Econstudentlog

A few diabetes papers of interest

i. Chronic Fatigue in Type 1 Diabetes: Highly Prevalent but Not Explained by Hyperglycemia or Glucose Variability.

“Fatigue is a classical symptom of hyperglycemia, but the relationship between chronic fatigue and diabetes has not been systematically studied. […] glucose control [in diabetics] is often suboptimal with persistent episodes of hyperglycemia that may result in sustained fatigue. Fatigue may also sustain in diabetic patients because it is associated with the presence of a chronic disease, as has been demonstrated in patients with rheumatoid arthritis and various neuromuscular disorders (2,3).

It is important to distinguish between acute and chronic fatigue, because chronic fatigue, defined as severe fatigue that persists for at least 6 months, leads to substantial impairments in patients’ daily functioning (4,5). In contrast, acute fatigue can largely vary during the day and generally does not cause functional impairments.

Literature provides limited evidence for higher levels of fatigue in diabetic patients (6,7), but its chronicity, impact, and determinants are unknown. In various chronic diseases, it has been proven useful to distinguish between precipitating and perpetuating factors of chronic fatigue (3,8). Illness-related factors trigger acute fatigue, while other factors, often cognitions and behaviors, cause fatigue to persist. Sleep disturbances, low self-efficacy concerning fatigue, reduced physical activity, and a strong focus on fatigue are examples of these fatigue-perpetuating factors (810). An episode of hyperglycemia or hypoglycemia could trigger acute fatigue for diabetic patients (11,12). However, variations in blood glucose levels might also contribute to chronic fatigue, because these variations continuously occur.

The current study had two aims. First, we investigated the prevalence and impact of chronic fatigue in a large sample of type 1 diabetic (T1DM) patients and compared the results to a group of age- and sex-matched population-based controls. Secondly, we searched for potential determinants of chronic fatigue in T1DM.”

“A significantly higher percentage of T1DM patients were chronically fatigued (40%; 95% CI 34–47%) than matched controls (7%; 95% CI 3–10%). Mean fatigue severity was also significantly higher in T1DM patients (31 ± 14) compared with matched controls (17 ± 9; P < 0.001). T1DM patients with a comorbidity_mr [a comorbidity affecting patients’ daily functioning, based on medical records – US] or clinically relevant depressive symptoms [based on scores on the Beck Depression Inventory for Primary Care – US] were significantly more often chronically fatigued than patients without a comorbidity_mr (55 vs. 36%; P = 0.014) or without clinically relevant depressive symptoms (88 vs. 31%; P < 0.001). Patients who reported neuropathy, nephropathy, or cardiovascular disease as complications of diabetes were more often chronically fatigued […] Chronically fatigued T1DM patients were significantly more impaired compared with nonchronically fatigued T1DM patients on all aspects of daily functioning […]. Fatigue was the most troublesome symptom of the 34 assessed diabetes-related symptoms. The five most troublesome symptoms were overall sense of fatigue, lack of energy, increasing fatigue in the course of the day, fatigue in the morning when getting up, and sleepiness or drowsiness”.

“This study establishes that chronic fatigue is highly prevalent and clinically relevant in T1DM patients. While current blood glucose level was only weakly associated with chronic fatigue, cognitive behavioral factors were by far the strongest potential determinants.”

“Another study found that type 2 diabetic, but not T1DM, patients had higher levels of fatigue compared with healthy controls (7). This apparent discrepancy may be explained by the relatively small sample size of this latter study, potential selection bias (patients were not randomly selected), and the use of a different fatigue questionnaire.”

“Not only was chronic fatigue highly prevalent, fatigue also had a large impact on T1DM patients. Chronically fatigued T1DM patients had more functional impairments than nonchronically fatigued patients, and T1DM patients considered fatigue as the most burdensome diabetes-related symptom.

Contrary to what was expected, there was at best a weak relationship between blood glucose level and chronic fatigue. Chronically fatigued T1DM patients spent slightly less time in hypoglycemia, but average glucose levels, glucose variability, hyperglycemia, or HbA1c were not related to chronic fatigue. In type 2 diabetes mellitus also, no relationship was found between fatigue and HbA1c (7).”

“Regarding demographic characteristics, current health status, diabetes-related factors, and fatigue-related cognitions and behaviors as potential determinants of chronic fatigue, we found that sleeping problems, physical activity, self-efficacy concerning fatigue, age, depression, and pain were significantly associated with chronic fatigue in T1DM. Although depression was strongly related, it could not completely explain the presence of chronic fatigue (38), as 31% was chronically fatigued without having clinically relevant depressive symptoms.”

Some comments may be worth adding here. It’s important to note to people who may not be aware of this that although chronic fatigue is a weird entity that’s hard to get a handle on (and, to be frank, is somewhat controversial), specific organic causes have been identified that greatly increases the risk. Many survivors of cancer experience chronic fatigue (see e.g. this paper, or wikipedia), and chronic fatigue is also not uncommon in a kidney failure setting (“The silence of renal disease creeps up on us (doctors and patients). Do not dismiss odd chronic symptoms such as fatigue or ‘not being quite with it’ without considering checking renal function” (Oxford Handbook of Clinical Medicine, 9th edition. My italics – US)). As observed above, linkage with RA and some neuromuscular disorders has also been observed. The brief discussion of related topics in Houghton & Grey made it clear to me that some people with chronic fatigue are almost certainly suffering from an organic illness which has not been diagnosed or treated. Here’s a relevant quote from that book’s coverage: “it is unusual to find a definite organic cause for fatigue. However, consider anaemia, thyroid dysfunction, Addison’s disease and hypopituitarism.” It’s sort of neat, if you think about the potential diabetes-fatigue link investigated by the guys above, that these diseases are likely to be relevant, as type 1 diabetics are more likely to develop them (anemia is not linked to diabetes, as far as I know, but the rest of them clearly are) due to their development being caused by some of the same genetic mutations which cause type 1 diabetes – the combinations of some of these diseases even have fancy names of their own, like ‘Type I Polyglandular Autoimmune Syndrome’ and ‘Schmidt Syndrome’ (if you’re interested here are a couple of medscape links). It’s noteworthy that although most of these diseases are uncommon in the general population, their incidence is likely to be greatly increased in type 1 diabetics due to the common genetic pathways at play (variants regulating T-cell function seem to be important, but there’s no need to go into these details here). Sperling et al. note in their book that: “Hypothyroid or hyperthyroid AITD [autoimmune thyroid disease] has been observed in 10–24% of patients with type 1 diabetes”. In one series including 151 patients with APS [/PAS]-2, when they looked at disease combinations they found that: “Of combinations of the component diseases, [type 1] diabetes with thyroid disease was the most common, occurring in 33%. The second, diabetes with adrenal insufficiency, made up 15%” (same source).

