated in the historical period. His was the first systematic analysis of climate-glacier-landscape interactions. […] In 1821, Venetz presented his findings to the Société Helvétiques des Sciences Naturelles, setting out Perraudin’s ideas alongside his own. The paper had little impact, however, and would not see publication until 1833. […] Jean de Charpentier [in his work] paid particular attention to the disposition of large erratic blocks and the occurrence of polished and striated bedrock surfaces in the deep valleys of western Switzerland. A major step forward was Charpentier’s recognition of a clear relationship between the elevation of the erratic blocks in the Rhône Valley and the vertical extent of glacially smoothed rock walls. He noted that the bedrock valley sides above the erratic blocks were not worn smooth because they must have been above the level of the ancient glacier surface. The rock walls below the erratics always bore the hallmarks of contact with glacial ice. We call this boundary the trimline. It is often clearly marked in hard bedrock because the texture of the valley sides above the glacier surface is fractured due to attack by frost weathering. The detachment of rock particles above the trimline adds debris to lateral moraines and the glacier surface. These insights allowed Charpentier to reconstruct the vertical extent of former glaciers for the first time. Venetz and Perraudin had already shown how to demarcate the length and width of glaciers using the terminal and lateral moraines in these valleys. Charpentier described some of the most striking erratic boulders in the Alps […]. As Charpentier mapped the giant erratics, polished bedrock surfaces, and moraines in the Rhône Valley, it became clear to him that the valley must once have been occupied by a truly enormous glacier or ‘glacier-monstre’ as he called it. […] In 1836, Charpentier published a key paper setting out the main findings of their [his and Venetz’] glacial work”.

“Even before Charpentier was thinking about large ice masses in Switzerland, Jens Esmark (1763-1839) […] had suggested that northern European glaciers had been much more extensive in the past and were responsible for the transport of large erratic boulders and the formation of moraines. Esmark also recognized the key role of deep bedrock erosion by glacial ice in the formation of the spectacular Norwegian fjords. He worked out that glaciers in Norway had once extended down to sea level. Esmark’s ideas were […] translated into English and published […] in 1826, a decade in advance of Charpentier’s paper. Esmark discussed a large body of evidence pointing to an extensive glaciation of northern Europe. […] his thinking was far in advance of his contemporaries […] Unfortunately, even Esmark’s carefully argued paper held little sway in Britain and elsewhere […] it would be many decades before there was general acceptance within the geological community that glaciers could spread out across low gradient landscapes. […] in the lecture theatres and academic societies of Paris, Berlin, and London, the geological establishment was slow to take up these ideas, even though they were published in both English and French and were widely available. Much of the debate in the 1820s and early 1830s centred on the controversy over the evolution of valleys between the fluvialists (Hutton, Playfair, and others), who advocated slow river erosion, and the diluvialists (Buckland, De la Beche, and others) who argued that big valleys and large boulders needed huge deluges. The role of glaciers in valley and fjord formation was not considered. […] The key elements of a glacial theory were in place but nobody was listening. […] It would be decades before a majority accepted that vast tracts of Eurasia and North America had once been covered by mighty ice sheets.”

“Most geologists in 1840 saw Agassiz’s great ice sheet as a retrograde step. It was just too catastrophist — a blatant violation of hard-won uniformitarian principles. It was the antithesis of the new rational geology and was not underpinned by carefully assembled field data. So, for many, as an explanation for the superficial deposits of the Quaternary, it was no more convincing than the deluge. […] Ancient climates were [also] supposed to be warmer not colder. The suggestion of a freezing glacial epoch in the recent geological past, followed by the temperate climate of the present, still jarred with the conventional wisdom that Earth history, from its juvenile molten state to the present, was an uninterrupted record of long-term cooling without abrupt change. Lyell’s drift ice theory [according to which erratics (and till) had been transported by icebergs drifting in water, instead of glaciers transporting the material over land – US] also provided an attractive alternative to Agassiz’s ice age because it did not demand a period of cold glacial climate in areas that now enjoy temperate conditions. […] If anything, the 1840 sessions at the Geological Society had galvanized support for floating ice as a mechanism for drift deposition in the lowlands. Lyell’s model proved to be remarkably resilient—its popularity proved to be the major obstacle to the wider adoption of the land ice theory. […] many refused to believe that glacier ice could advance across gently sloping lowland terrain. This was a reasonable objection at this time since the ice sheets of Greenland and Antarctica had not yet been investigated from a glaciological point of view. It is not difficult to understand why many British geologists rejected the glacial theory when the proximity and potency of the sea was so obvious and nobody knew how large ice sheets behaved.”

Hitchcock […] was one of the first Americans to publicly embrace Agassiz’s ideas […] but he later stepped back from a full endorsement, leaving a role for floating ice. This hesitant beginning set the tone for the next few decades in North America as its geologists began to debate whether they could see the work of ice sheets or icebergs. There was a particularly strong tradition of scriptural geology in 19th-century North America. Its practitioners attempted to reconcile their field observations with the Bible and there were often close links with like-minded souls in Britain. […] If the standing of Lyell extended the useful lifespan of the iceberg theory, it was gradually worn down by a growing body of field evidence from Europe and North America that pointed to the action of glacier ice. […] The continental glacial theory prevailed in North America because it provided a much better explanation for the vast majority of the features recorded in the landscape. The striking regularity and fixed alignment of many features could not be the work of icebergs whose wanderings were governed by winds and ocean currents. The southern limit of the glacial deposits is often marked by pronounced ridges in an otherwise low-relief landscape. These end moraines mark the edge of the former ice sheet and they cannot be formed by floating ice. It took a long time to put all the pieces of evidence together in North America because of the vast scale of the territory to be mapped. Once the patterns of erratic dispersal, large-scale scratching of bedrock, terminal moraines, drumlin fields, and other features were mapped, their systematic arrangement argued strongly against the agency of drifting ice. Unlike their counterparts in Britain, who were never very far from the sea, geologists working deep in the continental interior of North America found it much easier to dismiss the idea of a great marine submergence. Furthermore, icebergs just did not transport enough sediment to account for the enormous extent and great thickness of the Quaternary deposits. It was also realized that icebergs were just not capable of planing off hard bedrock to create plateau surfaces. Neither were they able to polish, scratch, or cut deep grooves into ancient bedrock. All these features pointed to the action of land-based glacial ice. Slowly, but surely, the reality of vast expanses of glacier ice covering much of Canada and the northern states of the USA became apparent.”

Links:

Quaternary.
The Parallel Roads of Glen Roy.
William Boyd Dawkins.
Adams mammoth.
Georges Cuvier.
Cryosphere.
Cirque (geology). Arête. Tarn. Moraine. Drumlin. Till/Tillite. Glacier morphology.
James Hutton.
William Buckland.
Diluvium.
Charles Lyell.
Giétro Glacier.
Cwm Idwal.
Timothy Abbott Conrad. Charles Whittlesey. James Dwight Dana.

February 23, 2018 Posted by | Books, Ecology, Geography, Geology, History, Paleontology | Leave a comment

Lakes (II)

(I have had some computer issues over the last couple of weeks, which was the explanation for my brief blogging hiatus, but they should be resolved by now and as I’m already starting to fall quite a bit behind in terms of my intended coverage of the books I’ve read this year I hope to get rid of some of the backlog in the days to come.)

I have added some more observations from the second half of the book, as well as some related links, below.

“[R]ecycling of old plant material is especially important in lakes, and one way to appreciate its significance is to measure the concentration of CO2, an end product of decomposition, in the surface waters. This value is often above, sometimes well above, the value to be expected from equilibration of this gas with the overlying air, meaning that many lakes are net producers of CO2 and that they emit this greenhouse gas to the atmosphere. How can that be? […] Lakes are not sealed microcosms that function as stand-alone entities; on the contrary, they are embedded in a landscape and are intimately coupled to their terrestrial surroundings. Organic materials are produced within the lake by the phytoplankton, photosynthetic cells that are suspended in the water and that fix CO2, release oxygen (O2), and produce biomass at the base of the aquatic food web. Photosynthesis also takes place by attached algae (the periphyton) and submerged water plants (aquatic macrophytes) that occur at the edge of the lake where enough sunlight reaches the bottom to allow their growth. But additionally, lakes are the downstream recipients of terrestrial runoff from their catchments […]. These continuous inputs include not only water, but also subsidies of plant and soil organic carbon that are washed into the lake via streams, rivers, groundwater, and overland flows. […] The organic carbon entering lakes from the catchment is referred to as ‘allochthonous’, meaning coming from the outside, and it tends to be relatively old […] In contrast, much younger organic carbon is available […] as a result of recent photosynthesis by the phytoplankton and littoral communities; this carbon is called ‘autochthonous’, meaning that it is produced within the lake.”

“It used to be thought that most of the dissolved organic matter (DOM) entering lakes, especially the coloured fraction, was unreactive and that it would transit the lake to ultimately leave unchanged at the outflow. However, many experiments and field observations have shown that this coloured material can be partially broken down by sunlight. These photochemical reactions result in the production of CO2, and also the degradation of some of the organic polymers into smaller organic molecules; these in turn are used by bacteria and decomposed to CO2. […] Most of the bacterial species in lakes are decomposers that convert organic matter into mineral end products […] This sunlight-driven chemistry begins in the rivers, and continues in the surface waters of the lake. Additional chemical and microbial reactions in the soil also break down organic materials and release CO2 into the runoff and ground waters, further contributing to the high concentrations in lake water and its emission to the atmosphere. In algal-rich ‘eutrophic’ lakes there may be sufficient photosynthesis to cause the drawdown of CO2 to concentrations below equilibrium with the air, resulting in the reverse flux of this gas, from the atmosphere into the surface waters.”

“There is a precarious balance in lakes between oxygen gains and losses, despite the seemingly limitless quantities in the overlying atmosphere. This balance can sometimes tip to deficits that send a lake into oxygen bankruptcy, with the O2 mostly or even completely consumed. Waters that have O2 concentrations below 2mg/L are referred to as ‘hypoxic’, and will be avoided by most fish species, while waters in which there is a complete absence of oxygen are called ‘anoxic’ and are mostly the domain for specialized, hardy microbes. […] In many temperate lakes, mixing in spring and again in autumn are the critical periods of re-oxygenation from the overlying atmosphere. In summer, however, the thermocline greatly slows down that oxygen transfer from air to deep water, and in cooler climates, winter ice-cover acts as another barrier to oxygenation. In both of these seasons, the oxygen absorbed into the water during earlier periods of mixing may be rapidly consumed, leading to anoxic conditions. Part of the reason that lakes are continuously on the brink of anoxia is that only limited quantities of oxygen can be stored in water because of its low solubility. The concentration of oxygen in the air is 209 millilitres per litre […], but cold water in equilibrium with the atmosphere contains only 9ml/L […]. This scarcity of oxygen worsens with increasing temperature (from 4°C to 30°C the solubility of oxygen falls by 43 per cent), and it is compounded by faster rates of bacterial decomposition in warmer waters and thus a higher respiratory demand for oxygen.”

“Lake microbiomes play multiple roles in food webs as producers, parasites, and consumers, and as steps into the animal food chain […]. These diverse communities of microbes additionally hold centre stage in the vital recycling of elements within the lake ecosystem […]. These biogeochemical processes are not simply of academic interest; they totally alter the nutritional value, mobility, and even toxicity of elements. For example, sulfate is the most oxidized and also most abundant form of sulfur in natural waters, and it is the ion taken up by phytoplankton and aquatic plants to meet their biochemical needs for this element. These photosynthetic organisms reduce the sulfate to organic sulfur compounds, and once they die and decompose, bacteria convert these compounds to the rotten-egg smelling gas, H2S, which is toxic to most aquatic life. In anoxic waters and sediments, this effect is amplified by bacterial sulfate reducers that directly convert sulfate to H2S. Fortunately another group of bacteria, sulfur oxidizers, can use H2S as a chemical energy source, and in oxygenated waters they convert this reduced sulfur back to its benign, oxidized, sulfate form. […] [The] acid neutralizing capacity (or ‘alkalinity’) varies greatly among lakes. Many lakes in Europe, North America, and Asia have been dangerously shifted towards a low pH because they lacked sufficient carbonate to buffer the continuous input of acid rain that resulted from industrial pollution of the atmosphere. The acid conditions have negative effects on aquatic animals, including by causing a shift in aluminium to its more soluble and toxic form Al3+. Fortunately, these industrial emissions have been regulated and reduced in most of the developed world, although there are still legacy effects of acid rain that have resulted in a long-term depletion of carbonates and associated calcium in certain watersheds.”

“Rotifers, cladocerans, and copepods are all planktonic, that is their distribution is strongly affected by currents and mixing processes in the lake. However, they are also swimmers, and can regulate their depth in the water. For the smallest such as rotifers and copepods, this swimming ability is limited, but the larger zooplankton are able to swim over an impressive depth range during the twenty-four-hour ‘diel’ (i.e. light–dark) cycle. […] the cladocerans in Lake Geneva reside in the thermocline region and deep epilimnion during the day, and swim upwards by about 10m during the night, while cyclopoid copepods swim up by 60m, returning to the deep, dark, cold waters of the profundal zone during the day. Even greater distances up and down the water column are achieved by larger animals. The opossum shrimp, Mysis (up to 25mm in length) lives on the bottom of lakes during the day and in Lake Tahoe it swims hundreds of metres up into the surface waters, although not on moon-lit nights. In Lake Baikal, one of the main zooplankton species is the endemic amphipod, Macrohectopus branickii, which grows up to 38mm in size. It can form dense swarms at 100–200m depth during the day, but the populations then disperse and rise to the upper waters during the night. These nocturnal migrations connect the pelagic surface waters with the profundal zone in lake ecosystems, and are thought to be an adaptation towards avoiding visual predators, especially pelagic fish, during the day, while accessing food in the surface waters under the cover of nightfall. […] Although certain fish species remain within specific zones of the lake, there are others that swim among zones and access multiple habitats. […] This type of fish migration means that the different parts of the lake ecosystem are ecologically connected. For many fish species, moving between habitats extends all the way to the ocean. Anadromous fish migrate out of the lake and swim to the sea each year, and although this movement comes at considerable energetic cost, it has the advantage of access to rich marine food sources, while allowing the young to be raised in the freshwater environment with less exposure to predators. […] With the converse migration pattern, catadromous fish live in freshwater and spawn in the sea.”

“Invasive species that are the most successful and do the most damage once they enter a lake have a number of features in common: fast growth rates, broad tolerances, the capacity to thrive under high population densities, and an ability to disperse and colonize that is enhanced by human activities. Zebra mussels (Dreissena polymorpha) get top marks in each of these categories, and they have proven to be a troublesome invader in many parts of the world. […] A single Zebra mussel can produce up to one million eggs over the course of a spawning season, and these hatch into readily dispersed larvae (‘veligers’), that are free-swimming for up to a month. The adults can achieve densities up to hundreds of thousands per square metre, and their prolific growth within water pipes has been a serious problem for the cooling systems of nuclear and thermal power stations, and for the intake pipes of drinking water plants. A single Zebra mussel can filter a litre a day, and they have the capacity to completely strip the water of bacteria and protists. In Lake Erie, the water clarity doubled and diatoms declined by 80–90 per cent soon after the invasion of Zebra mussels, with a concomitant decline in zooplankton, and potential impacts on planktivorous fish. The invasion of this species can shift a lake from dominance of the pelagic to the benthic food web, but at the expense of native unionid clams on the bottom that can become smothered in Zebra mussels. Their efficient filtering capacity may also cause a regime shift in primary producers, from turbid waters with high concentrations of phytoplankton to a clearer lake ecosystem state in which benthic water plants dominate.”

“One of the many distinguishing features of H2O is its unusually high dielectric constant, meaning that it is a strongly polar solvent with positive and negative charges that can stabilize ions brought into solution. This dielectric property results from the asymmetrical electron cloud over the molecule […] and it gives liquid water the ability to leach minerals from rocks and soils as it passes through the ground, and to maintain these salts in solution, even at high concentrations. Collectively, these dissolved minerals produce the salinity of the water […] Sea water is around 35ppt, and its salinity is mainly due to the positively charged ions sodium (Na+), potassium (K+), magnesium (Mg2+), and calcium (Ca2+), and the negatively charged ions chloride (Cl), sulfate (SO42-), and carbonate CO32-). These solutes, collectively called the ‘major ions’, conduct electrons, and therefore a simple way to track salinity is to measure the electrical conductance of the water between two electrodes set a known distance apart. Lake and ocean scientists now routinely take profiles of salinity and temperature with a CTD: a submersible instrument that records conductance, temperature, and depth many times per second as it is lowered on a rope or wire down the water column. Conductance is measured in Siemens (or microSiemens (µS), given the low salt concentrations in freshwater lakes), and adjusted to a standard temperature of 25°C to give specific conductivity in µS/cm. All freshwater lakes contain dissolved minerals, with specific conductivities in the range 50–500µS/cm, while salt water lakes have values that can exceed sea water (about 50,000µS/cm), and are the habitats for extreme microbes”.

“The World Register of Dams currently lists 58,519 ‘large dams’, defined as those with a dam wall of 15m or higher; these collectively store 16,120km3 of water, equivalent to 213 years of flow of Niagara Falls on the USA–Canada border. […] Around a hundred large dam projects are in advanced planning or construction in Africa […]. More than 300 dams are planned or under construction in the Amazon Basin of South America […]. Reservoirs have a number of distinguishing features relative to natural lakes. First, the shape (‘morphometry’) of their basins is rarely circular or oval, but instead is often dendritic, with a tree-like main stem and branches ramifying out into the submerged river valleys. Second, reservoirs typically have a high catchment area to lake area ratio, again reflecting their riverine origins. For natural lakes, this ratio is relatively low […] These proportionately large catchments mean that reservoirs have short water residence times, and water quality is much better than might be the case in the absence of this rapid flushing. Nonetheless, noxious algal blooms can develop and accumulate in isolated bays and side-arms, and downstream next to the dam itself. Reservoirs typically experience water level fluctuations that are much larger and more rapid than in natural lakes, and this limits the development of littoral plants and animals. Another distinguishing feature of reservoirs is that they often show a longitudinal gradient of conditions. Upstream, the river section contains water that is flowing, turbulent, and well mixed; this then passes through a transition zone into the lake section up to the dam, which is often the deepest part of the lake and may be stratified and clearer due to decantation of land-derived particles. In some reservoirs, the water outflow is situated near the base of the dam within the hypolimnion, and this reduces the extent of oxygen depletion and nutrient build-up, while also providing cool water for fish and other animal communities below the dam. There is increasing attention being given to careful regulation of the timing and magnitude of dam outflows to maintain these downstream ecosystems. […] The downstream effects of dams continue out into the sea, with the retention of sediments and nutrients in the reservoir leaving less available for export to marine food webs. This reduction can also lead to changes in shorelines, with a retreat of the coastal delta and intrusion of seawater because natural erosion processes can no longer be offset by resupply of sediments from upstream.”

“One of the most serious threats facing lakes throughout the world is the proliferation of algae and water plants caused by eutrophication, the overfertilization of waters with nutrients from human activities. […] Nutrient enrichment occurs both from ‘point sources’ of effluent discharged via pipes into the receiving waters, and ‘nonpoint sources’ such the runoff from roads and parking areas, agricultural lands, septic tank drainage fields, and terrain cleared of its nutrient- and water-absorbing vegetation. By the 1970s, even many of the world’s larger lakes had begun to show worrying signs of deterioration from these sources of increasing enrichment. […] A sharp drop in water clarity is often among the first signs of eutrophication, although in forested areas this effect may be masked for many years by the greater absorption of light by the coloured organic materials that are dissolved within the lake water. A drop in oxygen levels in the bottom waters during stratification is another telltale indicator of eutrophication, with the eventual fall to oxygen-free (anoxic) conditions in these lower strata of the lake. However, the most striking impact with greatest effect on ecosystem services is the production of harmful algal blooms (HABs), specifically by cyanobacteria. In eutrophic, temperate latitude waters, four genera of bloom-forming cyanobacteria are the usual offenders […]. These may occur alone or in combination, and although each has its own idiosyncratic size, shape, and lifestyle, they have a number of impressive biological features in common. First and foremost, their cells are typically full of hydrophobic protein cases that exclude water and trap gases. These honeycombs of gas-filled chambers, called ‘gas vesicles’, reduce the density of the cells, allowing them to float up to the surface where there is light available for growth. Put a drop of water from an algal bloom under a microscope and it will be immediately apparent that the individual cells are extremely small, and that the bloom itself is composed of billions of cells per litre of lake water.”

“During the day, the [algal] cells capture sunlight and produce sugars by photosynthesis; this increases their density, eventually to the point where they are heavier than the surrounding water and sink to more nutrient-rich conditions at depth in the water column or at the sediment surface. These sugars are depleted by cellular respiration, and this loss of ballast eventually results in cells becoming less dense than water and floating again towards the surface. This alternation of sinking and floating can result in large fluctuations in surface blooms over the twenty-four-hour cycle. The accumulation of bloom-forming cyanobacteria at the surface gives rise to surface scums that then can be blown into bays and washed up onto beaches. These dense populations of colonies in the water column, and especially at the surface, can shade out bottom-dwelling water plants, as well as greatly reduce the amount of light for other phytoplankton species. The resultant ‘cyanobacterial dominance’ and loss of algal species diversity has negative implications for the aquatic food web […] This negative impact on the food web may be compounded by the final collapse of the bloom and its decomposition, resulting in a major drawdown of oxygen. […] Bloom-forming cyanobacteria are especially troublesome for the management of drinking water supplies. First, there is the overproduction of biomass, which results in a massive load of algal particles that can exceed the filtration capacity of a water treatment plant […]. Second, there is an impact on the taste of the water. […] The third and most serious impact of cyanobacteria is that some of their secondary compounds are highly toxic. […] phosphorus is the key nutrient limiting bloom development, and efforts to preserve and rehabilitate freshwaters should pay specific attention to controlling the input of phosphorus via point and nonpoint discharges to lakes.”

Ultramicrobacteria.
The viral shunt in marine foodwebs.
Proteobacteria. Alphaproteobacteria. Betaproteobacteria. Gammaproteobacteria.
Mixotroph.
Carbon cycle. Nitrogen cycle. AmmonificationAnammox. Comammox.
Methanotroph.
Phosphorus cycle.
Littoral zone. Limnetic zone. Profundal zone. Benthic zone. Benthos.
Phytoplankton. Diatom. Picoeukaryote. Flagellates. Cyanobacteria.
Trophic state (-index).
Amphipoda. Rotifer. Cladocera. Copepod. Daphnia.
Redfield ratio.
δ15N.
Thermistor.
Extremophile. Halophile. Psychrophile. Acidophile.
Caspian Sea. Endorheic basin. Mono Lake.
Alpine lake.
Meromictic lake.
Subglacial lake. Lake Vostock.
Thermus aquaticus. Taq polymerase.
Lake Monoun.
Microcystin. Anatoxin-a.

 

 

February 2, 2018 Posted by | Biology, Books, Botany, Chemistry, Ecology, Engineering, Zoology | Leave a comment

Rivers (II)

Some more observations from the book and related links below.

“By almost every measure, the Amazon is the greatest of all the large rivers. Encompassing more than 7 million square kilometres, its drainage basin is the largest in the world and makes up 5% of the global land surface. The river accounts for nearly one-fifth of all the river water discharged into the oceans. The flow is so great that water from the Amazon can still be identified 125 miles out in the Atlantic […] The Amazon has some 1,100 tributaries, and 7 of these are more than 1,600 kilometres long. […] In the lowlands, most Amazonian rivers have extensive floodplains studded with thousands of shallow lakes. Up to one-quarter of the entire Amazon Basin is periodically flooded, and these lakes become progressively connected with each other as the water level rise.”

“To hydrologists, the term ‘flood’ refers to a river’s annual peak discharge period, whether the water inundates the surrounding landscape or not. In more common parlance, however, a flood is synonymous with the river overflowing it’s banks […] Rivers flood in the natural course of events. This often occurs on the floodplain, as the name implies, but flooding can affect almost all of the length of the river. Extreme weather, particularly heavy or protracted rainfall, is the most frequent cause of flooding. The melting of snow and ice is another common cause. […] River floods are one of the most common natural hazards affecting human society, frequently causing social disruption, material damage, and loss of life. […] Most floods have a seasonal element in their occurence […] It is a general rule that the magnitude of a flood is inversely related to its frequency […] Many of the less predictable causes of flooding occur after a valley has been blocked by a natural dam as a result of a landslide, glacier, or lava flow. Natural dams may cause upstream flooding as the blocked river forms a lake and downstream flooding as a result of failure of the dam.”

“The Tigris-Euphrates, Nile, and Indus are all large, exotic river systems, but in other respects they are quite different. The Nile has a relatively gentle gradient in Egypt and a channel that has experienced only small changes over the last few thousand years, by meander cut-off and a minor shift eastwards. The river usually flooded in a regular and predictable way. The stability and long continuity of the Egyptian civilization may be a reflection of its river’s relative stability. The steeper channel of the Indus, by contrast, has experienced major avulsions over great distances on the lower Indus Plain and some very large floods caused by the failure of glacier ice dams in the Himalayan mountains. Likely explanations for the abandonment of many Harappan cities […] take account of damage caused by major floods and/or the disruption caused by channel avulsion leading to a loss of water supply. Channel avulsion was also a problem for the Sumerian civilization on the alluvial plain called Mesopotamia […] known for the rise and fall of its numerous city states. Most of these cities were situated along the Euphrates River, probably because it was more easily controlled for irrigation purposes than the Tigris, which flowed faster and carried much more water. However, the Euphrates was an anastomosing river with multiple channels that diverge and rejoin. Over time, individual branch channels ceased to flow as others formed, and settlements located on these channels inevitably declined and were abandoned as their water supply ran dry, while others expanded as their channels carried greater amounts of water.”

“During the colonization of the Americas in the mid-18th century and the imperial expansion into Africa and Asia in the late 19th century, rivers were commonly used as boundaries because they were the first, and frequently the only, features mapped by European explorers. The diplomats in Europe who negotiated the allocation of colonial territories claimed by rival powers knew little of the places they were carving up. Often, their limited knowledge was based solely on maps that showed few details, rivers being the only distinct physical features marked. Today, many international river boundaries remain as legacies of those historical decisions based on poor geographical knowledge because states have been reluctant to alter their territorial boundaries from original delimitation agreements. […] no less than three-quarters of the world’s international boundaries follow rivers for at least part of their course. […] approximately 60% of the world’s fresh water is drawn from rivers shared by more than one country.”

“The sediments carried in rivers, laid down over many years, represent a record of the changes that have occurred in the drainage basin through the ages. Analysis of these sediments is one way in which physical geographers can interpret the historical development of landscapes. They can study the physical and chemical characteristics of the sediments itself and/or the biological remains they contain, such as pollen or spores. […] The simple rate at which material is deposited by a river can be a good reflection of how conditions have changed in the drainage basin. […] Pollen from surrounding plants is often found in abundance in fluvial sediments, and the analysis of pollen can yield a great deal of information about past conditions in an area. […] Very long sediment cores taken from lakes and swamps enable us to reconstruct changes in vegetation over very long time periods, in some cases over a million years […] Because climate is a strong determinant of vegetation, pollen analysis has also proved to be an important method for tracing changes in past climates.”

“The energy in flowing and falling water has been harnessed to perform work by turning water-wheels for more than 2,000 years. The moving water turns a large wheel and a shaft connected to the wheel axle transmits the power from the water through a system of gears and cogs to work machinery, such as a millstone to grind corn. […] The early medieval watermill was able to do the work of between 30 and 60 people, and by the end of the 10th century in Europe, waterwheels were commonly used in a wide range of industries, including powering forge hammers, oil and silk mills, sugar-cane crushers, ore-crushing mills, breaking up bark in tanning mills, pounding leather, and grinding stones. Nonetheless, most were still used for grinding grains for preparation into various types of food and drink. The Domesday Book, a survey prepared in England in AD 1086, lists 6,082 watermills, although this is probably a conservative estimate because many mills were not recorded in the far north of the country. By 1300, this number had risen to exceed 10,000. [..] Medieval watermills typically powered their wheels by using a dam or weir to concentrate the falling water and pond a reserve supply. These modifications to rivers became increasingly common all over Europe, and by the end of the Middle Ages, in the mid-15th century, watermills were in use on a huge number of rivers and streams. The importance of water power continued into the Industrial Revolution […]. The early textile factories were built to produce cloth using machines driven by waterwheels, so they were often called mills. […] [Today,] about one-third of all countries rely on hydropower for more than half their electricity. Globally, hydropower provides about 20% of the world’s total electricity supply.”

“Deliberate manipulation of river channels through engineering works, including dam construction, diversion, channelization, and culverting, […] has a long history. […] In Europe today, almost 80% of the total discharge of the continent’s major rivers is affected by measures designed to regulate flow, whether for drinking water supply, hydroelectric power generation, flood control, or any other reason. The proportion in individual countries is higher still. About 90% of rivers in the UK are regulated as a result of these activities, while in the Netherlands this percentage is close to 100. By contrast, some of the largest rivers on other continents, including the Amazon and the Congo, are hardly manipulated at all. […] Direct and intentional modifications to rivers are complemented by the impacts of land use and land use changes which frequently result in the alteration of rivers as an unintended side effect. Deforestation, afforestation, land drainage, agriculture, and the use of fire have all had significant impacts, with perhaps the most extreme effects produced by construction activity and urbanization. […] The major methods employed in river regulation are the construction of large dams […], the building of run-of-river impoundments such as weirs and locks, and by channelization, a term that covers a range of river engineering works including widening, deepening, straightening, and the stabilization of banks. […] Many aspects of a dynamic river channel and its associated ecosystems are mutually adjusting, so a human activity in a landscape that affects the supply of water or sediment is likely to set off a complex cascade of other alterations.”

“The methods of storage (in reservoirs) and distribution (by canal) have not changed fundamentally since the earliest river irrigation schemes, with the exception of some contemporary projects’ use of pumps to distribute water over greater distances. Nevertheless, many irrigation canals still harness the force of gravity. Half the world’s large dams (defined as being 15 metres or higher) were built exclusively or primarily for irrigation, and about one-third of the world’s irrigated cropland relies on reservoir water. In several countries, including such populous nations as India and China, more than 50% of arable land is irrigated by river water supplied from dams. […] Sadly, many irrigation schemes are not well managed and a number of environmental problems are frequently experienced as a result, both on-site and off-site. In many large networks of irrigation canals, less than half of the water diverted from a river or reservoir actually benefits crops. A lot of water seeps away through unlined canals or evaporates before reaching the fields. Some also runs off the fields or infiltrates through the soil, unused by plants, because farmers apply too much water or at the wrong time. Much of this water seeps back into nearby streams or joins underground aquifers, so can be used again, but the quality of water may deteriorate if it picks up salts, fertilizers, or pesticides. Excessive applications of irrigation water often result in rising water tables beneath fields, causing salinization and waterlogging. These processes reduce crop yields on irrigation schemes all over the world.”

“[Deforestation can contribute] to the degradation of aquatic habitats in numerous ways. The loss of trees along river banks can result in changes in the species found in the river because fewer trees means a decline in plant matter and insects falling from them, items eaten by some fish. Fewer trees on river banks also results in less shade. More sunlight reaching the river results in warmer water and the enhanced growth of algae. A change in species can occur as fish that feed on falling food are edged out by those able to feed on algae. Deforestation also typically results in more runoff and more soil erosion. This sediment may cover spawning grounds, leading to lower reproduction rates. […] Grazing and trampling by livestock reduces vegetation cover and causes the compaction of soil, which reduces its infiltration capacity. As rainwater passes over or through the soil in areas of intensive agriculture, it picks up residues from pesticides and fertilizers and transport them to rivers. In this way, agriculture has become a leading source of river pollution in certain parts of the world. Concentration of nitrates and phosphates, derived from fertilizers, have risen notably in many rivers in Europe and North America since the 1950s and have led to a range of […] problems encompassed under the term ‘eutrophication’ – the raising of biological productivity caused by nutrient enrichment. […] In slow-moving rivers […] the growth of algae reduces light penetration and depletes the oxygen in the water, sometimes causing fish kills.”

“One of the most profound ways in which people alter rivers is by damming them. Obstructing a river and controlling its flow in this way brings about a raft of changes. A dam traps sediments and nutrients, alters the river’s temperature and chemistry, and affects the processes of erosion and deposition by which the river sculpts the landscape. Dams create more uniform flow in rivers, usually by reducing peak flows and increasing minimum flows. Since the natural variation in flow is important for river ecosystems and their biodiversity, when dams even out flows the result is commonly fewer fish of fewer species. […] the past 50 years or so has seen a marked escalation in the rate and scale of construction of dams all over the world […]. At the beginning of the 21st century, there were about 800,000 dams worldwide […] In some large river systems, the capacity of dams is sufficient to hold more than the entire annual discharge of the river. […] Globally, the world’s major reservoirs are thought to control about 15% of the runoff from the land. The volume of water trapped worldwide in reservoirs of all sizes is no less than five times the total global annual river flow […] Downstream of a reservoir, the hydrological regime of a river is modified. Discharge, velocity, water quality, and thermal characteristics are all affected, leading to changes in the channel and its landscape, plants, and animals, both on the river itself and in deltas, estuaries, and offshore. By slowing the flow of river water, a dam acts as a trap for sediment and hence reduces loads in the river downstream. As a result, the flow downstream of the dam is highly erosive. A relative lack of silt arriving at a river’s delta can result in more coastal erosion and the intrusion of seawater that brings salt into delta ecosystems. […] The dam-barrier effect on migratory fish and their access to spawning grounds has been recognized in Europe since medieval times.”

“One of the most important effects cities have on rivers is the way in which urbanization affects flood runoff. Large areas of cities are typically impermeable, being covered by concrete, stone, tarmac, and bitumen. This tends to increase the amount of runoff produced in urban areas, an effect exacerbated by networks of storm drains and sewers. This water carries relatively little sediment (again, because soil surfaces have been covered by impermeable materials), so when it reaches a river channel it typically causes erosion and widening. Larger and more frequent floods are another outcome of the increase in runoff generated by urban areas. […] It […] seems very likely that efforts to manage the flood hazard on the Mississippi have contributed to an increased risk of damage from tropical storms on the Gulf of Mexico coast. The levées built along the river have contributed to the loss of coastal wetlands, starving them of sediment and fresh water, thereby reducing their dampening effect on storm surge levels. This probably enhanced the damage from Hurricane Katrina which struck the city of New Orleans in 2005.”

Links:

Onyx River.
Yangtze. Yangtze floods.
Missoula floods.
Murray River.
Ganges.
Thalweg.
Southeastern Anatolia Project.
Water conflict.
Hydropower.
Fulling mill.
Maritime transport.
Danube.
Lock (water navigation).
Hydrometry.
Yellow River.
Aswan High Dam. Warragamba Dam. Three Gorges Dam.
Onchocerciasis.
River restoration.

January 16, 2018 Posted by | Biology, Books, Ecology, Engineering, Geography, Geology, History | Leave a comment

Rivers (I)

I gave the book one star on goodreads. My review on goodreads explains why. In this post I’ll disregard the weak parts of the book and only cover ‘the good stuff’. Part of the reason why I gave the book one star instead of two was that I wanted to punish the author for wasting my time with irrelevant stuff when it was clear to me that he could actually have been providing useful information instead; some parts of the book are quite good.

Some quotes and links below.

“[W]ater is continuously on the move, being recycled between the land, oceans, and atmosphere: an eternal succession known as the hydrological cycle. Rivers play a key role in the hydrological cycle, draining water from the land and moving it ultimately to the sea. Any rain or melted snow that doesn’t evaporate or seep into the earth flows downhill over the land surface under the influence of gravity. This flow is channelled by small irregularities in the topography into rivulets that merge to become gullies that feed into larger channels. The flow of rivers is augmented with water flowing through the soil and from underground stores, but a river is more than simply water flowing to the sea. A river also carries rocks and other sediments, dissolved minerals, plants, and animals, both dead and alive. In doing so, rivers transport large amounts of material and provide habitats for a great variety of wildlife. They carve valleys and deposit plains, being largely responsible for shaping the Earth’s continental landscapes. Rivers change progressively over their course from headwaters to mouth, from steep streams that are narrow and turbulent to wider, deeper, often meandering channels. From upstream to downstream, a continuum of change occurs: the volume of water flowing usually increases and coarse sediments grade into finer material. In its upper reaches, a river erodes its bed and banks, but this removal of earth, pebbles, and sometimes boulders gives way to the deposition of material in lower reaches. In tune with these variations in the physical characteristics of the river, changes can also be seen in the types of creatures and plants that make the river their home. […] Rivers interact with the sediments beneath the channel and with the air above. The water flowing in many rivers comes both directly from the air as rainfall – or another form of precipitation – and also from groundwater sources held in rocks and gravels beneath, both being flows of water through the hydrological cycle.”

“One interesting aspect of rivers is that they seem to be organized hierarchically. When viewed from an aircraft or on a map, rivers form distinct networks like the branches of a tree. Small tributary channels join together to form larger channels which in turn merge to form still larger rivers. This progressive increase in river size is often described using a numerical ordering scheme in which the smallest stream is called first order, the union of two first-order channels produces a second-order river, the union of two second-order channels produces a third-order river, and so on. Stream order only increases when two channels of the same rank merge. Very large rivers, such as the Nile and Mississippi, are tenth-order rivers; the Amazon twelfth order. Each river drains an area of land that is proportional to its size. This area is known by several different terms: drainage basin, river basin, or catchment (‘watershed’ is also used in American English, but this word means the drainage divide between two adjacent basins in British English). In the same way that a river network is made up of a hierarchy of low-order rivers nested within higher-order rivers, their drainage basins also fit together to form a nested hierarchy. In other words, smaller units are repeating elements nested within larger units. All of these units are linked by flows of water, sediment, and energy. Recognizing rivers as being made up of a series of units that are arranged hierarchically provides a potent framework in which to study the patterns and processes associated with rivers. […] processes operating at the upper levels of the hierarchy exert considerable influence over features lower down in the hierarchy, but not the other way around. […] Generally, the larger the spatial scale, the slower the processes and rates of change.”

The stuff above incidentally – and curiously – links very closely with the material covered in Holland’s book on complexity, which I finished just the day before I started reading this one. That book has a lot more stuff about things like nested hierarchies and that ‘potent framework’ mentioned above, and how to go about analyzing such things. (I found that book hard to blog – at least at first, which is why I’m right now covering this book instead; but I do hope to get to it later, it was quite interesting).

“Measuring the length of a river is more complicated than it sounds. […] Disagreements about the true source of many rivers have been a continuous feature of [the] history of exploration. […] most rivers typically have many tributaries and hence numerous sources. […] But it gets more confusing. Some rivers do not have a mouth. […] Some rivers have more than one channel. […] Yet another important part of measuring the length of a river is the scale at which it is measured. Fundamentally, the length of a river varies with the map scale because different amounts of detail are generalized at different scales.”

“Two particularly important properties of river flow are velocity and discharge – the volume of water moving past a point over some interval of time […]. A continuous record of discharge plotted against time is called a hydrograph which, depending on the time frame chosen, may give a detailed depiction of a flood event over a few days, or the discharge pattern over a year or more. […] River flow is dependent upon many different factors, including the area and shape of the drainage basin. If all else is equal, larger basins experience larger flows. A river draining a circular basin tends to have a peak in flow because water from all its tributaries arrives at more or less the same time as compared to a river draining a long, narrow basin in which water arrives from tributaries in a more staggered manner. The surface conditions in a basin are also important. Vegetation, for example, intercepts rainfall and hence slows down its movement into rivers. Climate is a particularly significant determinant of river flow. […] All the rivers with the greatest flows are almost entirely located in the humid tropics, where rainfall is abundant throughout the year. […] Rivers in the humid tropics experience relatively constant flows throughout the year, but perennial rivers in more seasonal climates exhibit marked seasonality in flow. […] Some rivers are large enough to flow through more than one climate region. Some desert rivers, for instance, are perennial because they receive most of their flow from high rainfall areas outside the desert. These are known as ‘exotic’ rivers. The Nile is an example […]. These rivers lose large amounts of water – by evaporation and infiltration into soils – while flowing through the desert, but their volumes are such that they maintain their continuity and reach the sea. By contrast, many exotic desert rivers do not flow into the sea but deliver their water to interior basins.”

…and in rare cases, so much water is contributed to the interior basin that that basin’s actually categorized as a ‘sea’. However humans tend to mess such things up. Amu Darya and Syr Darya used to flow into the Aral Sea, until Soviet planners decided they shouldn’t do that anymore. Goodbye Aral Sea – hello Aralkum Desert!

“An important measure of the way a river system moulds its landscape is the ‘drainage density’. This is the sum of the channel length divided by the total area drained, which reflects the spacing of channels. Hence, drainage density expresses the degree to which a river dissects the landscape, effectively controlling the texture of relief. Numerous studies have shown that drainage density has a great range in different regions, depending on conditions of climate, vegetation, and geology particularly. […] Rivers shape the Earth’s continental landscapes in three main ways: by the erosion, transport, and deposition of sediments. These three processes have been used to recognize a simple three-part classification of individual rivers and river networks according to the dominant process in each of three areas: source, transfer, and depositional zones. The first zone consists of the river’s upper reaches, the area from which most of the water and sediment are derived. This is where most of the river’s erosion occurs, and this eroded material is transported through the second zone to be deposited in the third zone. These three zones are idealized because some sediment is eroded, stored, and transported in each of them, but within each zone one process is dominant.”

“The flow of water carries […] sediment in three ways: dissolved material […] moves in solution; small particles are carried in suspension; and larger particles are transported along the stream bed by rolling, sliding, or a bouncing movement known as ‘saltation’. […] Globally, it is estimated that rivers transport around 15 billion tonnes of suspended material annually to the oceans, plus about another 4 billion tonnes of dissolved material. In its upper reaches, a river might flow across bedrock but further downstream this is much less likely. Alluvial rivers are flanked by a floodplain, the channel cut into material that the river itself has transported and deposited. The floodplain is a relatively flat area which is periodically inundated during periods of high flow […] When water spills out onto the floodplain, the velocity of flow decreases and sediment begins to settle, causing fresh deposits of alluvium on the floodplain. Certain patterns of alluvial river channels have been seen on every continent and are divided at the most basic level into straight, meandering, and braided. Straight channels are rare in nature […] The most common river channel pattern is a series of bends known as meanders […]. Meanders develop because erosion becomes concentrated on the outside of a bend and deposition on the inside. As these linked processes continue, the meander bend can become more emphasized, and a particularly sinuous meander may eventually be cut off at its narrow neck, leaving an oxbow lake as evidence of its former course. Alluvial meanders migrate, both down and across their floodplain […]. This lateral migration is an important process in the formation of floodplains. Braided rivers can be recognized by their numerous flows that split off and rejoin each other to give a braided appearance. These multiple intersecting flows are separated by small and often temporary islands of alluvium. Braided rivers typically carry abundant sediment and are found in areas with a fairly steep gradient, often near mountainous regions.”

“The meander cut-off creating an oxbow lake is one way in which a channel makes an abrupt change of course, a characteristic of some alluvial rivers that is generally referred to as ‘avulsion’. It is a natural process by which flow diverts out of an established channel into a new permanent course on the adjacent floodplain, a change in course that can present a major threat to human activities. Rapid, frequent, and often significant avulsions have typified many rivers on the Indo-Gangetic plains of South Asia. In India, the Kosi River has migrated about 100 kilometres westward in the last 200 years […] Why a river suddenly avulses is not understood completely, but earthquakes play a part on the Indo-Gangetic plains. […] Most rivers eventually flow into the sea or a lake, where they deposit sediment which builds up into a landform known as a delta. The name comes from the Greek letter delta, Δ, shaped like a triangle or fan, one of the classic shapes a delta can take. […] Material laid down at the end of a river can continue underwater far beyond the delta as a deep-sea fan.”

“The organisms found in fluvial ecosystems are commonly classified according to the methods they use to gather food and feed. ‘Shredders’ are organisms that consume small sections of leaves; ‘grazers’ and ‘scrapers’ consume algae from the surfaces of objects such as stones and large plants; ‘collectors’ feed on fine organic matter produced by the breakdown of other once-living things; and ‘predators’ eat other living creatures. The relative importance of these groups of creatures typically changes as one moves from the headwaters of a river to stretches further downstream […] small headwater streams are often shaded by overhanging vegetation which limits sunlight and photosynthesis but contributes organic matter by leaf fall. Shredders and collectors typically dominate in these stretches, but further downstream, where the river is wider and thus receives more sunlight and less leaf fall, the situation is quite different. […] There’s no doubting the numerous fundamental ways in which a river’s biology is dependent upon its physical setting, particularly in terms of climate, geology, and topography. Nevertheless, these relationships also work in reverse. The biological components of rivers also act to shape the physical environment, particularly at more local scales. Beavers provide a good illustration of the ways in which the physical structure of rivers can be changed profoundly by large mammals. […] rivers can act both as corridors for species dispersal but also as barriers to the dispersal of organisms.”

 

Drainage system (geomorphology).
Perennial stream.
Nilometer.
Mekong.
Riverscape.
Oxbow lake.
Channel River.
Long profile of a river.
Bengal fan.
River continuum concept.
Flood pulse concept.
Riparian zone.

 

January 11, 2018 Posted by | Books, Ecology, Geography, Geology | Leave a comment

How Species Interact

There are multiple reasons why I have not covered Arditi and Ginzburg’s book before, but none of them are related to the quality of the book’s coverage. It’s a really nice book. However the coverage is somewhat technical and model-focused, which makes it harder to blog than other kinds of books. Also, the version of the book I read was a hardcover ‘paper book’ version, and ‘paper books’ take a lot more work for me to cover than do e-books.

I should probably get it out of the way here at the start of the post that if you’re interested in ecology, predator-prey dynamics, etc., this book is a book you would be well advised to read; or, if you don’t read the book, you should at least familiarize yourself with the ideas therein e.g. through having a look at some of Arditi & Ginzburg’s articles on these topics. I should however note that I don’t actually think skipping the book and having a look at some articles instead will necessarily be a labour-saving strategy; the book is not particularly long and it’s to the point, so although it’s not a particularly easy read their case for ratio dependence is actually somewhat easy to follow – if you take the effort – in the sense that I believe how different related ideas and observations are linked is quite likely better expounded upon in the book than they might have been in their articles. The presumably wrote the book precisely in order to provide a concise yet coherent overview.