It seems from estimates like these likely that a not unsubstantial proportion of type 1 diabetics over time go on to develop other health problems that might if unaddressed/undiagnosed cause fatigue, and this may in my opinion be a potentially much more important cause than direct metabolic effects such as hyperglycemia, or chronic inflammation. If this is the case you’d however expect to see a substantial sex difference, as the autoimmune syndromes are in general much more likely to hit females than males. I’m not completely sure how to interpret a few of the results reported, but to me it doesn’t look like the sex differences in this study are anywhere near ‘large enough’ to support such an explanatory model, though. Another big problem is also that fatigue seems to be more common in young patients, which is weird; most long-term complications display significant (positive) duration dependence, and when diabetes is a component of an autoimmune syndrome diabetes tend to develop first, with other diseases hitting later, usually in middle age. Duration and age are strongly correlated, and a negative duration dependence in a diabetes complication setting is a surprising and unusual finding that needs to be explained, badly; it’s unexpected and may in my opinion be the sign of a poor disease model. It’d make more sense for disease-related fatigue to present late, rather than early, I don’t really know what to make of that negative age gradient. ‘More studies needed’ (preferably by people familiar with those autoimmune syndromes..), etc…

ii. Risk for End-Stage Renal Disease Over 25 Years in the Population-Based WESDR Cohort.

“It is well known that diabetic nephropathy is the leading cause of end-stage renal disease (ESRD) in many regions, including the U.S. (1). Type 1 diabetes accounts for >45,000 cases of ESRD per year (2), and the incidence may be higher than in people with type 2 diabetes (3). Despite this, there are few population-based data available regarding the prevalence and incidence of ESRD in people with type 1 diabetes in the U.S. (4). A declining incidence of ESRD has been suggested by findings of lower incidence with increasing calendar year of diagnosis and in comparison with older reports in some studies in Europe and the U.S. (58). This is consistent with better diabetes management tools becoming available and increased renoprotective efforts, including the greater use of ACE inhibitors and angiotensin type II receptor blockers, over the past two to three decades (9). Conversely, no reduction in the incidence of ESRD across enrollment cohorts was found in a recent clinic-based study (9). Further, an increase in ESRD has been suggested for older but not younger people (9). Recent improvements in diabetes care have been suggested to delay rather than prevent the development of renal disease in people with type 1 diabetes (4).

A decrease in the prevalence of proliferative retinopathy by increasing calendar year of type 1 diabetes diagnosis was previously reported in the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) cohort (10); therefore, we sought to determine if a similar pattern of decline in ESRD would be evident over 25 years of follow-up. Further, we investigated factors that may mediate a possible decline in ESRD as well as other factors associated with incident ESRD over time.”

“At baseline, 99% of WESDR cohort members were white and 51% were male. Individuals were 3–79 years of age (mean 29) with diabetes duration of 0–59 years (mean 15), diagnosed between 1922 and 1980. Four percent of individuals used three or more daily insulin injections and none used an insulin pump. Mean HbA1c was 10.1% (87 mmol/mol). Only 16% were using an antihypertensive medication, none was using an ACE inhibitor, and 3% reported a history of renal transplant or dialysis (ESRD). At 25 years, 514 individuals participated (52% of original cohort at baseline, n = 996) and 367 were deceased (37% of baseline). Mean HbA1c was much lower than at baseline (7.5%, 58 mmol/mol), the decline likely due to the improvements in diabetes care, with 80% of participants using intensive insulin management (three or more daily insulin injections or insulin pump). The decline in HbA1c was steady, becoming slightly steeper following the results of the DCCT (25). Overall, at the 25-year follow-up, 47% had proliferative retinopathy, 53% used aspirin daily, and 54% reported taking antihypertensive medications, with the majority (87%) using an ACE inhibitor. Thirteen percent reported a history of ESRD.”

“Prevalence of ESRD was negligible until 15 years of diabetes duration and then steadily increased with 5, 8, 10, 13, and 14% reporting ESRD by 15–19, 20–24, 25–29, 30–34, and 35+ years of diabetes duration, respectively. […] After 15 years of diagnosis, prevalence of ESRD increased with duration in people diagnosed from 1960 to 1980, with the lowest increase in people with the most recent diagnosis. People diagnosed from 1922 to 1959 had consistent rather than increasing levels of ESRD with duration of 20+ years. If not for their greater mortality (at the 25-year follow-up, 48% of the deceased had been diagnosed prior to 1960), an increase with duration may have also been observed.

From baseline, the unadjusted cumulative 25-year incidence of ESRD was 17.9% (95% CI 14.3–21.5) in males, 10.3% (7.4–13.2) in females, and 14.2% (11.9–16.5) overall. For those diagnosed in 1970–1980, the cumulative incidence at 14, 20, and 25 years of follow-up (or ∼15–25, 20–30, and 25–35 years diabetes duration) was 5.2, 7.9, and 9.3%, respectively. At 14, 20, and 25 years of follow-up (or 35, 40, and 45 up to 65+ years diabetes duration), the cumulative incidence in those diagnosed during 1922–1969 was 13.6, 16.3, and 18.8%, respectively, consistent with the greater prevalence observed for these diagnosis periods at longer duration of diabetes.”

“The unadjusted hazard of ESRD was reduced by 70% among those diagnosed in 1970–1980 as compared with those in 1922–1969 (HR 0.29 [95% CI 0.19–0.44]). Duration (by 10%) and HbA1c (by an additional 10%) partially mediated this association […] Blood pressure and antihypertensive medication use each further attenuated the association. When fully adjusted for these and [other risk factors included in the model], period of diagnosis was no longer significant (HR 0.89 [0.55–1.45]). Sensitivity analyses for the hazard of incident ESRD or death due to renal disease showed similar findings […] The most parsimonious model included diabetes duration, HbA1c, age, sex, systolic and diastolic blood pressure, and history of antihypertensive medication […]. A 32% increased risk for incident ESRD was found per increasing year of diabetes duration at 0–15 years (HR 1.32 per year [95% CI 1.16–1.51]). The hazard plateaued (1.01 per year [0.98–1.05]) after 15 years of duration of diabetes. Hazard of ESRD increased with increasing HbA1c (1.28 per 1% or 10.9 mmol/mol increase [1.14–1.45]) and blood pressure (1.51 per 10 mmHg increase in systolic pressure [1.35–1.68]; 1.12 per 5 mmHg increase in diastolic pressure [1.01–1.23]). Use of antihypertensive medications increased the hazard of incident ESRD nearly fivefold [this finding is almost certainly due to confounding by indication, as also noted by the authors later on in the paper – US], and males had approximately two times the risk as compared with females. […] Having proliferative retinopathy was strongly associated with increased risk (HR 5.91 [3.00–11.6]) and attenuated the association between sex and ESRD.”

“The current investigation […] sought to provide much-needed information on the prevalence and incidence of ESRD and associated risk specific to people with type 1 diabetes. Consistent with a few previous studies (5,7,8), we observed decreased prevalence and incidence of ESRD among individuals with type 1 diabetes diagnosed in the 1970s compared with prior to 1970. The Epidemiology of Diabetes Complications (EDC) Study, another large cohort of people with type 1 diabetes followed over a long period of time, reported cumulative incidence rates of 2–6% for those diagnosed after 1970 and with similar duration (7), comparable to our findings. Slightly higher cumulative incidence (7–13%) reported from older studies at slightly lower duration also supports a decrease in incidence of ESRD (2830). Cumulative incidences through 30 years in European cohorts were even lower (3.3% in Sweden [6] and 7.8% in Finland [5]), compared with the 9.3% noted for those diagnosed during 1970–1980 in the WESDR cohort. The lower incidence could be associated with nationally organized care, especially in Sweden where a nationwide intensive diabetes management treatment program was implemented at least a decade earlier than recommendations for intensive care followed from the results of the DCCT in the U.S.”

“We noted an increased risk of incident ESRD in the first 15 years of diabetes not evident at longer durations. This pattern also demonstrated by others could be due to a greater earlier risk among people most genetically susceptible, as only a subset of individuals with type 1 diabetes will develop renal disease (27,28). The risk plateau associated with greater durations of diabetes and lower risk associated with increasing age may also reflect more death at longer durations and older ages. […] Because age and duration are highly correlated, we observed a positive association between age and ESRD only in univariate analyses, without adjustment for duration. The lack of adjustment for diabetes duration may have, in part, explained the increasing incidence of ESRD shown with age for some people in a recent investigation (9). Adjustment for both age and duration was found appropriate after testing for collinearity in the current analysis.”

In conclusion, this U.S. population-based report showed a lower prevalence and incidence of ESRD among those more recently diagnosed, explained by improvements in glycemic and blood pressure control over the last several decades. Even lower rates may be expected for those diagnosed during the current era of diabetes care. Intensive diabetes management, especially for glycemic control, remains important even in long-standing diabetes as potentially delaying the development of ESRD.

iii. Earlier Onset of Complications in Youth With Type 2 Diabetes.

The prevalence of type 2 diabetes in youth is increasing worldwide, coinciding with the rising obesity epidemic (1,2). […] Diabetes is associated with both microvascular and macrovascular complications. The evolution of these complications has been well described in type 1 diabetes (6) and in adult type 2 diabetes (7), wherein significant complications typically manifest 15–20 years after diagnosis (8). Because type 2 diabetes is a relatively new disease in children (first described in the 1980s), long-term outcome data on complications are scant, and risk factors for the development of complications are incompletely understood. The available literature suggests that development of complications in youth with type 2 diabetes may be more rapid than in adults, thus afflicting individuals at the height of their individual and social productivity (9). […] A small but notable proportion of type 2 diabetes is associated with a polymorphism of hepatic nuclear factor (HNF)-1α, a transcription factor expressed in many tissues […] It is not yet known what effect the HNF-1α polymorphism has on the risk of complications associated with diabetes.”

“The main objective of the current study was to describe the time course and risk factors for microvascular complications (nephropathy, retinopathy, and neuropathy) and macrovascular complications (cardiac, cerebrovascular, and peripheral vascular diseases) in a large cohort of youth [diagnosed with type 2 diabetes] who have been carefully followed for >20 years and to compare this evolution with that of youth with type 1 diabetes. We also compared vascular complications in the youth with type 2 diabetes with nondiabetic control youth. Finally, we addressed the impact of HNF-1α G319S on the evolution of complications in young patients with type 2 diabetes.”