I have had some trouble figuring out how to cover this book, and I’m still not quite sure what might be/have been the best approach; when covering technical books I’ll often skip a lot of detail and math and try to stick to what might be termed ‘the main ideas’ when quoting from such books, but there’s a clear limit as to how many of the technical details included in a book like this it is possible to skip if you still want to actually talk about the stuff covered in the work, and this sometimes make blogging such books awkward. These authors spend a lot of effort talking about how different ecological models work and which sort of conclusions these different models may lead to in different contexts, and this kind of stuff is a very big part of the book. I’m not sure if you strictly need to have read an ecology textbook or two before you read this one in order to be able to follow the coverage, but I know that I personally derived some benefit from having read Gurney & Nisbet’s ecology text in the past and I did look up stuff in that book a few times along the way, e.g. when reminding myself what a Holling type 2 functional response is and how models with such a functional response pattern behave. ‘In theory’ I assume one might argue that you could theoretically look up all the relevant concepts along the way without any background knowledge of ecology – assuming you have a decent understanding of basic calculus/differential equations, linear algebra, equilibrium dynamics, etc. (…systems analysis? It’s hard for me to know and outline exactly which sources I’ve read in the past which helped make this book easier to read than it otherwise would have been, but suffice it to say that if you look at the page count and think that this will be an quick/easy read, it will be that only if you’ve read more than a few books on ‘related topics’, broadly defined, in the past), but I wouldn’t advise reading the book if all you know is high school math – the book will be incomprehensible to you, and you won’t make it. I ended up concluding that it would simply be too much work to try to make this post ‘easy’ to read for people who are unfamiliar with these topics and have not read the book, so although I’ve hardly gone out of my way to make the coverage hard to follow, the blog coverage that is to follow is mainly for my own benefit.

First a few relevant links, then some quotes and comments.

Lotka–Volterra equations.
Ecosystem model.
Arditi–Ginzburg equations. (Yep, these equations are named after the authors of this book).
Nicholson–Bailey model.
Functional response.
Monod equation.
Rosenzweig-MacArthur predator-prey model.
Trophic cascade.
Underestimation of mutual interference of predators.
Coupling in predator-prey dynamics: Ratio Dependence.
Michaelis–Menten kinetics.
Trophic level.
Advection–diffusion equation.
Paradox of enrichment. [Two quotes from the book: “actual systems do not behave as Rosensweig’s model predict” + “When ecologists have looked for evidence of the paradox of enrichment in natural and laboratory systems, they often find none and typically present arguments about why it was not observed”]
Predator interference emerging from trophotaxis in predator–prey systems: An individual-based approach.
Directed movement of predators and the emergence of density dependence in predator-prey models.

“Ratio-dependent predation is now covered in major textbooks as an alternative to the standard prey-dependent view […]. One of this book’s messages is that the two simple extreme theories, prey dependence and ratio dependence, are not the only alternatives: they are the ends of a spectrum. There are ecological domains in which one view works better than the other, with an intermediate view also being a possible case. […] Our years of work spent on the subject have led us to the conclusion that, although prey dependence might conceivably be obtained in laboratory settings, the common case occurring in nature lies close to the ratio-dependent end. We believe that the latter, instead of the prey-dependent end, can be viewed as the “null model of predation.” […] we propose the gradual interference model, a specific form of predator-dependent functional response that is approximately prey dependent (as in the standard theory) at low consumer abundances and approximately ratio dependent at high abundances. […] When density is low, consumers do not interfere and prey dependence works (as in the standard theory). When consumers density is sufficiently high, interference causes ratio dependence to emerge. In the intermediate densities, predator-dependent models describe partial interference.”

“Studies of food chains are on the edge of two domains of ecology: population and community ecology. The properties of food chains are determined by the nature of their basic link, the interaction of two species, a consumer and its resource, a predator and its prey.1 The study of this basic link of the chain is part of population ecology while the more complex food webs belong to community ecology. This is one of the main reasons why understanding the dynamics of predation is important for many ecologists working at different scales.”

“We have named predator-dependent the functional responses of the form g = g(N,P), where the predator density P acts (in addition to N [prey abundance, US]) as an independent variable to determine the per capita kill rate […] predator-dependent functional response models have one more parameter than the prey-dependent or the ratio-dependent models. […] The main interest that we see in these intermediate models is that the additional parameter can provide a way to quantify the position of a specific predator-prey pair of species along a spectrum with prey dependence at one end and ratio dependence at the other end:

g(N) <- g(N,P) -> g(N/P) (1.21)

In the Hassell-Varley and Arditi-Akçakaya models […] the mutual interference parameter m plays the role of a cursor along this spectrum, from m = 0 for prey dependence to m = 1 for ratio dependence. Note that this theory does not exclude that strong interference goes “beyond ratio dependence,” with m > 1.2 This is also called overcompensation. […] In this book, rather than being interested in the interference parameters per se, we use predator-dependent models to determine, either parametrically or nonparametrically, which of the ends of the spectrum (1.21) better describes predator-prey systems in general.”

“[T]he fundamental problem of the Lotka-Volterra and the Rosensweig-MacArthur dynamic models lies in the functional response and in the fact that this mathematical function is assumed not to depend on consumer density. Since this function measures the number of prey captured per consumer per unit time, it is a quantity that should be accessible to observation. This variable could be apprehended either on the fast behavioral time scale or on the slow demographic time scale. These two approaches need not necessarily reveal the same properties: […] a given species could display a prey-dependent response on the fast scale and a predator-dependent response on the slow scale. The reason is that, on a very short scale, each predator individually may “feel” virtually alone in the environment and react only to the prey that it encounters. On the long scale, the predators are more likely to be affected by the presence of conspecifics, even without direct encounters. In the demographic context of this book, it is the long time scale that is relevant. […] if predator dependence is detected on the fast scale, then it can be inferred that it must be present on the slow scale; if predator dependence is not detected on the fast scale, it cannot be inferred that it is absent on the slow scale.”

Some related thoughts. A different way to think about this – which they don’t mention in the book, but which sprang to mind to me as I was reading it – is to think about this stuff in terms of a formal predator territorial overlap model and then asking yourself this question: Assume there’s zero territorial overlap – does this fact mean that the existence of conspecifics does not matter? The answer is of course no. The sizes of the individual patches/territories may be greatly influenced by the predator density even in such a context. Also, the territorial area available to potential offspring (certainly a fitness-relevant parameter) may be greatly influenced by the number of competitors inhabiting the surrounding territories. In relation to the last part of the quote it’s easy to see that in a model with significant territorial overlap you don’t need direct behavioural interaction among predators for the overlap to be relevant; even if two bears never meet, if one of them eats a fawn the other one would have come across two days later, well, such indirect influences may be important for prey availability. Of course as prey tend to be mobile, even if predator territories are static and non-overlapping in a geographic sense, they might not be in a functional sense. Moving on…

“In [chapter 2 we] attempted to assess the presence and the intensity of interference in all functional response data sets that we could gather in the literature. Each set must be trivariate, with estimates of the prey consumed at different values of prey density and different values of predator densities. Such data sets are not very abundant because most functional response experiments present in the literature are simply bivariate, with variations of the prey density only, often with a single predator individual, ignoring the fact that predator density can have an influence. This results from the usual presentation of functional responses in textbooks, which […] focus only on the influence of prey density.
Among the data sets that we analyzed, we did not find a single one in which the predator density did not have a significant effect. This is a powerful empirical argument against prey dependence. Most systems lie somewhere on the continuum between prey dependence (m=0) and ratio dependence (m=1). However, they do not appear to be equally distributed. The empirical evidence provided in this chapter suggests that they tend to accumulate closer to the ratio-dependent end than to the prey-dependent end.”

“Equilibrium properties result from the balanced predator-prey equations and contain elements of the underlying dynamic model. For this reason, the response of equilibria to a change in model parameters can inform us about the structure of the underlying equations. To check the appropriateness of the ratio-dependent versus prey-dependent views, we consider the theoretical equilibrium consequences of the two contrasting assumptions and compare them with the evidence from nature. […] According to the standard prey-dependent theory, in reference to [an] increase in primary production, the responses of the populations strongly depend on their level and on the total number of trophic levels. The last, top level always responds proportionally to F [primary input]. The next to the last level always remains constant: it is insensitive to enrichment at the bottom because it is perfectly controled [sic] by the last level. The first, primary producer level increases if the chain length has an odd number of levels, but declines (or stays constant with a Lotka-Volterra model) in the case of an even number of levels. According to the ratio-dependent theory, all levels increase proportionally, independently of how many levels are present. The present purpose of this chapter is to show that the second alternative is confirmed by natural data and that the strange predictions of the prey-dependent theory are unsupported.”

“If top predators are eliminated or reduced in abundance, models predict that the sequential lower trophic levels must respond by changes of alternating signs. For example, in a three-level system of plants-herbivores-predators, the reduction of predators leads to the increase of herbivores and the consequential reduction in plant abundance. This response is commonly called the trophic cascade. In a four-level system, the bottom level will increase in response to harvesting at the top. These predicted responses are quite intuitive and are, in fact, true for both short-term and long-term responses, irrespective of the theory one employs. […] A number of excellent reviews have summarized and meta-analyzed large amounts of data on trophic cascades in food chains […] In general, the cascading reaction is strongest in lakes, followed by marine systems, and weakest in terrestrial systems. […] Any theory that claims to describe the trophic chain equilibria has to produce such cascading when top predators are reduced or eliminated. It is well known that the standard prey-dependent theory supports this view of top-down cascading. It is not widely appreciated that top-down cascading is likewise a property of ratio-dependent trophic chains. […] It is [only] for equilibrial responses to enrichment at the bottom that predictions are strikingly different according to the two theories”.

As the book does spend a little time on this I should perhaps briefly interject here that the above paragraph should not be taken to indicate that the two types of models provide identical predictions in the top-down cascading context in all cases; both predict cascading, but there are even so some subtle differences between the models here as well. Some of these differences are however quite hard to test.

“[T]he traditional Lotka-Volterra interaction term […] is nothing other than the law of mass action of chemistry. It assumes that predator and prey individuals encounter each other randomly in the same way that molecules interact in a chemical solution. Other prey-dependent models, like Holling’s, derive from the same idea. […] an ecological system can only be described by such a model if conspecifics do not interfere with each other and if the system is sufficiently homogeneous […] we will demonstrate that spatial heterogeneity, be it in the form of a prey refuge or in the form of predator clusters, leads to emergence of gradual interference or of ratio dependence when the functional response is observed at the population level. […] We present two mechanistic individual-based models that illustrate how, with gradually increasing predator density and gradually increasing predator clustering, interference can become gradually stronger. Thus, a given biological system, prey dependent at low predator density, can gradually become ratio dependent at high predator density. […] ratio dependence is a simple way of summarizing the effects induced by spatial heterogeneity, while the prey dependent [models] (e.g., Lotka-Volterra) is more appropriate in homogeneous environments.”

“[W]e consider that a good model of interacting species must be fundamentally invariant to a proportional change of all abundances in the system. […] Allowing interacting populations to expand in balanced exponential growth makes the laws of ecology invariant with respect to multiplying interacting abundances by the same constant, so that only ratios matter. […] scaling invariance is required if we wish to preserve the possibility of joint exponential growth of an interacting pair. […] a ratio-dependent model allows for joint exponential growth. […] Neither the standard prey-dependent models nor the more general predator-dependent models allow for balanced growth. […] In our view, communities must be expected to expand exponentially in the presence of unlimited resources. Of course, limiting factors ultimately stop this expansion just as they do for a single species. With our view, it is the limiting resources that stop the joint expansion of the interacting populations; it is not directly due to the interactions themselves. This partitioning of the causes is a major simplification that traditional theory implies only in the case of a single species.”

August 1, 2017 Posted by | Biology, Books, Chemistry, Ecology, Mathematics, Studies | Leave a comment

Imported Plant Diseases

I found myself debating whether or not I should read Lewis, Petrovskii, and Potts’ text The Mathematics Behind Biological Invasions a while back, but at the time I in the end decided that it would simply be too much work to justify the potential payoff – so instead of reading the book, I decided to just watch the above lecture and leave it at that. This lecture is definitely a very poor textbook substitute, and I was strongly debating whether or not to blog it because it just isn’t very good; the level of coverage is very low. Which is sad, because some of the diseases discussed in the lecture – like e.g. wheat leaf rust – are really important and worth knowing about. One of the important points made in the lecture is that in the context of potential epidemics, it can be difficult to know when and how to intervene because of the uncertainty involved; early action may be the more efficient choice in terms of resource use, but the earlier you intervene, the less certain will be the intervention payoff and the less you’ll know about stuff like transmission patterns (…would outbreak X ever really have spread very wide if we had not intervened? We don’t observe the counterfactual…). Such aspects of course are not only relevant to plant-diseases, and the lecture also contains other basic insights from epidemiology which apply to other types of disease – but if you’ve ever opened a basic epidemiology text you’ll know all these things already.

May 22, 2017 Posted by | Biology, Botany, Ecology, Epidemiology, Lectures | Leave a comment

Deserts

I recently read Nick Middleton’s short publication on this topic and decided it was worth blogging it here. I gave the publication 3 stars on goodreads; you can read my goodreads review of the book here.

In this post I’ll quote a bit from the book and add some details I thought were interesting.

“None of [the] approaches to desert definition is foolproof. All have their advantages and drawbacks. However, each approach delivers […] global map[s] of deserts and semi-deserts that [are] broadly similar […] Roughly, deserts cover about one-quarter of our planet’s land area, and semi-deserts another quarter.”

“High temperatures and a paucity of rainfall are two aspects of climate that many people routinely associate with deserts […] However, desert climates also embrace other extremes. Many arid zones experience freezing temperatures and snowfall is commonplace, particularly in those situated outside the tropics. […] For much of the time, desert skies are cloud-free, meaning deserts receive larger amounts of sunshine than any other natural environment. […] Most of the water vapour in the world’s atmosphere is supplied by evaporation from the oceans, so the more remote a location is from this source the more likely it is that any moisture in the air will have been lost by precipitation before it reaches continental interiors. The deserts of Central Asia illustrate this principle well: most of the moisture in the air is lost before it reaches the heart of the continent […] A clear distinction can be made between deserts in continental interiors and those on their coastal margins when it comes to the range of temperatures experienced. Oceans tend to exert a moderating influence on temperature, reducing extremes, so the greatest ranges of temperature are found far from the sea while coastal deserts experience a much more limited range. […] Freezing temperatures occur particularly in the mid-latitude deserts, but by no means exclusively so. […] snowfall occurs at the Algerian oasis towns of Ouagla and Ghardaia, in the northern Sahara, as often as once every 10 years on average.”

“[One] characteristic of rainfall in deserts is its variability from year to year which in many respects makes annual average statistics seem like nonsense. A very arid desert area may go for several years with no rain at all […]. It may then receive a whole ‘average’ year’s rainfall in just one storm […] Rainfall in deserts is also typically very variable in space as well as time. Hence, desert rainfall is frequently described as being ‘spotty’. This spottiness occurs because desert storms are often convective, raining in a relatively small area, perhaps just a few kilometres across. […] Climates can vary over a wide range of spatial scales […] Changes in temperature, wind, relative humidity, and other elements of climate can be detected over short distances, and this variability on a small scale creates distinctive climates in small areas. These are microclimates, different in some way from the conditions prevailing over the surrounding area as a whole. At the smallest scale, the shade given by an individual plant can be described as a microclimate. Over larger distances, the surface temperature of the sand in a dune will frequently be significantly different from a nearby dry salt lake because of the different properties of the two types of surface. […] Microclimates are important because they exert a critical control over all sorts of phenomena. These include areas suitable for plant and animal communities to develop, the ways in which rocks are broken down, and the speed at which these processes occur.”

“The level of temperature prevailing when precipitation occurs is important for an area’s water balance and its degree of aridity. A rainy season that occurs during the warm summer months, when evaporation is greatest, makes for a climate that is more arid than if precipitation is distributed more evenly throughout the year.”

“The extremely arid conditions of today[‘s Sahara Desert] have prevailed for only a few thousand years. There is lots of evidence to suggest that the Sahara was lush, nearly completely covered with grasses and shrubs, with many lakes that supported antelope, giraffe, elephant, hippopotamus, crocodile, and human populations in regions that today have almost no measurable precipitation. This ‘African Humid Period’ began around 15,000 years ago and came to an end around 10,000 years later. […] Globally, at the height of the most recent glacial period some 18,000 years ago, almost 50% of the land area between 30°N and 30°S was covered by two vast belts of sand, often called ‘sand seas’. Today, about 10% of this area is covered by sand seas. […] Around one-third of the Arabian subcontinent is covered by sandy deserts”.

“Much of the drainage in deserts is internal, as in Central Asia. Their rivers never reach the sea, but take water to interior basins. […] Salt is a common constituent of desert soils. The generally low levels of rainfall means that salts are seldom washed away through soils and therefore tend to accumulate in certain parts of the landscape. Large amounts of common salt (sodium chloride, or halite), which is very soluble in water, are found in some hyper-arid deserts.”

“Many deserts are very rich in rare and unique species thanks to their evolution in relative geographical isolation. Many of these plants and animals have adapted in remarkable ways to deal with the aridity and extremes of temperature. Indeed, some of these adaptations contribute to the apparent lifelessness of deserts simply because a good way to avoid some of the harsh conditions is to hide. Some small creatures spend hot days burrowed beneath the soil surface. In a similar way, certain desert plants spend most of the year and much of their lives dormant, as seeds waiting for the right conditions, brought on by a burst of rainfall. Given that desert rainstorms can be very variable in time and in space, many activities in the desert ecosystem occur only sporadically, as pulses of activity driven by the occasional cloudburst. […] The general scarcity of water is the most important, though by no means the only, environmental challenge faced by desert organisms. Limited supplies of food and nutrients, friable soils, high levels of solar radiation, high daytime temperatures, and the large diurnal temperature range are other challenges posed by desert conditions. These conditions are not always distributed evenly across a desert landscape, and the existence of more benign microenvironments is particularly important for desert plants and animals. Patches of terrain that are more biologically productive than their surroundings occur in even the most arid desert, geographical patterns caused by many factors, not only the simple availability of water.”

A small side note here: The book includes brief coverage of things like crassulacean acid metabolism and related topics covered in much more detail in Beer et al. I’m not going to go into that stuff here as this stuff was in my opinion much better covered in the latter book (some people might disagree, but people who would do that would at least have to admit that the coverage in Beer et al. is/was much more comprehensive than is Middleton’s coverage in this book). There are quite a few other topics included in the book which I did not include coverage of here in the post but I mention this topic in particular in part because I thought it was actually a good example underscoring how this book is very much just a very brief introduction; you can write book chapters, if not books, about some of the topics Middleton devotes a couple of paragraphs to in his coverage, which is but to be expected given the nature and range of coverage of the publication.

Plants aren’t ‘smart’ given any conventional definition of the word, but as I’ve talked about before here on the blog (e.g. here) when you look closer at the way they grow and ‘behave’ over the very long term, some of the things they do are actually at the very least ‘not really all that stupid’:

“The seeds of annuals germinate only when enough water is available to support the entire life cycle. Germinating after just a brief shower could be fatal, so mechanisms have developed for seeds to respond solely when sufficient water is available. Seeds germinate only when their protective seed coats have been broken down, allowing water to enter the seed and growth to begin. The seed coats of many desert species contain chemicals that repel water. These compounds are washed away by large amounts of water, but a short shower will not generate enough to remove all the water-repelling chemicals. Other species have very thick seed coats that are gradually worn away physically by abrasion as moving water knocks the seeds against stones and pebbles.”

What about animals? One thing I learned from this publication is that it turns out that being a mammal will, all else equal, definitely not give you a competitive edge in a hot desert environment:

“The need to conserve water is important to all creatures that live in hot deserts, but for mammals it is particularly crucial. In all environments mammals typically maintain a core body temperature of around 37–38°C, and those inhabiting most non-desert regions face the challenge of keeping their body temperature above the temperature of their environmental surrounds. In hot deserts, where environmental temperatures substantially exceed the body temperature on a regular basis, mammals face the reverse challenge. The only mechanism that will move heat out of an animal’s body against a temperature gradient is the evaporation of water, so maintenance of the core body temperature requires use of the resource that is by definition scarce in drylands.”

Humans? What about them?

“Certain aspects of a traditional mobile lifestyle have changed significantly for some groups of nomadic peoples. Herders in the Gobi desert in Mongolia pursue a way of life that in many ways has changed little since the times of the greatest of all nomadic leaders, Chinggis Khan, 750 years ago. They herd the same animals, eat the same foods, wear the same clothes, and still live in round felt-covered tents, traditional dwellings known in Mongolian as gers. Yet many gers now have a set of solar panels on the roof that powers a car battery, allowing an electric light to extend the day inside the tent. Some also have a television set.” (these remarks incidentally somehow reminded me of this brilliant Gary Larson cartoon)

“People have constructed dams to manage water resources in arid regions for thousands of years. One of the oldest was the Marib dam in Yemen, built about 3,000 years ago. Although this structure was designed to control water from flash floods, rather than for storage, the diverted flow was used to irrigate cropland. […] Although groundwater has been exploited for desert farmland using hand-dug underground channels for a very long time, the discovery of reserves of groundwater much deeper below some deserts has led to agricultural use on much larger scales in recent times. These deep groundwater reserves tend to be non-renewable, having built up during previous climatic periods of greater rainfall. Use of this fossil water has in many areas resulted in its rapid depletion.”

“Significant human impacts are thought to have a very long history in some deserts. One possible explanation for the paucity of rainfall in the interior of Australia is that early humans severely modified the landscape through their use of fire. Aboriginal people have used fire extensively in Central Australia for more than 20,000 years, particularly as an aid to hunting, but also for many other purposes, from clearing passages to producing smoke signals and promoting the growth of preferred plants. The theory suggests that regular burning converted the semi-arid zone’s mosaic of trees, shrubs, and grassland into the desert scrub seen today. This gradual change in the vegetation could have resulted in less moisture from plants reaching the atmosphere and hence the long-term desertification of the continent.” (I had never heard about this theory before, and so I of course have no idea if it’s correct or not – but it’s an interesting idea).

A few wikipedia links of interest:
Yardang.
Karakum Canal.
Atacama Desert.
Salar de Uyuni.
Taklamakan Desert.
Dust Bowl.
Namib Desert.
Dzud.

August 27, 2016 Posted by | Anthropology, Biology, Books, Botany, Ecology, Engineering, Geography, Zoology | Leave a comment

Photosynthesis in the Marine Environment (II)

Here’s my first post about the book. I gave the book four stars on goodreads – here’s a link to my short goodreads review of the book.

As pointed out in the review, ‘it’s really mostly a biochemistry text.’ At least there’s a lot of that stuff in there (‘it get’s better towards the end’, would be one way to put it – the last chapters deal mostly with other topics, such as measurement and brief notes on some not-particularly-well-explored ecological dynamics of potential interest), and if you don’t want to read a book which deals in some detail with topics and concepts like alkalinity, crassulacean acid metabolism, photophosphorylation, photosynthetic reaction centres, Calvin cycle (also known straightforwardly as the ‘reductive pentose phosphate cycle’…), enzymes with names like Ribulose-1,5-bisphosphate carboxylase/oxygenase (‘RuBisCO’ among friends…) and phosphoenolpyruvate carboxylase (‘PEP-case’ among friends…), mycosporine-like amino acid, 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid (‘DIDS’ among friends), phosphoenolpyruvate, photorespiration, carbonic anhydrase, C4 carbon fixation, cytochrome b6f complex, … – well, you should definitely not read this book. If you do feel like reading about these sorts of things, having a look at the book seems to me a better idea than reading the wiki articles.

I’m not a biochemist but I could follow a great deal of what was going on in this book, which is perhaps a good indication of how well written the book is. This stuff’s interesting and complicated, and the authors cover most of it quite well. The book has way too much stuff for it to make sense to cover all of it here, but I do want to cover some more stuff from the book, so I’ve added some quotes below.