“All prevalent cases of type 2 diabetes and type 1 diabetes (control group 1) seen between January 1986 and March 2007 in the DER-CA for youth aged 1–18 years were included. […] The final type 2 diabetes cohort included 342 youth, and the type 1 diabetes control group included 1,011. The no diabetes control cohort comprised 1,710 youth matched to the type 2 diabetes cohort from the repository […] Compared with the youth with type 1 diabetes, the youth with type 2 diabetes were, on average, older at the time of diagnosis and more likely to be female. They were more likely to have a higher BMIz, live in a rural area, have a low SES, and have albuminuria at diagnosis. […] one-half of the type 2 diabetes group was either a heterozygote (GS) or a homozygote (SS) for the HNF-1α polymorphism […] At the time of the last available follow-up in the DER-CA, the youth with diabetes were, on average, between 15 and 16 years of age. […] The median follow-up times in the repository were 4.4 (range 0–27.4) years for youth with type 2 diabetes, 6.7 ( 0–28.2) years for youth with type 1 diabetes, and 6.0 (0–29.9) years for nondiabetic control youth.”

“After controlling for low SES, sex, and BMIz, the risk associated with type 2 versus type 1 diabetes of any complication was an HR of 1.47 (1.02–2.12, P = 0.04). […] In the univariate analysis, youth with type 2 diabetes were at significantly higher risk of developing any vascular (HR 6.15 [4.26–8.87], P < 0.0001), microvascular (6.26 [4.32–9.10], P < 0.0001), or macrovascular (4.44 [1.71–11.52], P < 0.0001) disease compared with control youth without diabetes. In addition, the youth with type 2 diabetes had an increased risk of opthalmologic (19.49 [9.75–39.00], P < 0.0001), renal (16.13 [7.66–33.99], P < 0.0001), and neurologic (2.93 [1.79–4.80], P ≤ 0.001) disease. There were few cardiovascular, cerebrovascular, and peripheral vascular disease events in all groups (five or fewer events per group). Despite this, there was still a statistically significant higher risk of peripheral vascular disease in the type 2 diabetes group (6.25 [1.68–23.28], P = 0.006).”

“Differences in renal and neurologic complications between the two diabetes groups began to occur before 5 years postdiagnosis, whereas differences in ophthalmologic complications began 10 years postdiagnosis. […] Both cardiovascular and cerebrovascular complications were rare in both groups, but peripheral vascular complications began to occur 15 years after diagnosis in the type 2 diabetes group […] The presence of HNF-1α G319S polymorphism in youth with type 2 diabetes was found to be protective of complications. […] Overall, major complications were rare in the type 1 diabetes group, but they occurred in 1.1% of the type 2 diabetes cohort at 10 years, in 26.0% at 15 years, and in 47.9% at 20 years after diagnosis (P < 0.001) […] youth with type 2 diabetes have a higher risk of any complication than youth with type 1 diabetes and nondiabetic control youth. […] The time to both renal and neurologic complications was significantly shorter in youth with type 2 diabetes than in control youth, whereas differences were not significant with respect to opthalmologic and cardiovascular complications between cohorts. […] The current study is consistent with the literature, which has shown high rates of cardiovascular risk factors in youth with type 2 diabetes. However, despite the high prevalence of risk, this study reports low rates of clinical events. Because the median follow-up time was between 5 and 8 years, it is possible that a longer follow-up period would be required to correctly evaluate macrovascular outcomes in young adults. Also possible is that diagnoses of mild disease are not being made because of a low index of suspicion in 20- and 30-year-old patients.”

In conclusion, youth with type 2 diabetes have an increased risk of complications early in the course of their disease. Microvascular complications and cardiovascular risk factors are highly prevalent, whereas macrovascular complications are rare in young adulthood. HbA1c is an important modifiable risk factor; thus, optimizing glycemic control should remain an important goal of therapy.”

iv. HbA1c and Coronary Heart Disease Risk Among Diabetic Patients.

“We prospectively investigated the association of HbA1c at baseline and during follow-up with CHD risk among 17,510 African American and 12,592 white patients with type 2 diabetes. […] During a mean follow-up of 6.0 years, 7,258 incident CHD cases were identified. The multivariable-adjusted hazard ratios of CHD associated with different levels of HbA1c at baseline (<6.0 [reference group], 6.0–6.9, 7.0–7.9, 8.0–8.9, 9.0–9.9, 10.0–10.9, and ≥11.0%) were 1.00, 1.07 (95% CI 0.97–1.18), 1.16 (1.04–1.31), 1.15 (1.01–1.32), 1.26 (1.09–1.45), 1.27 (1.09–1.48), and 1.24 (1.10–1.40) (P trend = 0.002) for African Americans and 1.00, 1.04 (0.94–1.14), 1.15 (1.03–1.28), 1.29 (1.13–1.46), 1.41 (1.22–1.62), 1.34 (1.14–1.57), and 1.44 (1.26–1.65) (P trend <0.001) for white patients, respectively. The graded association of HbA1c during follow-up with CHD risk was observed among both African American and white diabetic patients (all P trend <0.001). Each one percentage increase of HbA1c was associated with a greater increase in CHD risk in white versus African American diabetic patients. When stratified by sex, age, smoking status, use of glucose-lowering agents, and income, this graded association of HbA1c with CHD was still present. […] The current study in a low-income population suggests a graded positive association between HbA1c at baseline and during follow-up with the risk of CHD among both African American and white diabetic patients with low socioeconomic status.”

A few more observations from the conclusions:

“Diabetic patients experience high mortality from cardiovascular causes (2). Observational studies have confirmed the continuous and positive association between glycemic control and the risk of cardiovascular disease among diabetic patients (4,5). But the findings from RCTs are sometimes uncertain. Three large RCTs (79) designed primarily to determine whether targeting different glucose levels can reduce the risk of cardiovascular events in patients with type 2 diabetes failed to confirm the benefit. Several reasons for the inconsistency of these studies can be considered. First, small sample sizes, short follow-up duration, and few CHD cases in some RCTs may limit the statistical power. Second, most epidemiological studies only assess a single baseline measurement of HbA1c with CHD risk, which may produce potential bias. The recent analysis of 10 years of posttrial follow-up of the UKPDS showed continued reductions for myocardial infarction and death from all causes despite an early loss of glycemic differences (10). The scientific evidence from RCTs was not sufficient to generate strong recommendations for clinical practice. Thus, consensus groups (AHA, ACC, and ADA) have provided a conservative endorsement (class IIb recommendation, level of evidence A) for the cardiovascular benefits of glycemic control (11). In the absence of conclusive evidence from RCTs, observational epidemiological studies might provide useful information to clarify the relationship between glycemia and CHD risk. In the current study with 30,102 participants with diabetes and 7,258 incident CHD cases during a mean follow-up of 6.0 years, we found a graded positive association by various HbA1c intervals of clinical relevance or by using HbA1c as a continuous variable at baseline and during follow-up with CHD risk among both African American and white diabetic patients. Each one percentage increase in baseline and follow-up HbA1c was associated with a 2 and 5% increased risk of CHD in African American and 6 and 11% in white diabetic patients. Each one percentage increase of HbA1c was associated with a greater increase in CHD risk in white versus African American diabetic patients.”

v. Blood Viscosity in Subjects With Normoglycemia and Prediabetes.

“Blood viscosity (BV) is the force that counteracts the free sliding of the blood layers within the circulation and depends on the internal cohesion between the molecules and the cells. Abnormally high BV can have several negative effects: the heart is overloaded to pump blood in the vascular bed, and the blood itself, more viscous, can damage the vessel wall. Furthermore, according to Poiseuille’s law (1), BV is inversely related to flow and might therefore reduce the delivery of insulin and glucose to peripheral tissues, leading to insulin resistance or diabetes (25).

It is generally accepted that BV is increased in diabetic patients (68). Although the reasons for this alteration are still under investigation, it is believed that the increase in osmolarity causes increased capillary permeability and, consequently, increased hematocrit and viscosity (9). It has also been suggested that the osmotic diuresis, consequence of hyperglycemia, could contribute to reduce plasma volume and increase hematocrit (10).

Cross-sectional studies have also supported a link between BV, hematocrit, and insulin resistance (1117). Recently, a large prospective study has demonstrated that BV and hematocrit are risk factors for type 2 diabetes. Subjects in the highest quartile of BV were >60% more likely to develop diabetes than their counterparts in the lowest quartile (18). This finding confirms previous observations obtained in smaller or selected populations, in which the association between hemoglobin or hematocrit and occurrence of type 2 diabetes was investigated (1922).

These observations suggest that the elevation in BV may be very early, well before the onset of diabetes, but definite data in subjects with normal glucose or prediabetes are missing. In the current study, we evaluated the relationship between BV and blood glucose in subjects with normal glucose or prediabetes in order to verify whether alterations in viscosity are appreciable in these subjects and at which blood glucose concentration they appear.”

“According to blood glucose levels, participants were divided into three groups: group A, blood glucose <90 mg/dL; group B, blood glucose between 90 and 99 mg/dL; and group C, blood glucose between 100 and 125 mg/dL. […] Hematocrit (P < 0.05) and BV (P between 0.01 and 0.001) were significantly higher in subjects with prediabetes and in those with blood glucose ranging from 90 to 99 mg/dL compared with subjects with blood glucose <90 mg/dL. […] The current study shows, for the first time, a direct relationship between BV and blood glucose in nondiabetic subjects. It also suggests that, even within glucose values ​​considered completely normal, individuals with higher blood glucose levels have increases in BV comparable with those observed in subjects with prediabetes. […] Overall, changes in viscosity in diabetic patients are accepted as common and as a result of the disease. However, the relationship between blood glucose, diabetes, and viscosity may be much more complex. […] the main finding of the study is that BV significantly increases already at high-normal blood glucose levels, independently of other common determinants of hemorheology. Intervention studies are needed to verify whether changes in BV can influence the development of type 2 diabetes.”

vi. Higher Relative Risk for Multiple Sclerosis in a Pediatric and Adolescent Diabetic Population: Analysis From DPV Database.

“Type 1 diabetes and multiple sclerosis (MS) are organ-specific inflammatory diseases, which result from an autoimmune attack against either pancreatic β-cells or the central nervous system; a combined appearance has been described repeatedly (13). For children and adolescents below the age of 21 years, the prevalence of type 1 diabetes in Germany and Austria is ∼19.4 cases per 100,000 population, and for MS it is 7–10 per 100,000 population (46). A Danish cohort study revealed a three times higher risk for the development of MS in patients with type 1 diabetes (7). Further, an Italian study conducted in Sardinia showed a five times higher risk for the development of type 1 diabetes in MS patients (8,9). An American study on female adults in whom diabetes developed before the age of 21 years yielded an up to 20 times higher risk for the development of MS (10).

These findings support the hypothesis of clustering between type 1 diabetes and MS. The pathogenesis behind this association is still unclear, but T-cell cross-reactivity was discussed as well as shared disease associations due to the HLA-DRB1-DQB1 gene loci […] The aim of this study was to evaluate the prevalence of MS in a diabetic population and to look for possible factors related to the co-occurrence of MS in children and adolescents with type 1 diabetes using a large multicenter survey from the Diabetes Patienten Verlaufsdokumentation (DPV) database.”