“Water velocities are central to marine photosynthetic organisms because they affect the transport of nutrients such as Ci [inorganic carbon] towards the photosynthesising cells, as well as the removal of by-products such as excess O2 during the day. Such bulk transport is especially important in aquatic media since diffusion rates there are typically some 10 000 times lower than in air […] It has been established that increasing current velocities will increase photosynthetic rates and, thus, productivity of macrophytes as long as they do not disrupt the thalli of macroalgae or the leaves of seagrasses”.

Photosynthesis is the process by which the energy of light is used in order to form energy-rich organic compounds from low-energy inorganic compounds. In doing so, electrons from water (H2O) reduce carbon dioxide (CO2) to carbohydrates. […] The process of photosynthesis can conveniently be separated into two parts: the ‘photo’ part in which light energy is converted into chemical energy bound in the molecule ATP and reducing power is formed as NADPH [another friend with a long name], and the ‘synthesis’ part in which that ATP and NADPH are used in order to reduce CO2 to sugars […]. The ‘photo’ part of photosynthesis is, for obvious reasons, also called its light reactions while the ‘synthesis’ part can be termed CO2-fixation and -reduction, or the Calvin cycle after one of its discoverers; this part also used to be called the ‘dark reactions’ [or light-independent reactions] of photosynthesis because it can proceed in vitro (= outside the living cell, e.g. in a test-tube) in darkness provided that ATP and NADPH are added artificially. […] ATP and NADPH are the energy source and reducing power, respectively, formed by the light reactions, that are subsequently used in order to reduce carbon dioxide (CO2) to sugars (synonymous with carbohydrates) in the Calvin cycle. Molecular oxygen (O2) is formed as a by-product of photosynthesis.”

“In photosynthetic bacteria (such as the cyanobacteria), the light reactions are located at the plasma membrane and internal membranes derived as invaginations of the plasma membrane. […] most of the CO2-fixing enzyme ribulose-bisphosphate carboxylase/oxygenase […] is here located in structures termed carboxysomes. […] In all other plants (including algae), however, the entire process of photosynthesis takes place within intracellular compartments called chloroplasts which, as the name suggests, are chlorophyll-containing plastids (plastids are those compartments in cells that are associated with photosynthesis).”

“Photosynthesis can be seen as a process in which part of the radiant energy from sunlight is ‘harvested’ by plants in order to supply chemical energy for growth. The first step in such light harvesting is the absorption of photons by photosynthetic pigments[1]. The photosynthetic pigments are special in that they not only convert the energy of absorbed photons to heat (as do most other pigments), but largely convert photon energy into a flow of electrons; the latter is ultimately used to provide chemical energy to reduce CO2 to carbohydrates. […] Pigments are substances that can absorb different wavelengths selectively and so appear as the colour of those photons that are less well absorbed (and, therefore, are reflected, or transmitted, back to our eyes). (An object is black if all photons are absorbed, and white if none are absorbed.) In plants and animals, the pigment molecules within the cells and their organelles thus give them certain colours. The green colour of many plant parts is due to the selective absorption of chlorophylls […], while other substances give colour to, e.g. flowers or fruits. […] Chlorophyll is a major photosynthetic pigment, and chlorophyll a is present in all plants, including all algae and the cyanobacteria. […] The molecular sub-structure of the chlorophyll’s ‘head’ makes it absorb mainly blue and red light […], while green photons are hardly absorbed but, rather, reflected back to our eyes […] so that chlorophyll-containing plant parts look green. […] In addition to chlorophyll a, all plants contain carotenoids […] All these accessory pigments act to fill in the ‘green window’ generated by the chlorophylls’ non-absorbance in that band […] and, thus, broaden the spectrum of light that can be utilized […] beyond that absorbed by chlorophyll.”

“Photosynthesis is principally a redox process in which carbon dioxide (CO2) is reduced to carbohydrates (or, in a shorter word, sugars) by electrons derived from water. […] since water has an energy level (or redox potential) that is much lower than that of sugar, or, more precisely, than that of the compound that finally reduces CO2 to sugars (i.e. NADPH), it follows that energy must be expended in the process; this energy stems from the photons of light. […] Redox reactions are those reactions in which one compound, B, becomes reduced by receiving electrons from another compound, A, the latter then becomes oxidised by donating the electrons to B. The reduction of B can only occur if the electron-donating compound A has a higher energy level, or […] has a redox potential that is higher, or more negative in terms of electron volts, than that of compound B. The redox potential, or reduction potential, […] can thus be seen as a measure of the ease by which a compound can become reduced […] the greater the difference in redox potential between compounds B and A, the greater the tendency that B will be reduced by A. In photosynthesis, the redox potential of the compound that finally reduces CO2, i.e. NADPH, is more negative than that from which the electrons for this reduction stems, i.e. H2O, and the entire process can therefore not occur spontaneously. Instead, light energy is used in order to boost electrons from H2O through intermediary compounds to such high redox potentials that they can, eventually, be used for CO2 reduction. In essence, then, the light reactions of photosynthesis describe how photon energy is used to boost electrons from H2O to an energy level (or redox potential) high (or negative) enough to reduce CO2 to sugars.”

“Fluorescence in general is the generation of light (emission of photons) from the energy released during de-excitation of matter previously excited by electromagnetic energy. In photosynthesis, fluorescence occurs as electrons of chlorophyll undergo de-excitation, i.e. return to the original orbital from which they were knocked out by photons. […] there is an inverse (or negative) correlation between fluorescence yield (i.e. the amount of fluorescence generated per photons absorbed by chlorophyll) and photosynthetic yield (i.e. the amount of photosynthesis performed per photons similarly absorbed).”

“In some cases, more photon energy is received by a plant than can be used for photosynthesis, and this can lead to photo-inhibition or photo-damage […]. Therefore, many plants exposed to high irradiances possess ways of dissipating such excess light energy, the most well known of which is the xanthophyll cycle. In principle, energy is shuttled between various carotenoids collectively called xanthophylls and is, in the process, dissipated as heat.”

“In order to ‘fix’ CO2 (= incorporate it into organic matter within the cell) and reduce it to sugars, the NADPH and ATP formed in the light reactions are used in a series of chemical reactions that take place in the stroma of the chloroplasts (or, in prokaryotic autotrophs such as cyanobacteria, the cytoplasm of the cells); each reaction is catalysed by its specific enzyme, and the bottleneck for the production of carbohydrates is often considered to be the enzyme involved in its first step, i.e. the fixation of CO2 [this enzyme is RubisCO] […] These CO2-fixation and -reduction reactions are known as the Calvin cycle […] or the C3 cycle […] The latter name stems from the fact that the first stable product of CO2 fixation in the cycle is a 3-carbon compound called phosphoglyceric acid (PGA): Carbon dioxide in the stroma is fixed onto a 5-carbon sugar called ribulose-bisphosphate (RuBP) in order to form 2 molecules of PGA […] It should be noted that this reaction does not produce a reduced, energy-rich, carbon compound, but is only the first, ‘CO2– fixing’, step of the Calvin cycle. In subsequent steps, PGA is energized by the ATP formed through photophosphorylation and is reduced by NADPH […] to form a 3-carbon phosphorylated sugar […] here denoted simply as triose phosphate (TP); these reactions can be called the CO2-reduction step of the Calvin cycle […] 1/6 of the TPs formed leave the cycle while 5/6 are needed in order to re-form RuBP molecules in what we can call the regeneration part of the cycle […]; it is this recycling of most of the final product of the Calvin cycle (i.e. TP) to re-form RuBP that lends it to be called a biochemical ‘cycle’ rather than a pathway.”

“Rubisco […] not only functions as a carboxylase, but […] also acts as an oxygenase […] When Rubisco reacts with oxygen instead of CO2, only 1 molecule of PGA is formed together with 1 molecule of the 2-carbon compound phosphoglycolate […] Not only is there no gain in organic carbon by this reaction, but CO2 is actually lost in the further metabolism of phosphoglycolate, which comprises a series of reactions termed photorespiration […] While photorespiration is a complex process […] it is also an apparently wasteful one […] and it is not known why this process has evolved in plants altogether. […] Photorespiration can reduce the net photosynthetic production by up to 25%.”

“Because of Rubisco’s low affinity to CO2 as compared with the low atmospheric, and even lower intracellular, CO2 concentration […], systems have evolved in some plants by which CO2 can be concentrated at the vicinity of this enzyme; these systems are accordingly termed CO2 concentrating mechanisms (CCM). For terrestrial plants, this need for concentrating CO2 is exacerbated in those that grow in hot and/or arid areas where water needs to be saved by partly or fully closing stomata during the day, thus restricting also the influx of CO2 from an already CO2-limiting atmosphere. Two such CCMs exist in terrestrial plants: the C4 cycle and the Crassulacean acid metabolism (CAM) pathway. […] The C 4 cycle is called so because the first stable product of CO2-fixation is not the 3-carbon compound PGA (as in the Calvin cycle) but, rather, malic acid (often referred to by its anion malate) or aspartic acid (or its anion aspartate), both of which are 4-carbon compounds. […] C4 [terrestrial] plants are […] more common in areas of high temperature, especially when accompanied with scarce rains, than in areas with higher rainfall […] While atmospheric CO2 is fixed […] via the C4 cycle, it should be noted that this biochemical cycle cannot reduce CO2 to high energy containing sugars […] since the Calvin cycle is the only biochemical system that can reduce CO2 to energy-rich carbohydrates in plants, it follows that the CO2 initially fixed by the C4 cycle […] is finally reduced via the Calvin cycle also in C4 plants. In summary, the C 4 cycle can be viewed as being an additional CO2 sequesterer, or a biochemical CO2 ‘pump’, that concentrates CO2 for the rather inefficient enzyme Rubisco in C4 plants that grow under conditions where the CO2 supply is extremely limited because partly closed stomata restrict its influx into the photosynthesising cells.”

“Crassulacean acid metabolism (CAM) is similar to the C 4 cycle in that atmospheric CO2 […] is initially fixed via PEP-case into the 4-carbon compound malate. However, this fixation is carried out during the night […] The ecological advantage behind CAM metabolism is that a CAM plant can grow, or at least survive, under prolonged (sometimes months) conditions of severe water stress. […] CAM plants are typical of the desert flora, and include most cacti. […] The principal difference between C 4 and CAM metabolism is that in C4 plants the initial fixation of atmospheric CO2 and its final fixation and reduction in the Calvin cycle is separated in space (between mesophyll and bundle-sheath cells) while in CAM plants the two processes are separated in time (between the initial fixation of CO2 during the night and its re-fixation and reduction during the day).”

July 20, 2015 Posted by | Biology, Botany, Chemistry, Ecology, Microbiology | Leave a comment

Photosynthesis in the Marine Environment (I)

I’m currently reading this book. Below some observations from part 1.

“The term autotroph is usually associated with the photosynthesising plants (including algae and cyanobacteria) and heterotroph with animals and some other groups of organisms that need to be provided high-energy containing organic foods (e.g. the fungi and many bacteria). However, many exceptions exist: Some plants are parasitic and may be devoid of chlorophyll and, thus, lack photosynthesis altogether6, and some animals contain chloroplasts or photosynthesising algae or
cyanobacteria and may function, in part, autotrophically; some corals rely on the photosynthetic algae within their bodies to the extent that they don’t have to eat at all […] If some plants are heterotrophic and some animals autotrophic, what then differentiates plants from animals? It is usually said that what differs the two groups is the absence (animals) or presence (plants) of a cell wall. The cell wall is deposited outside the cell membrane in plants, and forms a type of exo-skeleton made of polysaccharides (e.g. cellulose or agar in some red algae, or silica in the case of diatoms) that renders rigidity to plant cells and to the whole plant.”

“For the autotrophs, […] there was an advantage if they could live close to the shores where inorganic nutrient concentrations were higher (because of mineral-rich runoffs from land) than in the upper water layer of off-shore locations. However, living closer to shore also meant greater effects of wave action, which would alter, e.g. the light availability […]. Under such conditions, there would be an advantage to be able to stay put in the seawater, and under those conditions it is thought that filamentous photosynthetic organisms were formed from autotrophic cells (ca. 650 million years ago), which eventually resulted in macroalgae (some 450 million years ago) featuring holdfast tissues that could adhere them to rocky substrates. […] Very briefly now, the green macroalgae were the ancestors of terrestrial plants, which started to invade land ca. 400 million years ago (followed by the animals).”

“Marine ‘plants’ (= all photoautotrophic organisms of the seas) can be divided into phytoplankton (‘drifters’, mostly unicellular) and phytobenthos (connected to the bottom, mostly multicellular/macroscopic).
The phytoplankton can be divided into cyanobacteria (prokaryotic) and microalgae (eukaryotic) […]. The phytobenthos can be divided into macroalgae and seagrasses (marine angiosperms, which invaded the shallow seas some 90 million years ago). The micro- and macro-algae are divided into larger groups as based largely on their pigment composition [e.g. ‘red algae‘, ‘brown algae‘, …]

There are some 150 currently recognised species of marine cyanobacteria, ∼20 000 species of eukaryotic microalgae, several thousand species of macroalgae and 50(!) species of seagrasses. Altogether these marine plants are accountable for approximately half of Earth’s photosynthetic (or primary) production.

The abiotic factors that are conducive to photosynthesis and plant growth in the marine environment differ from those of terrestrial environments mainly with regard to light and inorganic carbon (Ci) sources. Light is strongly attenuated in the marine environment by absorption and scatter […] While terrestrial plants rely of atmospheric CO2 for their photosynthesis, marine plants utilise largely the >100 times higher concentration of HCO3 as the main Ci source for their photosynthetic needs. Nutrients other than CO2, that may limit plant growth in the marine environment include nitrogen (N), phosphorus (P), iron (Fe) and, for the diatoms, silica (Si).”

“The conversion of the plentiful atmospheric N2 gas (∼78% in air) into bio-available N-rich cellular constituents is a fundamental process that sustains life on Earth. For unknown reasons this process is restricted to selected representatives among the prokaryotes: archaea and bacteria. N2 fixing organisms, also termed diazotrophs (dia = two; azo = nitrogen), are globally wide-spread in terrestrial and aquatic environments, from polar regions to hot deserts, although their abundance varies widely. [Why is nitrogen important, I hear you ask? Well, when you hear the word ‘nitrogen’ in biology texts, think ‘protein’ – “Because nitrogen is relatively easy to measure and protein is not, protein content is often estimated by assaying organic nitrogen, which comprises from 15 to 18% of plant proteins” (Herrera et al.see this post]. […] . Cyanobacteria dominate marine diazotrophs and occupy large segments of marine open waters […]  sustained N2 fixation […] is a highly energy-demanding process. […] in all diazotrophs, the nitrogenase enzyme complex […] of marine cyanobacteria requires high Fe levels […] Another key nutrient is phosphorus […] which has a great impact on growth and N2 fixation in marine cyanobacteria. […] Recent model-based estimates of N2 fixation suggest that unicellular cyanobacteria contribute significantly to global ocean N budgets.”

“For convenience, we often divide the phytoplankton into different size classes, the pico-phytoplankton (0.2–2 μm effective cell diameter, ECD4); the nanophytoplankton (2–20 μm ECD) and the microphytoplankton (20–200 μm ECD). […] most of the major marine microalgal groups are found in all three size classes […] a 2010 paper estimate that these plants utilise 46 Gt carbon yearly, which can be divided into 15 Gt for the microphytoplankton, 20 Gt for the nanophytoplankton and 11 Gt for the picophytoplankton. Thus, the very small (nano- + pico-forms) of phytoplankton (including cyanobacterial forms) contribute 2/3 of the overall planktonic production (which, again, constitutes about half of the global production”).

“Many primarily non-photosynthetic organisms have developed symbioses with microalgae and cyanobacteria; these photosynthetic intruders are here referred to as photosymbionts. […] Most photosymbionts are endosymbiotic (living within the host) […] In almost all cases, these micro-algae are in symbiosis with invertebrates. Here the alga provides the animal with organic products of photosynthesis, while the invertebrate host can supply CO2 and other inorganic nutrients including nitrogen and phosphorus to the alga […]. In cases where cyanobacteria form the photosymbiont, their ‘caloric’ nutritional value is more questionable, and they may instead produce toxins that deter other animals from eating the host […] Many reef-building […] corals contain symbiotic zooxanthellae within the digestive cavity of their polyps, and in general corals that have symbiotic algae grow much faster than those without them. […] The loss of zooxanthellae from the host is known as coral bleaching […] Certain sea slugs contain functional chloroplasts that were ingested (but not digested) as part of larger algae […]. After digesting the rest of the alga, these chloroplasts are imbedded within the slugs’ digestive tract in a process called kleptoplasty (the ‘stealing’ of plastids). Even though this is not a true symbiosis (the chloroplasts are not organisms and do not gain anything from the association), the photosynthetic activity aids in the nutrition of the slugs for up to several months, thus either complementing their nutrition or carrying them through periods when food is scarce or absent.”

“90–100 million years ago, when there was a rise in seawater levels, some of the grasses that grew close to the seashores found themselves submerged in seawater. One piece of evidence that supports [the] terrestrial origin [of marine angiosperms] can be seen in the fact that residues of stomata can be found at the base of the leaves. In terrestrial plants, the stomata restrict water loss from the leaves, but since seagrasses are principally submerged in a liquid medium, the stomata became absent in the bulk parts of the leaves. These marine angiosperms, or seagrasses, thus evolved from those coastal grasses that successfully managed to adapt to being submerged in saline waters. Another theory has it that the ancestors of seagrasses were freshwater plants that, therefore, only had to adapt to water of a higher salinity. In both cases, the seagrasses exemplify a successful readaptation to marine life […] While there may exist some 20 000 or more species of macroalgae […], there are only some 50 species of seagrasses, most of which are found in tropical seas. […] the ability to extract nutrients from the sediment renders the seagrasses at an advantage over (the root-less) macroalgae in nutrient-poor waters. […] one of the basic differences in habitat utilisation between macroalgae and seagrasses is that the former usually grow on rocky substrates where they are held in place by their holdfasts, while seagrasses inhabit softer sediments where they are held in place by their root systems. Unlike macroalgae, where the whole plant surface is photosynthetically active, large proportions of seagrass plants are comprised of the non-photosynthetic roots and rhizomes. […] This means […] that seagrasses need more light in order to survive than do many algae […] marine plants usually contain less structural tissues than their terrestrial counterparts”.

“if we define ‘visible light’ as the electromagnetic wave upon which those energy-containing particles called quanta ‘ride’ that cause vision in higher animals (those quanta are also called photons) and compare it with light that causes photosynthesis, we find, interestingly, that the two processes use approximately the same wavelengths: While mammals largely use the 380–750 nm (nm = 10-9 m) wavelength band for vision, plants use the 400–700-nm band for photosynthesis; the latter is therefore also termed photosynthetically active radiation (PAR […] If a student
asks “but how come that animals and plants use almost identical wavelengths of radiation for so very different purposes?”, my answer is “sorry, but we don’t have the time to discuss that now”, meaning that while I think it has to do with too high and too low quantum energies below and above those wavelengths, I really don’t know.”

“energy (E) of a photon is inversely proportional to its wavelength […] a blue photon of 400 nm wavelength contains almost double the energy of a red one of 700 nm, while the photons of PAR between those two extremes carry decreasing energies as wavelengths increase. Accordingly, low-energy photons (i.e. of high wavelengths, e.g. those of reddish light) are absorbed to a greater extent by water molecules along a depth gradient than are photons of higher energy (i.e. lower wavelengths, e.g. bluish light), and so the latter penetrate deeper down in clear oceanic waters […] In water, the spectral distribution of PAR reaching a plant is different from that on land. This is because water not only attenuates the light intensity (or, more correctly, the photon flux, or irradiance […]), but, as mentioned above and detailed below, the attenuation with depth is wavelength dependent; therefore, plants living in the oceans will receive different spectra of light dependent on depth […] The two main characteristics of seawater that determine the quantity and quality of the irradiance penetrating to a certain depth are absorption and scatter. […] Light absorption in the oceans is a property of the water molecules, which absorb photons according to their energy […] Thus, red photons of low energy are more readily absorbed than, e.g. blue ones; only <1% of the incident red photons (calculated for 650 nm) penetrate to 20 m depth in clear waters while some 60% of the blue photons (450 nm) remain at that depth. […] Scatter […] is mainly caused by particles suspended in the water column (rather than by the water molecules themselves, although they too scatter light a little). Unlike absorption, scatter affects short-wavelength photons more than long-wavelength ones […] in turbid waters, photons of decreasing wavelengths are increasingly scattered. Since water molecules are naturally also present, they absorb the higher wavelengths, and the colours penetrating deepest in turbid waters are those between the highly scattered blue and highly absorbed red, e.g. green. The greenish colour of many coastal waters is therefore often due not only to the presence of chlorophyll-containing phytoplankton, but because, again, reddish photons are absorbed, bluish photons are scattered, and the midspectrum (i.e. green) fills the bulk part of the water column.”

“the open ocean, several kilometres or miles from the shore, almost always appears as blue. The reason for this is that in unpolluted, particle-free, waters, the preferential absorption of long-wavelength (low-energy) photons is what mainly determines the spectral distribution of light attenuation. Thus, short-wavelength (high-energy) bluish photons penetrate deepest and ‘fill up’ the bulk of the water column with their colour. Since water molecules also scatter a small proportion of those photons […], it follows that these largely water-penetrating photons are eventually also reflected back to our eyes. Or, in other words, out of the very low scattering in clear oceanic waters, the photons available to be scattered and, thus, reflected to our eyes, are mainly the bluish ones, and that is why the clear deep oceans look blue. (It is often said that the oceans are blue because the blue sky is reflected by the water surface. However, sailors will testify to the truism that the oceans are also deep blue in heavily overcast weathers, and so that explanation of the general blueness of the oceans is not valid.)”

“Although marine plants can be found in a wide range of temperature regimes, from the tropics to polar regions, the large bodies of water that are the environment for most marine plants have relatively constant temperatures, at least on a day-to-day basis. […] For marine plants that are found in intertidal regions, however, temperature variation during a single day can be very high as the plants find themselves alternately exposed to air […] Marine plants from tropical and temperate regions tend to have distinct temperature ranges for growth […] and growth optima. […] among most temperate species of microalgae, temperature optima for growth are in the range 18–25 ◦C, while some Antarctic diatoms show optima at 4–6 ◦C with no growth above a critical temperature of 7–12 ◦C. By contrast, some tropical diatoms will not grow below 15–17 ◦C. Similar responses are found in macroalgae and seagrasses. However, although some marine plants have a restricted temperature range for growth (so-called stenothermal species; steno = narrow and thermal relates to temperature), most show some growth over a broad range of temperatures and can be considered eurythermal (eury = wide).”

June 4, 2015 Posted by | Biology, Books, Botany, Ecology, Evolutionary biology, Microbiology, Physics, Zoology | Leave a comment

Wikipedia articles of interest

i. Lock (water transport). Zumerchik and Danver’s book covered this kind of stuff as well, sort of, and I figured that since I’m not going to blog the book – for reasons provided in my goodreads review here – I might as well add a link or two here instead. The words ‘sort of’ above are in my opinion justified because the book coverage is so horrid you’d never even know what a lock is used for from reading that book; you’d need to look that up elsewhere.

On a related note there’s a lot of stuff in that book about the history of water transport etc. which you probably won’t get from these articles, but having a look here will give you some idea about which sort of topics many of the chapters of the book are dealing with. Also, stuff like this and this. The book coverage of the latter topic is incidentally much, much more detailed than is that wiki article, and the article – as well as many other articles about related topics (economic history, etc.) on the wiki, to the extent that they even exist – could clearly be improved greatly by adding content from books like this one. However I’m not going to be the guy doing that.

ii. Congruence (geometry).

iii. Geography and ecology of the Everglades (featured).