“We used a large database of pediatric and adolescent type 1 diabetic patients to analyze the RR of MS co-occurrence. The DPV database includes ∼98% of the pediatric diabetic population in Germany and Austria below the age of 21 years. In children and adolescents, the RR for MS in type 1 diabetes was estimated to be three to almost five times higher in comparison with the healthy population.”

Advertisements

November 2, 2017 Posted by | Cardiology, Diabetes, Epidemiology, Genetics, Immunology, Medicine, Nephrology, Statistics, Studies | Leave a comment

A few diabetes papers of interest

i. Neurocognitive Functioning in Children and Adolescents at the Time of Type 1 Diabetes Diagnosis: Associations With Glycemic Control 1 Year After Diagnosis.

“Children and youth with type 1 diabetes are at risk for developing neurocognitive dysfunction, especially in the areas of psychomotor speed, attention/executive functioning, and visuomotor integration (1,2). Most research suggests that deficits emerge over time, perhaps in response to the cumulative effect of glycemic extremes (36). However, the idea that cognitive changes emerge gradually has been challenged (79). Ryan (9) argued that if diabetes has a cumulative effect on cognition, cognitive test performance should be positively correlated with illness duration. Yet he found comparable deficits in psychomotor speed (the most commonly noted area of deficit) in adolescents and young adults with illness duration ranging from 6 to 25 years. He therefore proposed a diathesis model in which cognitive declines in diabetes are especially likely to occur in more vulnerable patients, at crucial periods, in response to illness-related events (e.g., severe hyperglycemia) known to have an impact on the central nervous system (CNS) (8). This model accounts for the finding that cognitive deficits are more likely in children with early-onset diabetes, and for the accelerated cognitive aging seen in diabetic individuals later in life (7). A third hypothesized crucial period is the time leading up to diabetes diagnosis, during which severe fluctuations in blood glucose and persistent hyperglycemia often occur. Concurrent changes in blood-brain barrier permeability could result in a flood of glucose into the brain, with neurotoxic effects (9).”

“In the current study, we report neuropsychological test findings for children and adolescents tested within 3 days of diabetes diagnosis. The purpose of the study was to determine whether neurocognitive impairments are detectable at diagnosis, as predicted by the diathesis hypothesis. We hypothesized that performance on tests of psychomotor speed, visuomotor integration, and attention/executive functioning would be significantly below normative expectations, and that differences would be greater in children with earlier disease onset. We also predicted that diabetic ketoacidosis (DKA), a primary cause of diabetes-related neurological morbidity (12) and a likely proxy for severe peri-onset hyperglycemia, would be associated with poorer performance.”

“Charts were reviewed for 147 children/adolescents aged 5–18 years (mean = 10.4 ± 3.2 years) who completed a short neuropsychological screening during their inpatient hospitalization for new-onset type 1 diabetes, as part of a pilot clinical program intended to identify patients in need of further neuropsychological evaluation. Participants were patients at a large urban children’s hospital in the southwestern U.S. […] Compared with normative expectations, children/youth with type 1 diabetes performed significantly worse on GPD, GPN, VMI, and FAS (P < 0.0001 in all cases), with large decrements evident on all four measures (Fig. 1). A small but significant effect was also evident in DSB (P = 0.022). High incidence of impairment was evident on all neuropsychological tasks completed by older participants (aged 9–18 years) except DSF/DSB (Fig. 2).”

“Deficits in neurocognitive functioning were evident in children and adolescents within days of type 1 diabetes diagnosis. Participants performed >1 SD below normative expectations in bilateral psychomotor speed (GP) and 0.7–0.8 SDs below expected performance in visuomotor integration (VMI) and phonemic fluency (FAS). Incidence of impairment was much higher than normative expectations on all tasks except DSF/DSB. For example, >20% of youth were impaired in dominant hand fine-motor control, and >30% were impaired with their nondominant hand. These findings provide provisional support for Ryan’s hypothesis (79) that the peri-onset period may be a time of significant cognitive vulnerability.

Importantly, deficits were not evident on all measures. Performance on measures of attention/executive functioning (TMT-A, TMT-B, DSF, and DSB) was largely consistent with normative expectations, as was reading ability (WRAT-4), suggesting that the below-average performance in other areas was not likely due to malaise or fatigue. Depressive symptoms at diagnosis were associated with performance on TMT-B and FAS, but not on other measures. Thus, it seems unlikely that depressive symptoms accounted for the observed motor slowing.

Instead, the findings suggest that the visual-motor system may be especially vulnerable to early effects of type 1 diabetes. This interpretation is especially compelling given that psychomotor impairment is the most consistently reported long-term cognitive effect of type 1 diabetes. The sensitivity of the visual-motor system at diabetes diagnosis is consistent with a growing body of neuroimaging research implicating posterior white matter tracts and associated gray matter regions (particularly cuneus/precuneus) as areas of vulnerability in type 1 diabetes (3032). These regions form part of the neural system responsible for integrating visual inputs with motor outputs, and in adults with type 1 diabetes, structural pathology in these regions is directly correlated to performance on GP [grooved pegboard test] (30,31). Arbelaez et al. (33) noted that these brain areas form part of the “default network” (34), a system engaged during internally focused cognition that has high resting glucose metabolism and may be especially vulnerable to glucose variability.”

“It should be noted that previous studies (e.g., Northam et al. [3]) have not found evidence of neurocognitive dysfunction around the time of diabetes diagnosis. This may be due to study differences in measures, outcomes, and/or time frame. We know of no other studies that completed neuropsychological testing within days of diagnosis. Given our time frame, it is possible that our findings reflect transient effects rather than more permanent changes in the CNS. Contrary to predictions, we found no association between DKA at diagnosis and neurocognitive performance […] However, even transient effects could be considered potential indicators of CNS vulnerability. Neurophysiological changes at the time of diagnosis have been shown to persist under certain circumstances or for some patients. […] [Some] findings suggest that some individuals may be particularly susceptible to the effects of glycemic extremes on neurocognitive function, consistent with a large body of research in developmental neuroscience indicating individual differences in neurobiological vulnerability to adverse events. Thus, although it is possible that the neurocognitive impairments observed in our study might resolve with euglycemia, deficits at diagnosis could still be considered a potential marker of CNS vulnerability to metabolic perturbations (both acute and chronic).”

“In summary, this study provides the first demonstration that type 1 diabetes–associated neurocognitive impairment can be detected at the time of diagnosis, supporting the possibility that deficits arise secondary to peri-onset effects. Whether these effects are transient markers of vulnerability or represent more persistent changes in CNS awaits further study.”

ii. Association Between Impaired Cardiovascular Autonomic Function and Hypoglycemia in Patients With Type 1 Diabetes.

“Cardiovascular autonomic neuropathy (CAN) is a chronic complication of diabetes and an independent predictor of cardiovascular disease (CVD) morbidity and mortality (13). The mechanisms of CAN are complex and not fully understood. It can be assessed by simple cardiovascular reflex tests (CARTs) and heart rate variability (HRV) studies that were shown to be sensitive, noninvasive, and reproducible (3,4).”

“HbA1c fails to capture information on the daily fluctuations in blood glucose levels, termed glycemic variability (GV). Recent observations have fostered the notion that GV, independent of HbA1c, may confer an additional risk for the development of micro- and macrovascular diabetes complications (8,9). […] the relationship between GV and chronic complications, specifically CAN, in patients with type 1 diabetes has not been systematically studied. In addition, limited data exist on the relationship between hypoglycemic components of the GV and measures of CAN among subjects with type 1 diabetes (11,12). Therefore, we have designed a prospective study to evaluate the impact and the possible sustained effects of GV on measures of cardiac autonomic function and other cardiovascular complications among subjects with type 1 diabetes […] In the present communication, we report cross-sectional analyses at baseline between indices of hypoglycemic stress on measures of cardiac autonomic function.”

“The following measures of CAN were predefined as outcomes of interests and analyzed: expiration-to-inspiration ratio (E:I), Valsalva ratio, 30:15 ratios, low-frequency (LF) power (0.04 to 0.15 Hz), high-frequency (HF) power (0.15 to 0.4 Hz), and LF/HF at rest and during CARTs. […] We found that LBGI [low blood glucose index] and AUC [area under the curve] hypoglycemia were associated with reduced LF and HF power of HRV [heart rate variability], suggesting an impaired autonomic function, which was independent of glucose control as assessed by the HbA1c.”

“Our findings are in concordance with a recent report demonstrating attenuation of the baroreflex sensitivity and of the sympathetic response to various cardiovascular stressors after antecedent hypoglycemia among healthy subjects who were exposed to acute hypoglycemic stress (18). Similar associations […] were also reported in a small study of subjects with type 2 diabetes (19). […] higher GV and hypoglycemic stress may have an acute effect on modulating autonomic control with inducing a sympathetic/vagal imbalance and a blunting of the cardiac vagal control (18). The impairment in the normal counter-regulatory autonomic responses induced by hypoglycemia on the cardiovascular system could be important in healthy individuals but may be particularly detrimental in individuals with diabetes who have hitherto compromised cardiovascular function and/or subclinical CAN. In these individuals, hypoglycemia may also induce QT interval prolongation, increase plasma catecholamine levels, and lower serum potassium (19,20). In concert, these changes may lower the threshold for serious arrhythmia (19,20) and could result in an increased risk of cardiovascular events and sudden cardiac death. Conversely, the presence of CAN may increase the risk of hypoglycemia through hypoglycemia unawareness and subsequent impaired ability to restore euglycemia (21) through impaired sympathoadrenal response to hypoglycemia or delayed gastric emptying. […] A possible pathogenic role of GV/hypoglycemic stress on CAN development and progressions should be also considered. Prior studies in healthy and diabetic subjects have found that higher exposure to hypoglycemia reduces the counter-regulatory hormone (e.g., epinephrine, glucagon, and adrenocorticotropic hormone) and blunts autonomic nervous system responses to subsequent hypoglycemia (21). […] Our data […] suggest that wide glycemic fluctuations, particularly hypoglycemic stress, may increase the risk of CAN in patients with type 1 diabetes.”

“In summary, in this cohort of relatively young and uncomplicated patients with type 1 diabetes, GV and higher hypoglycemic stress were associated with impaired HRV reflective of sympathetic/parasympathetic dysfunction with potential important clinical consequences.”

iii. Elevated Levels of hs-CRP Are Associated With High Prevalence of Depression in Japanese Patients With Type 2 Diabetes: The Diabetes Distress and Care Registry at Tenri (DDCRT 6).

“In the last decade, several studies have been published that suggest a close association between diabetes and depression. Patients with diabetes have a high prevalence of depression (1) […] and a high prevalence of complications (3). In addition, depression is associated with mortality in these patients (4). […] Because of this strong association, several recent studies have suggested the possibility of a common biological pathway such as inflammation as an underlying mechanism of the association between depression and diabetes (5). […] Multiple mechanisms are involved in the association between diabetes and inflammation, including modulation of lipolysis, alteration of glucose uptake by adipose tissue, and an indirect mechanism involving an increase in free fatty acid levels blocking the insulin signaling pathway (10). Psychological stress can also cause inflammation via innervation of cytokine-producing cells and activation of the sympathetic nervous systems and adrenergic receptors on macrophages (11). Depression enhances the production of inflammatory cytokines (1214). Overproduction of inflammatory cytokines may stimulate corticotropin-releasing hormone production, a mechanism that leads to hypothalamic-pituitary axis activity. Conversely, cytokines induce depressive-like behaviors; in studies where healthy participants were given endotoxin infusions to trigger cytokine release, the participants developed classic depressive symptoms (15). Based on this evidence, it could be hypothesized that inflammation is the common biological pathway underlying the association between diabetes and depression.”