I’d note that this is a topic which seems to be reasonably well covered on wikipedia; there’s for example also a ‘good article’ on the Everglades and a featured article about the Everglades National Park. A few quotes and observations from the article:

“The geography and ecology of the Everglades involve the complex elements affecting the natural environment throughout the southern region of the U.S. state of Florida. Before drainage, the Everglades were an interwoven mesh of marshes and prairies covering 4,000 square miles (10,000 km2). […] Although sawgrass and sloughs are the enduring geographical icons of the Everglades, other ecosystems are just as vital, and the borders marking them are subtle or nonexistent. Pinelands and tropical hardwood hammocks are located throughout the sloughs; the trees, rooted in soil inches above the peat, marl, or water, support a variety of wildlife. The oldest and tallest trees are cypresses, whose roots are specially adapted to grow underwater for months at a time.”

“A vast marshland could only have been formed due to the underlying rock formations in southern Florida.[15] The floor of the Everglades formed between 25 million and 2 million years ago when the Florida peninsula was a shallow sea floor. The peninsula has been covered by sea water at least seven times since the earliest bedrock formation. […] At only 5,000 years of age, the Everglades is a young region in geological terms. Its ecosystems are in constant flux as a result of the interplay of three factors: the type and amount of water present, the geology of the region, and the frequency and severity of fires. […] Water is the dominant element in the Everglades, and it shapes the land, vegetation, and animal life of South Florida. The South Florida climate was once arid and semi-arid, interspersed with wet periods. Between 10,000 and 20,000 years ago, sea levels rose, submerging portions of the Florida peninsula and causing the water table to rise. Fresh water saturated the limestone, eroding some of it and creating springs and sinkholes. The abundance of fresh water allowed new vegetation to take root, and through evaporation formed thunderstorms. Limestone was dissolved by the slightly acidic rainwater. The limestone wore away, and groundwater came into contact with the surface, creating a massive wetland ecosystem. […] Only two seasons exist in the Everglades: wet (May to November) and dry (December to April). […] The Everglades are unique; no other wetland system in the world is nourished primarily from the atmosphere. […] Average annual rainfall in the Everglades is approximately 62 inches (160 cm), though fluctuations of precipitation are normal.”

“Between 1871 and 2003, 40 tropical cyclones struck the Everglades, usually every one to three years.”

“Islands of trees featuring dense temperate or tropical trees are called tropical hardwood hammocks.[38] They may rise between 1 and 3 feet (0.30 and 0.91 m) above water level in freshwater sloughs, sawgrass prairies, or pineland. These islands illustrate the difficulty of characterizing the climate of the Everglades as tropical or subtropical. Hammocks in the northern portion of the Everglades consist of more temperate plant species, but closer to Florida Bay the trees are tropical and smaller shrubs are more prevalent. […] Islands vary in size, but most range between 1 and 10 acres (0.40 and 4.05 ha); the water slowly flowing around them limits their size and gives them a teardrop appearance from above.[42] The height of the trees is limited by factors such as frost, lightning, and wind: the majority of trees in hammocks grow no higher than 55 feet (17 m). […] There are more than 50 varieties of tree snails in the Everglades; the color patterns and designs unique to single islands may be a result of the isolation of certain hammocks.[44] […] An estimated 11,000 species of seed-bearing plants and 400 species of land or water vertebrates live in the Everglades, but slight variations in water levels affect many organisms and reshape land formations.”

“Because much of the coast and inner estuaries are built by mangroves—and there is no border between the coastal marshes and the bay—the ecosystems in Florida Bay are considered part of the Everglades. […] Sea grasses stabilize sea beds and protect shorelines from erosion by absorbing energy from waves. […] Sea floor patterns of Florida Bay are formed by currents and winds. However, since 1932, sea levels have been rising at a rate of 1 foot (0.30 m) per 100 years.[81] Though mangroves serve to build and stabilize the coastline, seas may be rising more rapidly than the trees are able to build.[82]

iv. Chang and Eng Bunker. Not a long article, but interesting:

Chang (Chinese: ; pinyin: Chāng; Thai: จัน, Jan, rtgsChan) and Eng (Chinese: ; pinyin: Ēn; Thai: อิน In) Bunker (May 11, 1811 – January 17, 1874) were Thai-American conjoined twin brothers whose condition and birthplace became the basis for the term “Siamese twins”.[1][2][3]

I loved some of the implicit assumptions in this article: “Determined to live as normal a life they could, Chang and Eng settled on their small plantation and bought slaves to do the work they could not do themselves. […] Chang and Adelaide [his wife] would become the parents of eleven children. Eng and Sarah [‘the other wife’] had ten.”

A ‘normal life’ indeed… The women the twins married were incidentally sisters who ended up disliking each other (I can’t imagine why…).

v. Genie (feral child). This is a very long article, and you should be warned that many parts of it may not be pleasant to read. From the article:

Genie (born 1957) is the pseudonym of a feral child who was the victim of extraordinarily severe abuse, neglect and social isolation. Her circumstances are prominently recorded in the annals of abnormal child psychology.[1][2] When Genie was a baby her father decided that she was severely mentally retarded, causing him to dislike her and withhold as much care and attention as possible. Around the time she reached the age of 20 months Genie’s father decided to keep her as socially isolated as possible, so from that point until she reached 13 years, 7 months, he kept her locked alone in a room. During this time he almost always strapped her to a child’s toilet or bound her in a crib with her arms and legs completely immobilized, forbade anyone from interacting with her, and left her severely malnourished.[3][4][5] The extent of Genie’s isolation prevented her from being exposed to any significant amount of speech, and as a result she did not acquire language during childhood. Her abuse came to the attention of Los Angeles child welfare authorities on November 4, 1970.[1][3][4]

In the first several years after Genie’s early life and circumstances came to light, psychologists, linguists and other scientists focused a great deal of attention on Genie’s case, seeing in her near-total isolation an opportunity to study many aspects of human development. […] In early January 1978 Genie’s mother suddenly decided to forbid all of the scientists except for one from having any contact with Genie, and all testing and scientific observations of her immediately ceased. Most of the scientists who studied and worked with Genie have not seen her since this time. The only post-1977 updates on Genie and her whereabouts are personal observations or secondary accounts of them, and all are spaced several years apart. […]

Genie’s father had an extremely low tolerance for noise, to the point of refusing to have a working television or radio in the house. Due to this, the only sounds Genie ever heard from her parents or brother on a regular basis were noises when they used the bathroom.[8][43] Although Genie’s mother claimed that Genie had been able to hear other people talking in the house, her father almost never allowed his wife or son to speak and viciously beat them if he heard them talking without permission. They were particularly forbidden to speak to or around Genie, so what conversations they had were therefore always very quiet and out of Genie’s earshot, preventing her from being exposed to any meaningful language besides her father’s occasional swearing.[3][13][43] […] Genie’s father fed Genie as little as possible and refused to give her solid food […]

In late October 1970, Genie’s mother and father had a violent argument in which she threatened to leave if she could not call her parents. He eventually relented, and later that day Genie’s mother was able to get herself and Genie away from her husband while he was out of the house […] She and Genie went to live with her parents in Monterey Park.[13][20][56] Around three weeks later, on November 4, after being told to seek disability benefits for the blind, Genie’s mother decided to do so in nearby Temple City, California and brought Genie along with her.[3][56]

On account of her near-blindness, instead of the disabilities benefits office Genie’s mother accidentally entered the general social services office next door.[3][56] The social worker who greeted them instantly sensed something was not right when she first saw Genie and was shocked to learn Genie’s true age was 13, having estimated from her appearance and demeanor that she was around 6 or 7 and possibly autistic. She notified her supervisor, and after questioning Genie’s mother and confirming Genie’s age they immediately contacted the police. […]

Upon admission to Children’s Hospital, Genie was extremely pale and grossly malnourished. She was severely undersized and underweight for her age, standing 4 ft 6 in (1.37 m) and weighing only 59 pounds (27 kg) […] Genie’s gross motor skills were extremely weak; she could not stand up straight nor fully straighten any of her limbs.[83][84] Her movements were very hesitant and unsteady, and her characteristic “bunny walk”, in which she held her hands in front of her like claws, suggested extreme difficulty with sensory processing and an inability to integrate visual and tactile information.[62] She had very little endurance, only able to engage in any physical activity for brief periods of time.[85] […]

Despite tests conducted shortly after her admission which determined Genie had normal vision in both eyes she could not focus them on anything more than 10 feet (3 m) away, which corresponded to the dimensions of the room she was kept in.[86] She was also completely incontinent, and gave no response whatsoever to extreme temperatures.[48][87] As Genie never ate solid food as a child she was completely unable to chew and had very severe dysphagia, completely unable to swallow any solid or even soft food and barely able to swallow liquids.[80][88] Because of this she would hold anything which she could not swallow in her mouth until her saliva broke it down, and if this took too long she would spit it out and mash it with her fingers.[50] She constantly salivated and spat, and continually sniffed and blew her nose on anything that happened to be nearby.[83][84]

Genie’s behavior was typically highly anti-social, and proved extremely difficult for others to control. She had no sense of personal property, frequently pointing to or simply taking something she wanted from someone else, and did not have any situational awareness whatsoever, acting on any of her impulses regardless of the setting. […] Doctors found it extremely difficult to test Genie’s mental age, but on two attempts they found Genie scored at the level of a 13-month-old. […] When upset Genie would wildly spit, blow her nose into her clothing, rub mucus all over her body, frequently urinate, and scratch and strike herself.[102][103] These tantrums were usually the only times Genie was at all demonstrative in her behavior. […] Genie clearly distinguished speaking from other environmental sounds, but she remained almost completely silent and was almost entirely unresponsive to speech. When she did vocalize, it was always extremely soft and devoid of tone. Hospital staff initially thought that the responsiveness she did show to them meant she understood what they were saying, but later determined that she was instead responding to nonverbal signals that accompanied their speaking. […] Linguists later determined that in January 1971, two months after her admission, Genie only showed understanding of a few names and about 15–20 words. Upon hearing any of these, she invariably responded to them as if they had been spoken in isolation. Hospital staff concluded that her active vocabulary at that time consisted of just two short phrases, “stop it” and “no more”.[27][88][99] Beyond negative commands, and possibly intonation indicating a question, she showed no understanding of any grammar whatsoever. […] Genie had a great deal of difficulty learning to count in sequential order. During Genie’s stay with the Riglers, the scientists spent a great deal of time attempting to teach her to count. She did not start to do so at all until late 1972, and when she did her efforts were extremely deliberate and laborious. By 1975 she could only count up to 7, which even then remained very difficult for her.”

“From January 1978 until 1993, Genie moved through a series of at least four additional foster homes and institutions. In some of these locations she was further physically abused and harassed to extreme degrees, and her development continued to regress. […] Genie is a ward of the state of California, and is living in an undisclosed location in the Los Angeles area.[3][20] In May 2008, ABC News reported that someone who spoke under condition of anonymity had hired a private investigator who located Genie in 2000. She was reportedly living a relatively simple lifestyle in a small private facility for mentally underdeveloped adults, and appeared to be happy. Although she only spoke a few words, she could still communicate fairly well in sign language.[3]

April 20, 2015 Posted by | Biology, Books, Botany, Ecology, Engineering, Geography, History, Mathematics, Psychology, Wikipedia, Zoology | Leave a comment

Mammoths, Sabertooths, and Hominids: 65 Million Years of Mammalian Evolution in Europe (2)

Here’s my first post about the book.

I wasn’t quite sure how to rate the book, but I ended up at four stars on goodreads. The main thing holding me back from giving it a higher rating is that the book is actually quite hard to read and there’s a lot of talk about teeth; one general point I learned from this book is that the teeth animals who lived in the past have left behind for us to find are sometimes really useful, because they can help us to make/support various inferences about other things, from animal behaviours to climatic developments. As for the ‘hard to read’-part, I (mostly) don’t blame the author for this because a book like this would have to be a bit hard to read to provide the level of coverage that is provided; that’s part of why I give it four stars in spite of this. If you have a look at the links in the first post, you’ll notice the many Latin names. You’ll find a lot of those in the text as well. This is perfectly natural as there were a lot of e.g. horse-like and rhino-like species living in the past and you need to be clear about which one of them you’re talking about now because they were all different, lived in different time periods, etc. For obvious reasons the book has a lot of talk about species/genera with no corresponding ‘familiar/popular’ names (like ‘cat’ or ‘dog’), and you need to keep track of the Latin names to make sense of the stuff; as well as keeping track of the various other Latin terms used e.g. in osteometry. So you’ll encounter some passages where there’s some talk about the differences between two groups whose names look pretty similar, and you’re told about how one group had two teeth which were a bit longer than they were in the other group and the teeth also looked slightly different (and you’ll be told exactly which teeth we’re talking about, described in a language you’d probably have to be a dentist to understand without looking up a lot of stuff along the way). Problems keeping track of the animals/groups encountered also stem from the fact that whereas some species encountered in the book do have modern counterparts, others don’t. The coverage helps you to figure out which ecological niche which group may have inhabited, but if you’re completely unfamiliar with the field of ecology I’m not sure how easy it is to get into this mindset. The text does provide some help navigating this weird landscape of the past, and the many fascinating illustrations in the book make it easier to visualize what the animals encountered along the way might have looked like, but reading the book takes some work.

That said, it’s totally worth it because this stuff’s just plain fascinating! The book isn’t quite ‘up there’ with Herrera et al. (it reminded me a bit more of van der Geer et al., not only because of the slight coverage overlap), but some of the stuff in there’s pretty damn awesome – and it’s stuff you ought to know, because it’ll probably change how you think about the world. The really neat thing about reading a book like this is that it exposes a lot of unwarranted assumptions you’ve been making without knowing it, about what the past used to be like. I’m almost certain anyone reading a book like this will encounter ideas which are very surprising to them. We look at the world through the eyes of the present, and it can be difficult to imagine just how many things used to be different. Vague and tentative ideas you might have had about how the world used to look like and how it used to work can through reading books like this one be replaced with a much more clear, and much better supported, picture of the past. Even though there’s still a lot of stuff we don’t know, and will never know. I could mention almost countless examples of things I was very surprised to learn while reading this book, and I’m sure many people reading the book would encounter even more of these, as I actually was somewhat familiar with parts of the related literature already before reading the book.

I’ve added a few sample quotes and observations from the book below.

“Europe, although just an appendage of the Eurasian supercontinent, acted during most of its history as a crossroad where Asian, African, and American faunas passed one another, throughout successive dispersal and extinction events. But these events did not happen in an isolated context, since they were the response to climatic and environmental events of a higher order. Thus this book pays special attention to the abundant literature that for the past few decades has dedicated itself to the climatic evolution of our planet.”

“A common scenario tends to posit the early evolutionary radiation of placental mammals as occurring only after the extinction of the dinosaurs at the end of the Cretaceous period. The same scenario assumes a sudden explosion of forms immediately after the End Cretaceous Mass Extinction, filling the vacancies left by the vanished reptilian faunas. But a close inspection of the first epoch of the Cenozoic provides quite a different picture: the “explosion” began well before the end of the Cretaceous period and was not sudden, but lasted millions of years throughout the first division of the Cenozoic era, the Paleocene epoch. […] our knowledge of this remote time of mammalian evolution is much more obscure and incomplete than our understanding of the other periods of the Cenozoic. […] compared with our present world, and in contrast to the succeeding epochs, the Paleocene appears to us as a strange time, in which the present orders of mammals were absent or can hardly be distinguished: no rodents, no perissodactyls, no artiodactyls, bizarre noncarnivorous carnivorans. […] although the Paleocene was mammalian in character, we do not recognize it as a clear part of our own world; it looks more like an impoverished extension of the late Cretaceous world than the seed of the present Age of Mammals.”

“The diatrymas were human-size — up to 2 m tall — ground-running birds that inhabited the terrestrial ecosystems of Europe and North America in the Paleocene and the early to middle Eocene […] Besides the large diatrymas, a large variety of crocodiles — mainly terrestrial and amphibious eusuchian crocodiles — populated the marshes of the Paleocene rainforests. […] The high diversification of the crocodile fauna throughout the Paleocene and Eocene represents a significant ecological datum, since crocodiles do not tolerate temperatures below 10 to 15°C (exceptionally, they could survive in temperatures of about 5 or 6°C). Their existence in Europe indicates that during the first part of the Cenozoic the average temperature of the coldest month never fell below these values and that these mild conditions persisted at least until the middle Miocene.”

“At the end of the Paleocene, approximately 55.5 million years ago, there was a sudden, short-term warming known as the Latest Paleocene Thermal Maximum. Over a period of tens of thousands of years or less, the temperature of all the oceans increased by around 4°C. This was the highest warming during the entire Cenozoic, reaching global mean temperatures of around 20°C. There is some evidence that the Latest Paleocene Thermal Maximum resulted from a sudden increase in atmospheric CO2. Intense volcanic activity developed at the Paleocene–Eocene boundary, associated with the rifting process in the North Atlantic and the opening of the Norwegian-Greenland Sea. […] According to some analyses, atmospheric CO2 during the early Eocene may have been eight times its present concentration. […] The high temperatures and increasing humidity favored the extension of tropical rainforests over the middle and higher latitudes, as far north as Ellesmere Island, now in the Canadian arctic north. There, an abundant fauna — including crocodiles, monitor lizards, primates, rodents, multituberculates, early perissodactyls, and the pantodont Coryphodon — and a flora composed of tropical elements indicates the extension of the forests as far north as 78 degrees north latitude. […] The global oceanic level at the beginning of the Eocene was high, and extensive areas of Eurasia were still under the sea. In this context, Europe consisted of a number of emerged islands forming a kind of archipelago. A central European island consisted of parts of present-day England, France, and Germany, although it was placed in a much more southerly position, approximately at the present latitude of Naples. […] To the east, the growing Mediterranean opened into a wide sea, since the landmasses of Turkey, Iraq, and Iran were still below sea level. To the east of the Urals, the Turgai Strait still connected the warm waters of the Tethys Sea with the Polar Sea. […] Despite the opening of the Greenland-Norwegian Sea, Europe and North America were still connected during most of the early and middle Eocene across two main land bridges […] the De Geer Corridor [and] the Thule Bridge […] these corridors must have been effective, since the European fossil record shows a massive entry of American elements […] The ischyromyid and ailuravid rodents, as well as the miacid carnivores, were among the oldest representatives of the modern orders of mammals to appear in Europe during the early Eocene. However, they were not the only ones, since the “modernization” of the mammalian communities at this time went even further, and groups such as the first true primates, bats (Chiroptera), flying lemurs (Dermoptera), and oddtoed (Perissodactyla) and even-toed (Artiodactyla) ungulates entered onto the scene, in both Europe and North America.”

“Although it was the first member of the horse lineage, Pliolophus certainly did not look like a horse. As classically stated, it had the dimensions of a medium dog (“a fox-terrier”), bearing four hooves on the front legs and three on the hind legs. […] the first rhino-related forms included Hyrachius, a small rhino about the size of a wolf that during the Eocene inhabited a wide geographic range, from North America to Europe and Asia.” (Yep, in case you didn’t know Europe had rhinos for millions and millions of years…) “The artiodactyls are among the most successful orders of mammals, having diversified in the past 10 million years into a wide array of families, subfamilies, tribes, and genera all around the world, including pigs, peccaries, hippos, chevrotains, camels, giraffes, deer, antelopes, gazelles, goats, and cattle. They are easily distinguished from the perissodactyls because each extremity is supported on the two central toes, instead of on the middle strengthened toe. […] The oldest member of the order is Diacodexis, […] a rabbit-size ungulate”

“Although the number of middle Eocene localities in Europe is quite restricted, we have excellent knowledge of the terrestrial communities of this time thanks to the extraordinary fossiliferous site of Messel, Germany. […] several specimens from Messel retain in their gut their last meal, providing a rare opportunity for testing the teeth-inferred dietary requirements of a number of extinct mammalian groups. […] A dense canopy forest surrounded Messel lake, formed of several tropical and paratropical taxa that today live in Southeast Asia”.

“At the end of the middle Eocene, things began to change in the European archipelago. Several late Paleocene and early Eocene survivors had become extinct […] The last part of the middle Eocene saw a clear change in the structure of the herbivore community as specialized browsing herbivores […] replaced the small to medium-size omnivorous/ frugivorous archaic ungulates of the early Eocene and became the dominant species. […] These changes among the mammalian faunas were most probably a response to the major tectonic transformations occurring at that time and the associated environmental changes. During the middle Eocene, the Indian plate collided with Asia, closing the Tethys Sea north of India. The collision of India and the compression between Africa and Europe formed an active alpine mountain belt along the southern border of Eurasia. In the western Mediterranean, strong compression occurred during the late Eocene, […] leading to the final emergence of the Pyrenees. To the south of the Pyrenees, the sea branch between the Iberian plate and Europe retreated”

“The European terrestrial ecosystems at the end of the Eocene were quite different from those inherited from the Paleocene, which were dominated by archaic, unspecialized groups. In contrast, a diversified fauna of specialized small and large browsing herbivores […] characterized the late Eocene. From our perspective, they looked much more “modern” than those of the early and early-middle Eocene and perfectly adapted to the new late Eocene environmental conditions characterized by the spread of more open habitats.”

“during the Eocene […] Australia and South America were still attached to Antarctica, as the last remnants of the ancient Gondwanan supercontinent. Today’s circumpolar current did not yet exist, and the equatorial South Atlantic and South Pacific waters went closer to the Antarctic coasts, thus transporting heat from the low latitudes to the high southern latitudes. However, this changed during the late Eocene, when a rifting process began to separate Australia from Antarctica. At the beginning of the Oligocene, between 34 and 33 million years ago, the spread between the two continents was large enough to allow a first phase of circumpolar circulation, which restricted the thermal exchange between the low-latitude equatorial waters and the Antarctic waters. A sudden and massive cooling took place, and mean global temperatures fell by about 5°C. […] During a few hundred thousand years (the estimated duration of this early Oligocene glacial episode), the ice sheets expanded and covered extensive areas of Antarctica, particularly in its western regions. […] The onset of Antarctic glaciation and the growing of the ice sheets in western Antarctica provoked an important global sea-level lowering of about 30 m. Several shallow epicontinental seas became continental areas, including those that surrounded the European Archipelago. The Turgai Strait, which during millions of years had isolated the European lands from Asia, vanished and opened a migration pathway for Asian and American mammals to the west. […] The tectonic movements led to the final split of the Tethys Sea into two main seas, the Mediterranean Sea to the south and the Paratethys Sea, the latter covering the formerly open ocean areas of central and eastern Europe. […] After the retreat of the Turgai Strait and the emergence of the Paratethys province, the European Archipelago ceased to exist, and Europe approached its present configuration. The ancient barriers that had prevented Asian faunas from settling in this continental area no longer existed, and a wave of new immigrants entered from the east. This coincided with the trend toward more temperate conditions and the spread of open environments initiated during the late Eocene. Consequently, most of the species that had characterized the middle and late Eocene declined or became completely extinct, replaced by herds of Asian newcomers.”

February 23, 2015 Posted by | Biology, Books, Ecology, Evolutionary biology, Geology, Paleontology, Zoology | Leave a comment

Wikipedia articles of interest

(A minor note: These days when I’m randomly browsing wikipedia and not just looking up concepts or terms found in the books I read, I’m mostly browsing the featured content on wikipedia. There’s a lot of featured stuff, and on average such articles more interesting than random articles. As a result of this approach, all articles covered in the post below are featured articles. A related consequence of this shift may be that I may cover fewer articles in future wikipedia posts than I have in the past; this post only contains five articles, which I believe is slightly less than usual for these posts – a big reason for this being that it sometimes takes a lot of time to read a featured article.)

i. Woolly mammoth.

Ice_age_fauna_of_northern_Spain_-_Mauricio_Antón

“The woolly mammoth (Mammuthus primigenius) was a species of mammoth, the common name for the extinct elephant genus Mammuthus. The woolly mammoth was one of the last in a line of mammoth species, beginning with Mammuthus subplanifrons in the early Pliocene. M. primigenius diverged from the steppe mammoth, M. trogontherii, about 200,000 years ago in eastern Asia. Its closest extant relative is the Asian elephant. […] The earliest known proboscideans, the clade which contains elephants, existed about 55 million years ago around the Tethys Sea. […] The family Elephantidae existed six million years ago in Africa and includes the modern elephants and the mammoths. Among many now extinct clades, the mastodon is only a distant relative of the mammoths, and part of the separate Mammutidae family, which diverged 25 million years before the mammoths evolved.[12] […] The woolly mammoth coexisted with early humans, who used its bones and tusks for making art, tools, and dwellings, and the species was also hunted for food.[1] It disappeared from its mainland range at the end of the Pleistocene 10,000 years ago, most likely through a combination of climate change, consequent disappearance of its habitat, and hunting by humans, though the significance of these factors is disputed. Isolated populations survived on Wrangel Island until 4,000 years ago, and on St. Paul Island until 6,400 years ago.”

“The appearance and behaviour of this species are among the best studied of any prehistoric animal due to the discovery of frozen carcasses in Siberia and Alaska, as well as skeletons, teeth, stomach contents, dung, and depiction from life in prehistoric cave paintings. […] Fully grown males reached shoulder heights between 2.7 and 3.4 m (9 and 11 ft) and weighed up to 6 tonnes (6.6 short tons). This is almost as large as extant male African elephants, which commonly reach 3–3.4 m (9.8–11.2 ft), and is less than the size of the earlier mammoth species M. meridionalis and M. trogontherii, and the contemporary M. columbi. […] Woolly mammoths had several adaptations to the cold, most noticeably the layer of fur covering all parts of the body. Other adaptations to cold weather include ears that are far smaller than those of modern elephants […] The small ears reduced heat loss and frostbite, and the tail was short for the same reason […] They had a layer of fat up to 10 cm (3.9 in) thick under the skin, which helped to keep them warm. […] The coat consisted of an outer layer of long, coarse “guard hair”, which was 30 cm (12 in) on the upper part of the body, up to 90 cm (35 in) in length on the flanks and underside, and 0.5 mm (0.020 in) in diameter, and a denser inner layer of shorter, slightly curly under-wool, up to 8 cm (3.1 in) long and 0.05 mm (0.0020 in) in diameter. The hairs on the upper leg were up to 38 cm (15 in) long, and those of the feet were 15 cm (5.9 in) long, reaching the toes. The hairs on the head were relatively short, but longer on the underside and the sides of the trunk. The tail was extended by coarse hairs up to 60 cm (24 in) long, which were thicker than the guard hairs. It is likely that the woolly mammoth moulted seasonally, and that the heaviest fur was shed during spring.”

“Woolly mammoths had very long tusks, which were more curved than those of modern elephants. The largest known male tusk is 4.2 m (14 ft) long and weighs 91 kg (201 lb), but 2.4–2.7 m (7.9–8.9 ft) and 45 kg (99 lb) was a more typical size. Female tusks averaged at 1.5–1.8 m (4.9–5.9 ft) and weighed 9 kg (20 lb). About a quarter of the length was inside the sockets. The tusks grew spirally in opposite directions from the base and continued in a curve until the tips pointed towards each other. In this way, most of the weight would have been close to the skull, and there would be less torque than with straight tusks. The tusks were usually asymmetrical and showed considerable variation, with some tusks curving down instead of outwards and some being shorter due to breakage.”

“Woolly mammoths needed a varied diet to support their growth, like modern elephants. An adult of six tonnes would need to eat 180 kg (397 lb) daily, and may have foraged as long as twenty hours every day. […] Woolly mammoths continued growing past adulthood, like other elephants. Unfused limb bones show that males grew until they reached the age of 40, and females grew until they were 25. The frozen calf “Dima” was 90 cm (35 in) tall when it died at the age of 6–12 months. At this age, the second set of molars would be in the process of erupting, and the first set would be worn out at 18 months of age. The third set of molars lasted for ten years, and this process was repeated until the final, sixth set emerged when the animal was 30 years old. A woolly mammoth could probably reach the age of 60, like modern elephants of the same size. By then the last set of molars would be worn out, the animal would be unable to chew and feed, and it would die of starvation.[53]

“The habitat of the woolly mammoth is known as “mammoth steppe” or “tundra steppe”. This environment stretched across northern Asia, many parts of Europe, and the northern part of North America during the last ice age. It was similar to the grassy steppes of modern Russia, but the flora was more diverse, abundant, and grew faster. Grasses, sedges, shrubs, and herbaceous plants were present, and scattered trees were mainly found in southern regions. This habitat was not dominated by ice and snow, as is popularly believed, since these regions are thought to have been high-pressure areas at the time. The habitat of the woolly mammoth also supported other grazing herbivores such as the woolly rhinoceros, wild horses and bison. […] A 2008 study estimated that changes in climate shrank suitable mammoth habitat from 7,700,000 km2 (3,000,000 sq mi) 42,000 years ago to 800,000 km2 (310,000 sq mi) 6,000 years ago.[81][82] Woolly mammoths survived an even greater loss of habitat at the end of the Saale glaciation 125,000 years ago, and it is likely that humans hunted the remaining populations to extinction at the end of the last glacial period.[83][84] […] Several woolly mammoth specimens show evidence of being butchered by humans, which is indicated by breaks, cut-marks, and associated stone tools. It is not known how much prehistoric humans relied on woolly mammoth meat, since there were many other large herbivores available. Many mammoth carcasses may have been scavenged by humans rather than hunted. Some cave paintings show woolly mammoths in structures interpreted as pitfall traps. Few specimens show direct, unambiguous evidence of having been hunted by humans.”

“While frozen woolly mammoth carcasses had been excavated by Europeans as early as 1728, the first fully documented specimen was discovered near the delta of the Lena River in 1799 by Ossip Schumachov, a Siberian hunter.[90] Schumachov let it thaw until he could retrieve the tusks for sale to the ivory trade. [Aargh!] […] The 1901 excavation of the “Berezovka mammoth” is the best documented of the early finds. It was discovered by the Berezovka River, and the Russian authorities financed its excavation. Its head was exposed, and the flesh had been scavenged. The animal still had grass between its teeth and on the tongue, showing that it had died suddenly. […] By 1929, the remains of 34 mammoths with frozen soft tissues (skin, flesh, or organs) had been documented. Only four of them were relatively complete. Since then, about that many more have been found.”

ii. Daniel Lambert.

Daniel Lambert (13 March 1770 – 21 June 1809) was a gaol keeper[n 1] and animal breeder from Leicester, England, famous for his unusually large size. After serving four years as an apprentice at an engraving and die casting works in Birmingham, he returned to Leicester around 1788 and succeeded his father as keeper of Leicester’s gaol. […] At the time of Lambert’s return to Leicester, his weight began to increase steadily, even though he was athletically active and, by his own account, abstained from drinking alcohol and did not eat unusual amounts of food. In 1805, Lambert’s gaol closed. By this time, he weighed 50 stone (700 lb; 318 kg), and had become the heaviest authenticated person up to that point in recorded history. Unemployable and sensitive about his bulk, Lambert became a recluse.

In 1806, poverty forced Lambert to put himself on exhibition to raise money. In April 1806, he took up residence in London, charging spectators to enter his apartments to meet him. Visitors were impressed by his intelligence and personality, and visiting him became highly fashionable. After some months on public display, Lambert grew tired of exhibiting himself, and in September 1806, he returned, wealthy, to Leicester, where he bred sporting dogs and regularly attended sporting events. Between 1806 and 1809, he made a further series of short fundraising tours.

In June 1809, he died suddenly in Stamford. At the time of his death, he weighed 52 stone 11 lb (739 lb; 335 kg), and his coffin required 112 square feet (10.4 m2) of wood. Despite the coffin being built with wheels to allow easy transport, and a sloping approach being dug to the grave, it took 20 men almost half an hour to drag his casket into the trench, in a newly opened burial ground to the rear of St Martin’s Church.”

“Sensitive about his weight, Daniel Lambert refused to allow himself to be weighed, but sometime around 1805, some friends persuaded him to come with them to a cock fight in Loughborough. Once he had squeezed his way into their carriage, the rest of the party drove the carriage onto a large scale and jumped out. After deducting the weight of the (previously weighed) empty carriage, they calculated that Lambert’s weight was now 50 stone (700 lb; 318 kg), and that he had thus overtaken Edward Bright, the 616-pound (279 kg) “Fat Man of Maldon”,[23] as the heaviest authenticated person in recorded history.[20][24]

Despite his shyness, Lambert badly needed to earn money, and saw no alternative to putting himself on display, and charging his spectators.[20] On 4 April 1806, he boarded a specially built carriage and travelled from Leicester[26] to his new home at 53 Piccadilly, then near the western edge of London.[20] For five hours each day, he welcomed visitors into his home, charging each a shilling (about £3.5 as of 2014).[18][25] […] Lambert shared his interests and knowledge of sports, dogs and animal husbandry with London’s middle and upper classes,[27] and it soon became highly fashionable to visit him, or become his friend.[27] Many called repeatedly; one banker made 20 visits, paying the admission fee on each occasion.[17] […] His business venture was immediately successful, drawing around 400 paying visitors per day. […] People would travel long distances to see him (on one occasion, a party of 14 travelled to London from Guernsey),[n 5] and many would spend hours speaking with him on animal breeding.”

“After some months in London, Lambert was visited by Józef Boruwłaski, a 3-foot 3-inch (99 cm) dwarf then in his seventies.[44] Born in 1739 to a poor family in rural Pokuttya,[45] Boruwłaski was generally considered to be the last of Europe’s court dwarfs.[46] He was introduced to the Empress Maria Theresa in 1754,[47] and after a short time residing with deposed Polish king Stanisław Leszczyński,[44] he exhibited himself around Europe, thus becoming a wealthy man.[48] At age 60, he retired to Durham,[49] where he became such a popular figure that the City of Durham paid him to live there[50] and he became one of its most prominent citizens […] The meeting of Lambert and Boruwłaski, the largest and smallest men in the country,[51] was the subject of enormous public interest”

“There was no autopsy, and the cause of Lambert’s death is unknown.[65] While many sources say that he died of a fatty degeneration of the heart or of stress on his heart caused by his bulk, his behaviour in the period leading to his death does not match that of someone suffering from cardiac insufficiency; witnesses agree that on the morning of his death he appeared well, before he became short of breath and collapsed.[65] Bondeson (2006) speculates that the most consistent explanation of his death, given his symptoms and medical history, is that he had a sudden pulmonary embolism.[65]

iii. Geology of the Capitol Reef area.

Waterpocket_Fold_-_Looking_south_from_the_Strike_Valley_Overlook

“The exposed geology of the Capitol Reef area presents a record of mostly Mesozoic-aged sedimentation in an area of North America in and around Capitol Reef National Park, on the Colorado Plateau in southeastern Utah.

Nearly 10,000 feet (3,000 m) of sedimentary strata are found in the Capitol Reef area, representing nearly 200 million years of geologic history of the south-central part of the U.S. state of Utah. These rocks range in age from Permian (as old as 270 million years old) to Cretaceous (as young as 80 million years old.)[1] Rock layers in the area reveal ancient climates as varied as rivers and swamps (Chinle Formation), Sahara-like deserts (Navajo Sandstone), and shallow ocean (Mancos Shale).

The area’s first known sediments were laid down as a shallow sea invaded the land in the Permian. At first sandstone was deposited but limestone followed as the sea deepened. After the sea retreated in the Triassic, streams deposited silt before the area was uplifted and underwent erosion. Conglomerate followed by logs, sand, mud and wind-transported volcanic ash were later added. Mid to Late Triassic time saw increasing aridity, during which vast amounts of sandstone were laid down along with some deposits from slow-moving streams. As another sea started to return it periodically flooded the area and left evaporite deposits. Barrier islands, sand bars and later, tidal flats, contributed sand for sandstone, followed by cobbles for conglomerate and mud for shale. The sea retreated, leaving streams, lakes and swampy plains to become the resting place for sediments. Another sea, the Western Interior Seaway, returned in the Cretaceous and left more sandstone and shale only to disappear in the early Cenozoic.”

“The Laramide orogeny compacted the region from about 70 million to 50 million years ago and in the process created the Rocky Mountains. Many monoclines (a type of gentle upward fold in rock strata) were also formed by the deep compressive forces of the Laramide. One of those monoclines, called the Waterpocket Fold, is the major geographic feature of the park. The 100 mile (160 km) long fold has a north-south alignment with a steeply east-dipping side. The rock layers on the west side of the Waterpocket Fold have been lifted more than 7,000 feet (2,100 m) higher than the layers on the east.[23] Thus older rocks are exposed on the western part of the fold and younger rocks on the eastern part. This particular fold may have been created due to movement along a fault in the Precambrian basement rocks hidden well below any exposed formations. Small earthquakes centered below the fold in 1979 may be from such a fault.[24] […] Ten to fifteen million years ago the entire region was uplifted several thousand feet (well over a kilometer) by the creation of the Colorado Plateaus. This time the uplift was more even, leaving the overall orientation of the formations mostly intact. Most of the erosion that carved today’s landscape occurred after the uplift of the Colorado Plateau with much of the major canyon cutting probably occurring between 1 and 6 million years ago.”

iv. Problem of Apollonius.

“In Euclidean plane geometry, Apollonius’s problem is to construct circles that are tangent to three given circles in a plane (Figure 1).

396px-Apollonius_problem_typical_solution.svg

Apollonius of Perga (ca. 262 BC – ca. 190 BC) posed and solved this famous problem in his work Ἐπαφαί (Epaphaí, “Tangencies”); this work has been lost, but a 4th-century report of his results by Pappus of Alexandria has survived. Three given circles generically have eight different circles that are tangent to them […] and each solution circle encloses or excludes the three given circles in a different way […] The general statement of Apollonius’ problem is to construct one or more circles that are tangent to three given objects in a plane, where an object may be a line, a point or a circle of any size.[1][2][3][4] These objects may be arranged in any way and may cross one another; however, they are usually taken to be distinct, meaning that they do not coincide. Solutions to Apollonius’ problem are sometimes called Apollonius circles, although the term is also used for other types of circles associated with Apollonius. […] A rich repertoire of geometrical and algebraic methods have been developed to solve Apollonius’ problem,[9][10] which has been called “the most famous of all” geometry problems.[3]

v. Globular cluster.

“A globular cluster is a spherical collection of stars that orbits a galactic core as a satellite. Globular clusters are very tightly bound by gravity, which gives them their spherical shapes and relatively high stellar densities toward their centers. The name of this category of star cluster is derived from the Latin globulus—a small sphere. A globular cluster is sometimes known more simply as a globular.

Globular clusters, which are found in the halo of a galaxy, contain considerably more stars and are much older than the less dense galactic, or open clusters, which are found in the disk. Globular clusters are fairly common; there are about 150[2] to 158[3] currently known globular clusters in the Milky Way, with perhaps 10 to 20 more still undiscovered.[4] Large galaxies can have more: Andromeda, for instance, may have as many as 500. […]

Every galaxy of sufficient mass in the Local Group has an associated group of globular clusters, and almost every large galaxy surveyed has been found to possess a system of globular clusters.[8] The Sagittarius Dwarf galaxy and the disputed Canis Major Dwarf galaxy appear to be in the process of donating their associated globular clusters (such as Palomar 12) to the Milky Way.[9] This demonstrates how many of this galaxy’s globular clusters might have been acquired in the past.

Although it appears that globular clusters contain some of the first stars to be produced in the galaxy, their origins and their role in galactic evolution are still unclear.”

October 23, 2014 Posted by | Astronomy, Biology, Ecology, Geography, Geology, History, Mathematics, Paleontology, Wikipedia, Zoology | Leave a comment

Ecological Dynamics (I?)

“Mathematical models underpin much ecological theory, […] [y]et most students of ecology and environmental science receive much less formal training in mathematics than their counterparts in other scientific disciplines. Motivating both graduate and undergraduate students to study ecological dynamics thus requires an introduction which is initially accessible with limited mathematical and computational skill, and yet offers glimpses of the state of the art in at least some areas. This volume represents our attempt to reconcile these conflicting demands […] Ecology is the branch of biology that deals with the interaction of living organisms with their environment. […] The primary aim of this book is to develop general theory for describing ecological dynamics. Given this aspiration, it is useful to identify questions that will be relevant to a wide range of organisms and/or habitats. We shall distinguish questions relating to individuals, populations, communities, and ecosystems. A population is all the organisms of a particular species in a given region. A community is all the populations in a given region. An ecosystem is a community related to its physical and chemical environment. […] Just as the physical and chemical properties of materials are the result of interactions involving individual atoms and molecules, so the dynamics of populations and communities can be interpreted as the combined effects of properties of many individuals […] All models are (at best) approximations to the truth so, given data of sufficient quality and diversity, all models will turn out to be false. The key to understanding the role of models in most ecological applications is to recognise that models exist to answer questions. A model may provide a good description of nature in one context but be woefully inadequate in another. […] Ecology is no different from other disciplines in its reliance on simple models to underpin understanding of complex phenomena. […] the real world, with all its complexity, is initially interpreted through comparison with the simplistic situations described by the models. The inevitable deviations from the model predictions [then] become the starting point for the development of more specific theory.”

I haven’t blogged this book yet even if it’s been a while since I finished it, and I figured I ought to talk a little bit about it now. As pointed out on goodreads, I really liked the book. It’s basically a math textbook for biologists which deals with how to set up models in a specific context, that dealing with questions pertaining to ecological dynamics; having read the above quote you should at this point at least have some idea which kind of stuff this field deals with. Here are a few links to examples of applications mentioned/covered in the book which may give you a better idea of the kinds of things covered.

There are 9 chapters in the book, and only the introductory chapter has fewer than 50 ‘named’ equations – most have around 70-80 equations, and 3 of them have more than 100. I have tried to avoid equations in this post in part because it’s hell to deal with them in wordpress, so I’ll be leaving out a lot of stuff in my coverage. Large chunks of the coverage was to some extent review but there was also some new stuff in there. The book covers material both intended for undergraduates and graduates, and even if the book is presumably intended for biology majors many of the ideas also can be ‘transferred’ to other contexts where the same types of specific modelling frameworks might be applied; for example there are some differences between discrete-time models and continuous-time models, and those differences apply regardless of whether you’re modelling animal behaviour or, say, human behaviour. A local stability analysis looks quite similar in the contexts of an economic model and an ecological model. Etc. I’ve tried to mostly talk about rather ‘general stuff’ in this coverage, i.e. model concepts and key ideas covered in the book which might also be applicable in other fields of research as well. I’ve tried to keep things reasonably simple in this post, and I’ve only talked about stuff from the first three chapters.

“The simplest ecological models, called deterministic models, make the assumption that if we know the present condition of a system, we can predict its future. Before we can begin to formulate such a model, we must decide what quantities, known as state variables, we shall use to describe the current condition of the system. This choice always involves a subtle balance of biological realism (or at least plausibility) against mathematical complexity. […] The first requirement  in formulating a usable model is […] to decide which characteristics are dynamically important in the context of the questions the model seeks to answer. […] The diversity of individual characteristics and behaviours implies that without considerable effort at simplification, a change of focus towards communities will be accompanied by an explosive increase in model complexity. […] A dynamical model is a mathematical statement of the rules governing change. The majority of models express these rules either as an update rule, specifying the relationship between the current and future state of the system, or as a differential equation, specifying the rate of change of the state variables. […] A system with [the] property [that the update rule does not depend on time] is said to be autonomous. […] [If the update rule depends on time, the models are called non-autonomous].”

“Formulation of a dynamic model always starts by identifying the fundamental processes in the system under investigation and then setting out, in mathematical language, the statement that changes in system state can only result from the operation of these processes. The “bookkeeping” framework which expresses this insight is often called a conservation equation or a balance equation. […] Writing down balance equations is just the first step in formulating an ecological model, since only in the most restrictive circumstances do balance equations on their own contain enough information to allow prediction of future values of state variables. In general, [deterministic] model formulation involves three distinct steps: *choose state variables, *derive balance equations, *make model-specific assumptions.
Selection of state variables involves biological or ecological judgment […] Deriving balance equations involves both ecological choices (what processes to include) and mathematical reasoning. The final step, the selection of assumptions particular to any one model, is left to last in order to facilitate model refinement. For example, if a model makes predictions that are at variance with observation, we may wish to change one of the model assumptions, while still retaining the same state variables and processes in the balance equations. […] a remarkably good approximation to […] stochastic dynamics is often obtained by regarding the dynamics as ‘perturbations’ of a non-autonomous, deterministic system. […] although randomness is ubiquitous, deterministic models are an appropriate starting point for much ecological modelling. […] even where deterministic models are inadequate, an essential prerequisite to the formulation and analysis of many complex, stochastic models is a good understanding of a deterministic representation of the system under investigation.”

“Faced with an update rule or a balance equation describing an ecological system, what do we do? The most obvious line of attack is to attempt to find an analytical solution […] However, except for the simplest models, analytical solutions tend to be impossible to derive or to involve formulae so complex as to be completely unhelpful. In other situations, an explicit solution can be calculated numerically. A numerical solution of a difference equation is a table of values of the state variable (or variables) at successive time steps, obtained by repeated application of the update rule […] Numerical solutions of differential equations are more tricky [but sophisticated methods for finding them do exist] […] for simple systems it is possible to obtain considerable insight by ‘numerical experiments’ involving solutions for a number of parameter values and/or initial conditions. For more complex models, numerical analysis is typically the only approach available. But the unpleasant reality is that in the vast majority of investigations it proves impossible to obtain complete or near-complete information about a dynamical system, either by deriving analytical solutions or by numerical experimentation. It is therefore reassuring that over the past century or so, mathematicians have developed methods of determining the qualitative properties of the solutions of dynamic equations, and thus answering many questions […] without explicitly solving the equations concerned.”

“[If] the long-term behaviour of the state variable is independent of the initial condition […] the ‘end state’ […] is known as an attractor. […] Equilibrium states need not be attractors; they can be repellers [as well] […] if a dynamical system has an equilibrium state, any initial condition other than the exact equilibrium value may lead to the state variable converging towards the equilibrium or diverging away from it. We characterize such equilibria as stable and unstable respectively. In some models all initial conditions result in the state variable eventually converging towards a single equilibrium value. We characterize such equilibria as globally stable. An equilibrium that is approached only from a subset of all possible initial conditions (often those close to the equilibrium itself) is said to be locally stable. […] The combination of non-periodic solutions and sensitive dependence on initial conditions is the signature of the pattern of behaviour known to mathematicians as chaos.

“Most variables and parameters in models have units. […] However, the behaviour of a natural system cannot be affected by the units in which we chose to measure the quantities we use to describe it. This implies that it should be possible to write down the defining equations of a model in a form independent of the units we use. For any dynamical equation to be valid, the quantities being equated must be measured in the same units. How then do we restate such an equation in a form which is unaffected by our choice of units? The answer lies in identifying a natural scale or base unit for each quantity in the equations and then using the ratio of each variable to its natural scale in our dynamic description. Since such ratios are pure numbers, we say that they are dimensionless. If a dynamic equation couched in terms of dimensionless variables is to be valid, then both sides of any equality must likewise be dimensionless. […] the process of non-dimensionalisation, which we call dimensional analysis, can […] yield information on system dynamics. […] Since there is no unique dimensionless form for any set of dynamical equations, it is tempting to cut short the scaling process by ‘setting some parameter(s) equal to one’. Even experienced modellers make embarrasing blunders doing this, and we strongly recommend a systematic […] approach […] The key element in the scaling process is the selection of appropriate base units – the optimal choice being dependent on the questions motivating our study.”

“The starting point for selecting the appropriate formalism [in the context of the time dimension] must […] be recognition that real ecological processes operate in continuous time. Discrete-time models make some approximation to the outcome of these processes over a finite time interval, and should thus be interpreted with care. This caution is particularly important as difference equations are intuitively appealing and computationally simple. […] incautious empirical modelling with difference equations can have surprising (adverse) consequences. […] where the time increment of a discrete-time model is an arbitrary modelling choice, model predictions should be shown to be robust against changes in the value chosen.”

“Of the almost limitless range of relations between population flux and local density, we shall discuss only two extreme possibilities. Advection occurs when an external physical flow (such as an ocean current) transports all the members of the population past the point, x [in a spatially one-dimensional model], with essentially the same velocity, v. […] Diffusion occurs when the members of the population move at random. […] This leads to a net flow rate which is proportional to the spatial gradient of population density, with a constant of proportionality D, which we call the diffusion constant. […] the net flow [in this case] takes individuals from regions of high density to regions of low density” […] […some remarks about reaction-diffusion models, which I’d initially thought I’d cover here but which turned out to be too much work to deal with (the coverage is highly context-dependent)].

October 19, 2014 Posted by | Biology, Books, Ecology, Mathematics | Leave a comment

An Introduction to Tropical Rain Forests (III)

This will be my last post about the book. I’ve included some observations from the second half of the book below.

“In the present chapter we look at […] time scales of a few years to a few centuries, up to the life spans of one or a few generations of trees. Change is examined in the context of development and disintegration of the forest canopy, the forest growth cycle […] There seems to be a general model of forest dynamics which holds in many different biomes, albeit with local variants. […] Two spatial scales of canopy dynamics can be distinguished: patch disturbance, which involves one or a few trees, and community-wide disturbance. Patch disturbance is sometimes called ‘forest gap-phase dynamics’ and since about the mid-1970s has been one of the main interests of forest scientists in many parts of the world.”

“Species differ in the microclimate in which they successfully regenerate. […] the microclimates within a rain forest […] are mainly determined by size of the canopy gap. The microclimate above the forest canopy, which is similar to that in a large clearing, is substantially different from that near the floor below mature phase forest. […] Outside, wind speeds during the day are higher, as is air temperature, while relative humidity is lower. […] The light climate within a forest is complex. There are four components, skylight coming through canopy holes, direct sunlight, seen as sunflecks on the forest floor, light transmitted through leaves, and light reflected from leaves, trunks and other surfaces. […] Both the quantity and quality of light reaching the plant is known to be of profound importance in the mechanisms of gap-phase dynamics […] The waveband 400 to 700 nm (which is approximately the visual spectrum) is utilized for photosynthesis and is known as photosynthetically active radiation or PAR. The forest floor only receives up to c. 2 per cent of the PAR incident on the forest canopy […] In addition to reduction in quantity of PAR within the forest canopy, PAR also changes in quality with a shift in the ratio of red to far-red wavelenghts […] the temporal pattern of sunfleck distribution through the day […] is of importance, not just the daily total PAR. […] The role of irradiance in seedling growth and release is easy to observe and has been much investigated. By contrast, little attention has been given to the potential role of plant mineral nutrients. […] So far, nutrients seem unimportant compared to radiation. […] Overall the shade/nutrient interaction story remains unresolved. One part of the picture is likely to be that there is no response to nutrients in dark conditions where irradiance is limiting, but a response at higher irradiances.”

“Canopy gaps have an aerial microclimate like that above the forest but the smaller the gap the less different it is from the forest interior […] Gaps were at first regarded as having a microclimate varying with their size, to be contrasted with closed-forest microclimate. But this is a simplification. […] gaps are neither homogenous holes nor are they sharply bounded. Within a gap the microclimate is most extreme towards the centre and changes outwards to the physical gap edge and beyond […] The larger the gap the more extreme the microclimate of its centre. […] there is much more variability between small gaps than large ones in microclimate [and] gap size is a poor surrogate measure of microclimate, most markedly over short periods.”

“tree species differ in the amount of solar radiation required for their regeneration. […] Ecologists and foresters continue to engage in vigorous debate as to whether species along [the] spectrum of light climates can be divided into clear, separate groups. […] some strong light-demanders require full light for both seed germination and seedling establishment. These are the pioneer species, set apart from all others by these two features.[168] By contrast, all other species have the capacity to germinate and establish below canopy shade. These may be called climax species. They are able to perpetuate in the same place, but are an extremely diverse group. […] Pioneer species germinate and establish in a gap after its creation […] They grow fast […] Below the canopy seedlings of climax species establish and, as the pioneer canopy breaks up after the death of individual trees, these climax species are ‘released’ […] and grow up as a second growth cycle. Succession has occurred as a group of climax species replaces the group of pioneer species.[…] Climax species as a group […] perpetuate themselves in situ, there is no directional change in species composition. This is called cyclic regeneration or replacement. In a small gap, pre-existing climax seedlings are released. In a large gap pioneers, which appear after gap creation, form the next forest growth cycle. One of the puzzles which remains unsolved is what determines gap-switch size. […] In all tropical rain forest floras there are fewer pioneer than climax species, and they mostly belong to a few families […] The most species-rich forested landscape will be one that includes both patches of secondary forest recovering from a big disturbance and consisting of pioneers, and also patches of primary forest composed of climax species.”

“Rain forest silviculture is the manipulation of the forest to favour species and thereby to enhance its value to humans. […] Timber properties, whether heavy or light, dark or pale, durable or not, are strongly correlated with growth rate and thus to the extent to which the species is light-demanding […]. Thus, the ecological basis of natural forest silviculture is the manipulation of the forest canopy. The biological principle of silviculture is that by controlling canopy gap size it is possible to influence species composition of the next growth cycle. The bigger the gaps the more fast-growing light-demanders will be favoured. This concept has been known in continental Europe since at least the twelth century. […] The silvicultural systems that have been applied to tropical rain forests belong to one of two kinds: the polycyclic and monocyclic systems, respectively […]. As the name implies, polycyclic systems are based on the repeated removal of selected trees in a continuing series of felling cycles, whose length is less than the time it takes the tree to mature [rotation age]. The aim is to remove trees before they begin to deteriorate from old age […] extraction on a polycyclic system tends to result in the formation of scattered small gaps in the forest canopy. By contrast, monocyclic systems remove all saleable trees at a single operation, and the length of the cycle more or less equals the rotation age of the trees. Except in those cases where there are few saleable trees, damage to the forest is more drastic than under a polycyclic system, the canopy is more extensively destroed, and bigger gaps are formed. […] the two kinds of system will tend to favour shade-bearing and light-demanding species, respectively, but the extent of the difference will depend on how many trees are felled at each cycle in a polycyclic system. […] Low intensity selective logging on a polycyclic system closely mimics the natural processes of forest dynamics and scarcely alters the composition. Monocyclic silvicultural systems, and polycyclic systems with many stems felled per hectare, shift species composition […] The amount of damage to the forest depends more on how many trees are felled than on timber volume extracted. It is commonly the case that for every tree removed for timber (logged) a second tree is totally smashed and a third tree receives damage from which it will recover”

“The essense of shifting agriculture (sometimes called swidden agriculture) is to fell a patch of forest, allow it to dry to the point where it will burn well, and then to set it on fire. The plant mineral nutrients are thereby mobilized and become available to plants in the ash. One or two fast-maturing crops of staple food species are grown […]. Yields then fall and the patch is abandoned to allow secondary forest to grow. Longer-lived species, such as chilli […] and fruit trees, and some root crops such as cassava […] are planted with the staples and continue to yield in the first years of the fallow period. Besides fruit and root crops the bush fallow, as it is often called, provides firewood, medicines, and building materials. After a minimum of 7 to 10 years the cycle can be repeated. There are many variants. Shifting agriculture was invented independently in all parts of the tropical world[253] and has proved sustainable over many centuries. […] It is now realized that shifting agriculture, as traditionally practised, is a sustainable low-input form of cultivation which can continue indefinitely on the infertile soils underlying most tropical rain forest […], provided the carrying capacity of the land is not exceeded. […] Shifting agriculture has the limitation that it can usually only support 10-20 persons km-2 […] because at any one time only c. 10 per cent of the area is under cultivation. It breaks down if either the bush fallow period is excessively shortened or if the period of cultivation is extended for too long, either of which is likely to occur if population increases and a land shortage develops. There is, however, another mode of shifting agriculture which is totally destructive […]. Farmers fell and burn the forest and grow crops on the released nutrients for several years in succession, continuing until coppicing potential and the soil seed bank are exhausted, pernicious weeds invade, and soil nutrients are seriously depleted. They then move on to a new patch of virgin forest. This is happening, for example, in parts of western Amazonia […] Replacement of forests by agriculture totally destroys them. If farmland is abandoned it is likely to take several centuries before all signs of forest succession have disappeared, and species-rich, structurally complex primary forest restored […] Agriculture is the main purpose for which rain forests are cleared. There are several major kinds of agriculture and their impact varies from place to place. Important detail is lost by pan-tropical generalization.”

“The mixed cultivation of trees and crops, agroforestry […], makes use of nutrient cycling by trees, as does shifting agriculture. Trees act as pumps, bringing nutrients into the superficial layers of the soil where shallow-rooted herbacious crops can utilize them. […] Early research led to the belief that nearly all the mineral nutrients in tropical rain forests are in the above-ground biomass and, despite much evidence to the contrary, this view is still sometimes expressed. [However] the popular belief that most of the nutrients of a tropical rain forest are in the biomass is seldom true.”

“Given a rich regional flora, forests are particularly favourable for the co-existence of many species in the same community, because they provide many different niches. […] The forest provides a whole array of different internal microclimates, both horizontally and vertically [recall this related observation from McMenamin & McMenamin: “One aspect of the environment that controls the number and types of organisms living in the environment is called its dimensionality […]. Two-dimensional (or Dimension 2) environments tend to be flat, whereas three-dimensional environments (Dimension 3) have, to a greater or lesser degree, a third dimension. This third dimension can be either in an upward or a downward direction, or a combination of both directions.” Additional dimensions add additional opportunities for specialization.] […] The same processes operate in all forests but forests have different degrees of complexity in canopy structure and differ in the number of species that occupy the many facets of what may be termed the ‘regeneration niche’. […] one-to-one specialization between a single plant and animal species as a factor of species richness exists only in a few cases […] Guilds of insects specialized to feed on (and where necessary detoxify) particular families or similar families of plants […] is a looser and commoner form of co-evolution and plays a more substantial role in the packing together of numerous sympatric species […] Browsing pressure (‘pest pressure’) of herbivores […] may be one factor that sometimes prevents any single species from attaining dominance, and acts to maintain species richness. In a similar manner dense seedling populations below a parent tree are often thinned out by disease or herbivory […] and this also therefore contributes to the prevention of single species dominance.”

“An important difference of tropical rain forests from others is the occurence of locally endemic species […]. This is one component of their species richness on the extensive scale. It means that in different places a particular niche may be occupied by different species which never compete because they never meet. It has the consequence that species are likely to become extinct when a rain forest is reduced in extent, more so than in other forest biomes. […] the main reasons why some tropical rain forests are extremely rich in species results from firstly, a long stable climatic history without episodes of extinction, in an equable environment, and in which there is no ‘climatic sieve’ to eliminate some species. Secondly, a forest canopy provides large numbers of spatial and temporal niches […] Thirdly, richness results from interactions with animals, mainly as pollinators, dispersers, or pests. Some of these factors underly species richness in other biomes also. […] The overall effeect of all of humankind’s many different impacts on tropical rain forests is to diminish the numerous dimensions of species richness. Not only does man destroy species, he also simplifies the ecosystems the remaining species inhabit.”

“the claim sometimes made that rain forests contain enormous numbers of drugs just awaiting exploitation does not survive critical examination.[319] Reality is more complex, and there are serious difficulties in developing an economic case for biodiversity conservation based on undiscovered pharmaceuticals. […] The cessation of logging is [likewise] not a realistic option, as too much money is at stake for both the nations and individuals involved.”

“Animal geneticists have given considerable thought to the question of how many individuals are necessary to maintain the full genetic integrity of a species in perpetuity.[425] Much has been learned from zoos. A simple but extremely crude rule-of-thumb is that a minimum population of 50 breeding adults maintains fitness in the short term, thus preserving a species ‘frozen’ at one instant of time. To prevent continual loss of genetic diversity (‘genetic erosion’) over the long term […] requires a big population, and a minimum of 500 breeding adults has been suggested to be necessary. This 50/500 rule is only a very rough approximation and can differ widely between species. […] Most difficult to conserve are animals (or indeed plants too) that live at very low population density (e.g. hornbills, tapir, and top carnivores, such as jaguar and tiger), or that have large territories (e.g. gaur, elephant) […] Increasingly in the future, tropical rain forest will only remain as fragments. […] There is a problem that such fragments may break the 50/500 rule […] and contain too few individuals of a species for its long-term genetic integrity. Species that occur at low density are especially vulnerable to genetic erosion, to chance extinction when numbers fall […], or to inbreeding depression. In particular, many trees live several centuries and may be persisting today but unable to breed, so the species is ‘living but dead’, doomed to extinction. […] small forest remnants may be too small to support certain species and this may have repercussions on other components of the ecosystem. […] Besides reduction in area, forest fragmentation also increases the proportion of edge relative to interior […] and if the fragments are surrounded by open land this will result in a change of microclimate.”

 

September 23, 2014 Posted by | Biology, Books, Botany, Ecology, Evolutionary biology, Genetics, Geography | Leave a comment

An Introduction to Tropical Rain Forests (II)

First an update on the issues I mentioned earlier this week: I had a guy come by and ‘fix the internet problem’ yesterday. Approximately an hour after he left I lost my connection, and it was gone for the rest of the day. I have internet now. If the problem is not solved by a second visit on Monday (they’ll send another guy over), the ISP just lost a customer – I’ll give them no more chances, I can’t live like this. The uncertainty is both incredibly stressful and frankly infuriating. I actually lost internet while writing this post. Down periods seem completely random and may last from 5 minutes to 12 hours. I’m much more dependent on the internet than are most people in part because most of my social interaction with others takes place online.

I’ve read four Christie novels within the last week and I finished The Gambler by Dostoyevsky earlier today – in case you were wondering why I’ve suddenly started reading a lot of fiction, the answer is simple: I’m awake for 16+ hours each day, and if I can’t go online to relax during my off hours I have to find some other way to distract-/enjoy-/whatever myself. Novels are one of the tools I’ve employed.

The internet issue is more important than the computer issue also in terms of the blogging context; the computer I’m using at the moment is unreliable, but seems to cause a limited amount of trouble when I’m doing simple stuff like blogging.

Okay, on to the book. I was rather harsh in my first post, but I did also mention that it had a lot of good stuff. I’ve included some of that stuff in this post below.

“Forests, because of their stature, have internal microclimates that differ from the general climate outside the canopy. […] In general terms, it is cool, humid, and dark near the floor of a mature patch of forest, progressively altering upwards to the canopy top. Different plants and animal species have specialized to the various forest interior microclimates […] Night is the winter of the tropics, because the diurnal range of mean daily temperature exceeds the annual range and is greater in drier months. […] Rain forests develop where every month is wet (with 100 mm rainfal or more), or there are only short dry periods which occur mainly as unpredictable spells lasting only a few days or weeks. Where there are several dry months (60 mm rainfal or less) of regular occurence, monsoon forests exist. Outside Asia these are usually called tropical seasonal forests. […] To the biologist […] there are major differences, and this book is about tropical rain forests, those which occur in the everwet (perhumid) climates, with only passing mention of monsoon forests.”

“Tropical rain forests occur in all three tropical land areas […]. Most extensive are the American or neotropical rain forests, about half the global total, 4 x 106 km2 in area, and one-sixth of the total broad-leaf forest of the world. […] The second largest block of tropical rain forest occurs in the Eastern tropics, and is estimated to cover 2.5 x 106 km2. It is centred on the Malay archipelago, the region known to botanists as Malesia. Indonesia[25] occupies most of the archipelago and is second to Brazil in the amount of rain forest it possesses. […] Africa has the smallest block of tropical rain forest, 1.8 x 106 km2. This is centred on the Congo basin, reaching from the high mountains at its eastern limit westwards to the Atlantic Ocean, with outliers in East Africa. […] Outside the Congo core the African rain forests have been extensively destroyed.”

“It is now believed that about half the world’s species occur in tropical rain forests although they only occupy about seven per cent of the land area. […] Just how many species the world’s rain forests contain is still […] only a matter of rough conjecture. For mammals, birds, and other larger animals there are roughly twice as many species in tropical regions as temperate ones […]. These groups are fairly well studied, insects and other invertebrates much less so […] The humid tropics are extremely rich in plant species. Of the total of approximately 250 000 species of flowering plants in the world, about two-thirds (170 000) occur in the tropics. Half of these are in the New World south of the Mexico/US frontier, 21 000 in tropical Africa (plus 10 000 in Madagascar) and 50 000 in tropical and subtropical Asia, with 36 000 in Malesia. […] There are similarities, especially at family level, between all three blocks of tropical rain forest, but there are fewer genera in common and not many species. […] In flora Africa has been called ‘the odd man out’;[52] there are fewer families, fewer genera, and fewer species in her rain forests than in either America or Asia. For example, there are 18 genera and 51 species of native palms on Singapore island,[53] as many as on the whole of mainland Africa (15 genera, 50 species) […] There are also differences within each rain forest region. […] meaningful discussions of species richness must specify scale.[60] For example, we may usefully compare richness within rain forests by counting tree species on plots of c. 1 ha. This within-community diversity has been called alpha diversity. At the other extreme we can record species richness of a whole landscape made up of several communities, and this has been called gamma diversity. The fynbos is very rich with 8500 species on 89 000 km2. It is made up of a mosaic of different floristic communities, each of which has rather few species. That is to say fynbos has low alpha and high gamma diversity. Within a single floristic community species replace each other from place to place. This gives a third component to richness, known as beta diversity. For example, within lowland rain forest there are differences in species within a single community between ridges, hillsides, and valleys.”

“Most rain forest trees […] exhibit intermittent shoot growth […] The intermittent growth of the shoot tips is seldom reflected by growth rings in the wood, and where it is these are not annual and often not annular either. Rain forest trees, unlike those of seasonal climates, cannot be aged by counting wood rings […] tree age cannot be measured directly. It has [also] been found that the fastest growing juvenile trees in a forest are the ones most likely to succeed, so growth rates averaged from a number of stems are misleading. […] we have very little reliable information on how long trees can live. […] Most of the root biomass is in the top 0.3 m or so of the soil and there is sometimes a concentration or root mat at the surface. […] Roots up to 2 mm in diameter form 20-50 per cent of the total root biomass[79] and their believed rapid turnover is probably a significant part of ecosystem nutrient cycles”

“Besides differences between the three tropical regions there are other differences within them. One major pattern is that within the African and American rain forests there are areas of especially high species richness, set like islands in a sea of relative poverty. […] No such patchiness has been detected in Asia, where the major pattern is set by Wallace’s Line, one of the sharpest zoogeographical boundaries in the world and which delimits the continental Asian faunas from the Australasian […]. These patterns are now realized to have explanations based on Earth[‘s] history […] Gondwanaland and Laurasia were [originally] separated by the great Tethys Ocean. Tethys was closed by the northwards movement of parts of Gondwanaland […]. First Africa and then India drifted north and collided with the southern margin of Laurasia. Further east the continental plate which comprised Antarctica/Australia/southern New Guinea moved northwards, broke in two leaving Antarctica behind, and, as a simplification, collided with the southeast extremity of Laurasia, at about 15 million years ago, the mid-Miocene; this created the Malay archipelago (Malesia) as it exists today. Both super-continents had their own sets of plants and animals. […] Western and eastern Malesia have very different animals, demarcated by a very sharp boundary, Wallace’s line. […] the evolution of the Malay archipelago was in fact more complex than a single collision.[145] Various shards progressively broke off Gondwana from the Jurassic onwards, drifted northwards, and became embedded in what is now continental Asia […]  The climate of the tropics has been continually changing. The old idea of fixity is quite wrong; climatic changes have had profound influences on species ranges.”

“Most knowledge about past climates is for the last 2 million years, the Quaternary period, during which there has been repeated alternation at high latitudes near the poles between Ice Ages or Glacial periods and Interglacials. During Glacial periods tropical climates were slightly cooler and drier, with lower and more seasonal rainfall. During these times rain forests became less extensive and seasonal forests expanded. Most of the Quaternary was like that; present-day climates are extreme and not typical of the period as a whole. Today we live at the height of an Interglacial. […] At the Glacial maxima sea levels were lower by as much as 180 m […] Sea surface temperature was cooler than today, by 5 ° C or more[147] at 18 000 BP in the tropics. […] Rain forests were more extensive than at any time in the Quaternary during the early Pliocene, parts of the Miocene, and especially the early Eocene; so these were all warm periods. Then, in the late Tertiary, fluctuations similar to those of the Quaternary occurred. […] Africa [as mentioned] has a much poorer flora than the other two rain forest regions.[152] This is believed to be because it was much more strongly dessicated during the Tertiary. […] Australia too suffered strong Tertiary dessication. At that time its mesic vegetation became mainly confined to the eastern seaboard. The strip of tropical rain forests found today in north Queensland is only 2-30 km wide and is of particular interest because it contains the relicts of the old mesic flora. This includes the ancestors from which many modern Australian species adapted to hot dry climates are believed to have evolved […] New Caledonia is a shard of Gondwanaland which drifted away eastwards from northeast Australia starting in the Upper Cretaceous 82 million BP. Because it is an island its vegetation has suffered less from the drier Glacial climates so more of the old flora has survived. The lands bordering the western Pacific have the greatest concentration of primitive flowering plants found anywhere […] It is most likely that they survived here as relicts.”

“rain forests have waxed and waned in extent during the Quaternary, and probably in the Tertiary too, and are not the ancient and immutable bastions where life originated which populist writings still sometimes suggest. In the present Interglacial they are as extensive as they have ever been, or nearly so. At glacial maxima lowland rain forests are believed to have contracted and only to have persisted in places where conditions remained favourable for them, as patches surrounded by tropical seasonal forests, like islands set in a sea. In subsequent Interglacials, as perhumid conditions returned, the rain forests expanded out of these patches, which have come to be called Pleistocene refugia. In the late 1960s it was shown that within Amazonia birds have areas of high species endemism and richness which are surrounded by relatively poorer areas. The same was soon demonstrated for lizards.[153] Subsequently many groups of animals have been shown to exhibit such patchiness […] The centres of concentration more or less coincide with each other […] These loci overlap with areas that geoscientific evidence suggests retained rain forest during Pleistocene glaciations […] In the African rain forests four groups of loci of species richness and endemism are now recognized […] Most parts of Malesia today are about as equally rich in species, including endemics, as the Pleistocene refugia of Africa and America. At the Glacial maxima the Sunda and Sahul continental shelves were exposed by falling sealevel. Rain forests were likely to have become confined to the more mountaineous places where there was more, orographic, rain. The main development of seasonal forests in this region is likely to have been on the newly exposed lowlands, and when sea-level rose again at the next Interglacial these and the physical signs of seasonal climates […] were drowned. The parts of Malesia that are above sea-level today probably remained, largely perhumid and covered by rain forest, which explains their extreme species richness and their lack of geoscientific evidence of seasonal past climates. […] Present-day lowland rain forest communities consist of plant and animal species that have survived past climatic vicissitudes or have immigrated since the climate ameliorated. Thus many species co-exist today as a result of historical chance, not because they co-evolved together. Their communities are neither immutable nor finely tuned. This point is of great importance to the ideas scientists have expressed concerning plant-animal interactions […] Those parts of the world’s tropical rain forests that are most rich in species are those that the evidence shows have been the most stable, where species have evolved and continued to accumulate with the passage of time without episodes of extinction caused by unfavourable climatic periods. This is similar to the pattern observed in other forest biomes”

September 20, 2014 Posted by | Biology, Books, Botany, climate, Ecology, Evolutionary biology, Geography, Geology | Leave a comment

An Introduction to Tropical Rain Forests (I)

This will just be a brief introductory post to the book, which I gave two stars on goodreads – I have internet and the computer seems to not give me too much trouble right now, so I thought I should post something while I have the chance. The book was hard to rate, in a way. Some parts were highly informative and really quite nice. In other parts the author was ‘out of line’, and he goes completely overboard towards the end – the last couple of chapters contain a lot of political stuff. I have included below a couple of examples of some passages the inclusion of which I had issues with:

“It is also fair comment that human-induced extinction today is as great as any of the five previous extinction spasms life on earth has experienced.”

I have read about the human impact on species diversity before, e.g. in Wilson or van der Geer et al.. I have also read about those other extinction events he talks about. I mention this because if you have not read about both, it may be natural to not feel perfectly confident judging on the matter – but I have, and I do. My conclusion is that saying that the human-induced extinction occuring today is “as great as” the Permian extinction event in my mind makes you look really stupid. Either the author doesn’t know what he’s talking about, or he had stopped thinking when he wrote that, which is something that often happens when people get emotional and start going into tribal defence mode and making political points. Which is why I try to avoid political books. Here’s a funny combination of quotes:

i. “The failure of silviculture follows from working beyond the limits of the inherent dynamic capabilities of the forest ecosystem. This is commonly because rules drawn up by silviculturalists are not enforced, often because of political intervention. It may also be because economists, eager to enrich a nation, enforce their dismal pseudoscience to override basic logical principles and dictate the removal of a larger harvest than the forest can sustain without degradation.”

ii. “There have been attempts by campaigning groups in recent years to turn the clock back, sometimes claiming forests have a greater cash value for minor forest products than for timber.[324] A review of 24 studies found that the median annual value per hectare of sustainably produced, marketable non-timber forest products was $50 year−1.[325] As a natural rain forest grows commercial timber at 1-2 m3 year−1 ha−1 or more, and this is worth over $100 m−3, sustainable production of timber is of greater value by a factor of at least two to four.”

The word ‘hypocrite’ sprang to mind when I read the second quote. Who does he think conducts such review studies – soil scientists? If economics is pseudo-science, as he himself indicated that he thought earlier in the book, then why should we trust those estimates? On a related note, should evolutionary biologists stop using game theory as well – where does he think core concepts in evolutionary biology like ESS come from? Good luck analyzing equilibrium dynamics of any kind without using tools also used in economics and/or developed by economists.

It actually seems to me to be a general problem in some fields of biology that lots of researchers have a problem separating politics and science – the social sciences really aren’t the only parts of academia where this kind of stuff is a problem. I have a strong preference for not encountering emotional/political arguments in academic publications, and so I tend to notice them when they’re there, whether or not I agree with them. There’s a lot of good stuff in this book and I’ll talk about this later here on the blog, but there’s a lot of problematic stuff as well, and I punish that kind of stuff hard regardless of where I find it. The quotes above are not unique but to me seem to illustrate the mindset reasonably well.

The book covers stuff also covered in Herrera et al., Wilson, and van der Geer et al., and concepts I knew about from McMenamin & McMenamin also popped up along the way. Herrera et al. of course contains entire chapters about stuff only covered in a paragraph or two in this book. The book deals with aspects of ecological dynamics as well through the coverage of the forest growth cycle and gap-phase dynamics as well as related stuff like nutrient cycles, but the coverage in here is much less technical than is Gurney and Nisbet’s coverage – this book is easy to read compared to their text. I mention these things because although I think the book was quite readable I have seen a lot of coverage of related stuff already at this point, so I may not be the best person to ask. My overall impression is however that people reading along here should not have great difficulties reading and understanding this book.

September 18, 2014 Posted by | Biology, Books, Botany, Ecology, Paleontology | Leave a comment

Wikipedia articles of interest

i. Dodo (featured article).

“The dodo (Raphus cucullatus) is an extinct flightless bird that was endemic to the island of Mauritius, east of Madagascar in the Indian Ocean. Its closest genetic relative was the also extinct Rodrigues solitaire, the two forming the subfamily Raphinae of the family of pigeons and doves. […] Subfossil remains show the dodo was about 1 metre (3.3 feet) tall and may have weighed 10–18 kg (22–40 lb) in the wild. The dodo’s appearance in life is evidenced only by drawings, paintings and written accounts from the 17th century. Because these vary considerably, and because only some illustrations are known to have been drawn from live specimens, its exact appearance in life remains unresolved. Similarly, little is known with certainty about its habitat and behaviour.”

“The first recorded mention of the dodo was by Dutch sailors in 1598. In the following years, the bird was hunted by sailors, their domesticated animals, and invasive species introduced during that time. The last widely accepted sighting of a dodo was in 1662. Its extinction was not immediately noticed, and some considered it to be a mythical creature. In the 19th century, research was conducted on a small quantity of remains of four specimens that had been brought to Europe in the early 17th century. Among these is a dried head, the only soft tissue of the dodo that remains today. Since then, a large amount of subfossil material has been collected from Mauritius […] The dodo was anatomically similar to pigeons in many features. […] The dodo differed from other pigeons mainly in the small size of the wings and the large size of the beak in proportion to the rest of the cranium. […] Many of the skeletal features that distinguish the dodo and the Rodrigues solitaire, its closest relative, from pigeons have been attributed to their flightlessness. […] The lack of mammalian herbivores competing for resources on these islands allowed the solitaire and the dodo to attain very large sizes.[19]” [If the last sentence sparked your interest and/or might be something about which you’d like to know more, I have previously covered a great book on related topics here on the blog]

“The etymology of the word dodo is unclear. Some ascribe it to the Dutch word dodoor for “sluggard”, but it is more probably related to Dodaars, which means either “fat-arse” or “knot-arse”, referring to the knot of feathers on the hind end. […] The traditional image of the dodo is of a very fat and clumsy bird, but this view may be exaggerated. The general opinion of scientists today is that many old European depictions were based on overfed captive birds or crudely stuffed specimens.[44]

“Like many animals that evolved in isolation from significant predators, the dodo was entirely fearless of humans. This fearlessness and its inability to fly made the dodo easy prey for sailors.[79] Although some scattered reports describe mass killings of dodos for ships’ provisions, archaeological investigations have found scant evidence of human predation. […] The human population on Mauritius (an area of 1,860 km2 or 720 sq mi) never exceeded 50 people in the 17th century, but they introduced other animals, including dogs, pigs, cats, rats, and crab-eating macaques, which plundered dodo nests and competed for the limited food resources.[37] At the same time, humans destroyed the dodo’s forest habitat. The impact of these introduced animals, especially the pigs and macaques, on the dodo population is currently considered more severe than that of hunting. […] Even though the rareness of the dodo was reported already in the 17th century, its extinction was not recognised until the 19th century. This was partly because, for religious reasons, extinction was not believed possible until later proved so by Georges Cuvier, and partly because many scientists doubted that the dodo had ever existed. It seemed altogether too strange a creature, and many believed it a myth.”

Some of the contemporary accounts and illustrations included in the article, from which behavioural patterns etc. have been inferred, I found quite depressing. Two illustrative quotes and a contemporary engraving are included below:

“Blue parrots are very numerous there, as well as other birds; among which are a kind, conspicuous for their size, larger than our swans, with huge heads only half covered with skin as if clothed with a hood. […] These we used to call ‘Walghvogel’, for the reason that the longer and oftener they were cooked, the less soft and more insipid eating they became. Nevertheless their belly and breast were of a pleasant flavour and easily masticated.[40]

“I have seen in Mauritius birds bigger than a Swan, without feathers on the body, which is covered with a black down; the hinder part is round, the rump adorned with curled feathers as many in number as the bird is years old. […] We call them Oiseaux de Nazaret. The fat is excellent to give ease to the muscles and nerves.[7]

640px-Jacht_op_dodo's_door_Willem_van_West-Zanen_uit_1602

ii. Armero tragedy (featured).

“The Armero tragedy […] was one of the major consequences of the eruption of the Nevado del Ruiz stratovolcano in Tolima, Colombia, on November 13, 1985. After 69 years of dormancy, the volcano’s eruption caught nearby towns unaware, even though the government had received warnings from multiple volcanological organizations to evacuate the area when volcanic activity had been detected in September 1985.[1]

As pyroclastic flows erupted from the volcano’s crater, they melted the mountain’s glaciers, sending four enormous lahars (volcanically induced mudslides, landslides, and debris flows) down its slopes at 50 kilometers per hour (30 miles per hour). The lahars picked up speed in gullies and coursed into the six major rivers at the base of the volcano; they engulfed the town of Armero, killing more than 20,000 of its almost 29,000 inhabitants.[2] Casualties in other towns, particularly Chinchiná, brought the overall death toll to 23,000. […] The relief efforts were hindered by the composition of the mud, which made it nearly impossible to move through without becoming stuck. By the time relief workers reached Armero twelve hours after the eruption, many of the victims with serious injuries were dead. The relief workers were horrified by the landscape of fallen trees, disfigured human bodies, and piles of debris from entire houses. […] The event was a foreseeable catastrophe exacerbated by the populace’s unawareness of the volcano’s destructive history; geologists and other experts had warned authorities and media outlets about the danger over the weeks and days leading up to the eruption.”

“The day of the eruption, black ash columns erupted from the volcano at approximately 3:00 pm local time. The local Civil Defense director was promptly alerted to the situation. He contacted INGEOMINAS, which ruled that the area should be evacuated; he was then told to contact the Civil Defense directors in Bogotá and Tolima. Between 5:00 and 7:00 pm, the ash stopped falling, and local officials instructed people to “stay calm” and go inside. Around 5:00 pm an emergency committee meeting was called, and when it ended at 7:00 pm, several members contacted the regional Red Cross over the intended evacuation efforts at Armero, Mariquita, and Honda. The Ibagué Red Cross contacted Armero’s officials and ordered an evacuation, which was not carried out because of electrical problems caused by a storm. The storm’s heavy rain and constant thunder may have overpowered the noise of the volcano, and with no systematic warning efforts, the residents of Armero were completely unaware of the continuing activity at Ruiz. At 9:45 pm, after the volcano had erupted, Civil Defense officials from Ibagué and Murillo tried to warn Armero’s officials, but could not make contact. Later they overheard conversations between individual officials of Armero and others; famously, a few heard the Mayor of Armero speaking on a ham radio, saying “that he did not think there was much danger”, when he was overtaken by the lahar.[20]

“The lahars, formed of water, ice, pumice, and other rocks,[25] incorporated clay from eroding soil as they traveled down the volcano’s flanks.[26] They ran down the volcano’s sides at an average speed of 60 kilometers (40 mi) per hour, dislodging rock and destroying vegetation. After descending thousands of meters down the side of the volcano, the lahars followed the six river valleys leading from the volcano, where they grew to almost four times their original volume. In the Gualí River, a lahar reached a maximum width of 50 meters (160 ft).[25]

Survivors in Armero described the night as “quiet”. Volcanic ash had been falling throughout the day, but residents were informed it was nothing to worry about. Later in the afternoon, ash began falling again after a long period of quiet. Local radio stations reported that residents should remain calm and ignore the material. One survivor reported going to the fire department to be informed that the ash was “nothing”.[27] […] At 11:30 pm, the first lahar hit, followed shortly by the others.[28] One of the lahars virtually erased Armero; three-quarters of its 28,700 inhabitants were killed.[25] Proceeding in three major waves, this lahar was 30 meters (100 ft) deep, moved at 12 meters per second (39 ft/s), and lasted ten to twenty minutes. Traveling at about 6 meters (20 ft) per second, the second lahar lasted thirty minutes and was followed by smaller pulses. A third major pulse brought the lahar’s duration to roughly two hours; by that point, 85 percent of Armero was enveloped in mud. Survivors described people holding on to debris from their homes in attempts to stay above the mud. Buildings collapsed, crushing people and raining down debris. The front of the lahar contained boulders and cobbles which would have crushed anyone in their path, while the slower parts were dotted by fine, sharp stones which caused lacerations. Mud moved into open wounds and other open body parts – the eyes, ears, and mouth – and placed pressure capable of inducing traumatic asphyxia in one or two minutes upon people buried in it.”

“The volcano continues to pose a serious threat to nearby towns and villages. Of the threats, the one with the most potential for danger is that of small-volume eruptions, which can destabilize glaciers and trigger lahars.[51] Although much of the volcano’s glacier mass has retreated, a significant volume of ice still sits atop Nevado del Ruiz and other volcanoes in the Ruiz–Tolima massif. Melting just 10 percent of the ice would produce lahars with a volume of up to 200 million cubic meters – similar to the lahar that destroyed Armero in 1985. In just hours, these lahars can travel up to 100 km along river valleys.[33] Estimates show that up to 500,000 people living in the Combeima, Chinchina, Coello-Toche, and Guali valleys are at risk, with 100,000 individuals being considered to be at high risk.”

iii. Asteroid belt (featured).

“The asteroid belt is the region of the Solar System located roughly between the orbits of the planets Mars and Jupiter. It is occupied by numerous irregularly shaped bodies called asteroids or minor planets. The asteroid belt is also termed the main asteroid belt or main belt to distinguish its members from other asteroids in the Solar System such as near-Earth asteroids and trojan asteroids. About half the mass of the belt is contained in the four largest asteroids, Ceres, Vesta, Pallas, and Hygiea. Vesta, Pallas, and Hygiea have mean diameters of more than 400 km, whereas Ceres, the asteroid belt’s only dwarf planet, is about 950 km in diameter.[1][2][3][4] The remaining bodies range down to the size of a dust particle.”

“The asteroid belt formed from the primordial solar nebula as a group of planetesimals, the smaller precursors of the planets, which in turn formed protoplanets. Between Mars and Jupiter, however, gravitational perturbations from Jupiter imbued the protoplanets with too much orbital energy for them to accrete into a planet. Collisions became too violent, and instead of fusing together, the planetesimals and most of the protoplanets shattered. As a result, 99.9% of the asteroid belt’s original mass was lost in the first 100 million years of the Solar System’s history.[5]

“In an anonymous footnote to his 1766 translation of Charles Bonnet‘s Contemplation de la Nature,[8] the astronomer Johann Daniel Titius of Wittenberg[9][10] noted an apparent pattern in the layout of the planets. If one began a numerical sequence at 0, then included 3, 6, 12, 24, 48, etc., doubling each time, and added four to each number and divided by 10, this produced a remarkably close approximation to the radii of the orbits of the known planets as measured in astronomical units. This pattern, now known as the Titius–Bode law, predicted the semi-major axes of the six planets of the time (Mercury, Venus, Earth, Mars, Jupiter and Saturn) provided one allowed for a “gap” between the orbits of Mars and Jupiter. […] On January 1, 1801, Giuseppe Piazzi, Chair of Astronomy at the University of Palermo, Sicily, found a tiny moving object in an orbit with exactly the radius predicted by the Titius–Bode law. He dubbed it Ceres, after the Roman goddess of the harvest and patron of Sicily. Piazzi initially believed it a comet, but its lack of a coma suggested it was a planet.[12] Fifteen months later, Heinrich Wilhelm Olbers discovered a second object in the same region, Pallas. Unlike the other known planets, the objects remained points of light even under the highest telescope magnifications instead of resolving into discs. Apart from their rapid movement, they appeared indistinguishable from stars. Accordingly, in 1802 William Herschel suggested they be placed into a separate category, named asteroids, after the Greek asteroeides, meaning “star-like”. […] The discovery of Neptune in 1846 led to the discrediting of the Titius–Bode law in the eyes of scientists, because its orbit was nowhere near the predicted position. […] One hundred asteroids had been located by mid-1868, and in 1891 the introduction of astrophotography by Max Wolf accelerated the rate of discovery still further.[22] A total of 1,000 asteroids had been found by 1921,[23] 10,000 by 1981,[24] and 100,000 by 2000.[25] Modern asteroid survey systems now use automated means to locate new minor planets in ever-increasing quantities.”

“In 1802, shortly after discovering Pallas, Heinrich Olbers suggested to William Herschel that Ceres and Pallas were fragments of a much larger planet that once occupied the Mars–Jupiter region, this planet having suffered an internal explosion or a cometary impact many million years before.[26] Over time, however, this hypothesis has fallen from favor. […] Today, most scientists accept that, rather than fragmenting from a progenitor planet, the asteroids never formed a planet at all. […] The asteroids are not samples of the primordial Solar System. They have undergone considerable evolution since their formation, including internal heating (in the first few tens of millions of years), surface melting from impacts, space weathering from radiation, and bombardment by micrometeorites.[34] […] collisions between asteroids occur frequently (on astronomical time scales). Collisions between main-belt bodies with a mean radius of 10 km are expected to occur about once every 10 million years.[63] A collision may fragment an asteroid into numerous smaller pieces (leading to the formation of a new asteroid family). Conversely, collisions that occur at low relative speeds may also join two asteroids. After more than 4 billion years of such processes, the members of the asteroid belt now bear little resemblance to the original population. […] The current asteroid belt is believed to contain only a small fraction of the mass of the primordial belt. Computer simulations suggest that the original asteroid belt may have contained mass equivalent to the Earth.[37] Primarily because of gravitational perturbations, most of the material was ejected from the belt within about a million years of formation, leaving behind less than 0.1% of the original mass.[29] Since their formation, the size distribution of the asteroid belt has remained relatively stable: there has been no significant increase or decrease in the typical dimensions of the main-belt asteroids.[38]

“Contrary to popular imagery, the asteroid belt is mostly empty. The asteroids are spread over such a large volume that it would be improbable to reach an asteroid without aiming carefully. Nonetheless, hundreds of thousands of asteroids are currently known, and the total number ranges in the millions or more, depending on the lower size cutoff. Over 200 asteroids are known to be larger than 100 km,[44] and a survey in the infrared wavelengths has shown that the asteroid belt has 0.7–1.7 million asteroids with a diameter of 1 km or more. […] The total mass of the asteroid belt is estimated to be 2.8×1021 to 3.2×1021 kilograms, which is just 4% of the mass of the Moon.[2] […] Several otherwise unremarkable bodies in the outer belt show cometary activity. Because their orbits cannot be explained through capture of classical comets, it is thought that many of the outer asteroids may be icy, with the ice occasionally exposed to sublimation through small impacts. Main-belt comets may have been a major source of the Earth’s oceans, because the deuterium–hydrogen ratio is too low for classical comets to have been the principal source.[56] […] Of the 50,000 meteorites found on Earth to date, 99.8 percent are believed to have originated in the asteroid belt.[67]

iv. Series (mathematics). This article has a lot of stuff, including lots of links to other stuff.

v. Occupation of Japan. Interesting article, I haven’t really read very much about this before. Some quotes:

“At the head of the Occupation administration was General MacArthur who was technically supposed to defer to an advisory council set up by the Allied powers, but in practice did everything himself. As a result, this period was one of significant American influence […] MacArthur’s first priority was to set up a food distribution network; following the collapse of the ruling government and the wholesale destruction of most major cities, virtually everyone was starving. Even with these measures, millions of people were still on the brink of starvation for several years after the surrender.”

“By the end of 1945, more than 350,000 U.S. personnel were stationed throughout Japan. By the beginning of 1946, replacement troops began to arrive in the country in large numbers and were assigned to MacArthur’s Eighth Army, headquartered in Tokyo’s Dai-Ichi building. Of the main Japanese islands, Kyūshū was occupied by the 24th Infantry Division, with some responsibility for Shikoku. Honshū was occupied by the First Cavalry Division. Hokkaido was occupied by the 11th Airborne Division.

By June 1950, all these army units had suffered extensive troop reductions and their combat effectiveness was seriously weakened. When North Korea invaded South Korea (see Korean War), elements of the 24th Division were flown into South Korea to try to stem the massive invasion force there, but the green occupation troops, while acquitting themselves well when suddenly thrown into combat almost overnight, suffered heavy casualties and were forced into retreat until other Japan occupation troops could be sent to assist.”

“During the Occupation, GHQ/SCAP mostly abolished many of the financial coalitions known as the Zaibatsu, which had previously monopolized industry.[20] […] A major land reform was also conducted […] Between 1947 and 1949, approximately 5,800,000 acres (23,000 km2) of land (approximately 38% of Japan’s cultivated land) were purchased from the landlords under the government’s reform program and resold at extremely low prices (after inflation) to the farmers who worked them. By 1950, three million peasants had acquired land, dismantling a power structure that the landlords had long dominated.[22]

“There are allegations that during the three months in 1945 when Okinawa was gradually occupied there were rapes committed by U.S. troops. According to some accounts, US troops committed thousands of rapes during the campaign.[36][37]

Many Japanese civilians in the Japanese mainland feared that the Allied occupation troops were likely to rape Japanese women. The Japanese authorities set up a large system of prostitution facilities (RAA) in order to protect the population. […] However, there was a resulting large rise in venereal disease among the soldiers, which led MacArthur to close down the prostitution in early 1946.[39] The incidence of rape increased after the closure of the brothels, possibly eight-fold; […] “According to one calculation the number of rapes and assaults on Japanese women amounted to around 40 daily while the RAA was in operation, and then rose to an average of 330 a day after it was terminated in early 1946.”[40] Michael S. Molasky states that while rape and other violent crime was widespread in naval ports like Yokosuka and Yokohama during the first few weeks of occupation, according to Japanese police reports and journalistic studies, the number of incidents declined shortly after and were not common on mainland Japan throughout the rest of occupation.[41] Two weeks into the occupation, the Occupation administration began censoring all media. This included any mention of rape or other sensitive social issues.”

“Post-war Japan was chaotic. The air raids on Japan’s urban centers left millions displaced and food shortages, created by bad harvests and the demands of the war, worsened when the seizure of food from Korea, Taiwan, and China ceased.[58] Repatriation of Japanese living in other parts of Asia only aggravated the problems in Japan as these displaced people put more strain on already scarce resources. Over 5.1 million Japanese returned to Japan in the fifteen months following October 1, 1945.[59] Alcohol and drug abuse became major problems. Deep exhaustion, declining morale and despair were so widespread that it was termed the “kyodatsu condition” (虚脱状態 kyodatsujoutai?, lit. “state of lethargy”).[60] Inflation was rampant and many people turned to the black market for even the most basic goods. These black markets in turn were often places of turf wars between rival gangs, like the Shibuya incident in 1946.”

August 16, 2014 Posted by | Astronomy, Biology, Ecology, Evolutionary biology, Geology, History, Mathematics, Wikipedia, Zoology | Leave a comment