“[F]ew studies have examined the clinical role of inflammation and depression as biological correlates in patients with diabetes. […] In this study, we hypothesized that high CRP [C-reactive protein] levels were associated with the high prevalence of depression in patients with diabetes and that this association may be modified by obesity or glycemic control. […] Patient data were derived from the second-year survey of a diabetes registry at Tenri Hospital, a regional tertiary care teaching hospital in Japan. […] 3,573 patients […] were included in the study. […] Overall, mean age, HbA1c level, and BMI were 66.0 years, 7.4% (57.8 mmol/mol), and 24.6 kg/m2, respectively. Patients with major depression tended to be relatively young […] and female […] with a high BMI […], high HbA1c levels […], and high hs-CRP levels […]; had more diabetic nephropathy […], required more insulin therapy […], and exercised less […]”.

“In conclusion, we observed that hs-CRP levels were associated with a high prevalence of major depression in patients with type 2 diabetes with a BMI of ≥25 kg/m2. […] In patients with a BMI of <25 kg/m2, no significant association was found between hs-CRP quintiles and major depression […] We did not observe a significant association between hs-CRP and major depression in either of HbA1c subgroups. […] Our results show that the association between hs-CRP and diabetes is valid even in an Asian population, but it might not be extended to nonobese subjects. […] several factors such as obesity and glycemic control may modify the association between inflammation and depression. […] Obesity is strongly associated with chronic inflammation.”

iv. A Novel Association Between Nondipping and Painful Diabetic Polyneuropathy.

“Sleep problems are common in painful diabetic polyneuropathy (PDPN) (1) and contribute to the effect of pain on quality of life. Nondipping (the absence of the nocturnal fall in blood pressure [BP]) is a recognized feature of diabetic cardiac autonomic neuropathy (CAN) and is attributed to the abnormal prevalence of nocturnal sympathetic activity (2). […] This study aimed to evaluate the relationship of the circadian pattern of BP with both neuropathic pain and pain-related sleep problems in PDPN […] Investigating the relationship between PDPN and BP circadian pattern, we found patients with PDPN exhibited impaired nocturnal decrease in BP compared with those without neuropathy, as well as higher nocturnal systolic BP than both those without DPN and with painless DPN. […] in multivariate analysis including comorbidities and most potential confounders, neuropathic pain was an independent determinant of ∆ in BP and nocturnal systolic BP.”

“PDPN could behave as a marker for the presence and severity of CAN. […] PDPN should increasingly be regarded as a condition of high cardiovascular risk.”

v. Reduced Testing Frequency for Glycated Hemoglobin, HbA1c, Is Associated With Deteriorating Diabetes Control.

I think a potentially important take-away from this paper, which they don’t really talk about, is that when you’re analyzing time series data in research contexts where the HbA1c variable is available at the individual level at some base frequency and you then encounter individuals for whom the HbA1c variable is unobserved in such a data set for some time periods/is not observed at the frequency you’d expect, such (implicit) missing values may not be missing at random (for more on these topics see e.g. this post). More specifically, in light of the findings of this paper I think it would make a lot of sense to default to an assumption of missing values being an indicator of worse-than-average metabolic control during the unobserved period of the time series in question when doing time-to-event analyses, especially in contexts where the values are missing for an extended period of time.

The authors of the paper consider metabolic control an outcome to be explained by the testing frequency. That’s one way to approach these things, but it’s not the only one and I think it’s also important to keep in mind that some patients also sometimes make a conscious decision not to show up for their appointments/tests; i.e. the testing frequency is not necessarily fully determined by the medical staff, although they of course have an important impact on this variable.

Some observations from the paper:

“We examined repeat HbA1c tests (400,497 tests in 79,409 patients, 2008–2011) processed by three U.K. clinical laboratories. We examined the relationship between retest interval and 1) percentage change in HbA1c and 2) proportion of cases showing a significant HbA1c rise. The effect of demographics factors on these findings was also explored. […] Figure 1 shows the relationship between repeat requesting interval (categorized in 1-month intervals) and percentage change in HbA1c concentration in the total data set. From 2 months onward, there was a direct relationship between retesting interval and control. A testing frequency of >6 months was associated with deterioration in control. The optimum testing frequency in order to maximize the downward trajectory in HbA1c between two tests was approximately four times per year. Our data also indicate that testing more frequently than 2 months has no benefit over testing every 2–4 months. Relative to the 2–3 month category, all other categories demonstrated statistically higher mean change in HbA1c (all P < 0.001). […] similar patterns were observed for each of the three centers, with the optimum interval to improvement in overall control at ∼3 months across all centers.”

“[I]n patients with poor control, the pattern was similar to that seen in the total group, except that 1) there was generally a more marked decrease or more modest increase in change of HbA1c concentration throughout and, consequently, 2) a downward trajectory in HbA1c was observed when the interval between tests was up to 8 months, rather than the 6 months as seen in the total group. In patients with a starting HbA1c of <6% (<42 mmol/mol), there was a generally linear relationship between interval and increase in HbA1c, with all intervals demonstrating an upward change in mean HbA1c. The intermediate group showed a similar pattern as those with a starting HbA1c of <6% (<42 mmol/mol), but with a steeper slope.”

“In order to examine the potential link between monitoring frequency and the risk of major deterioration in control, we then assessed the relationship between testing interval and proportion of patients demonstrating an increase in HbA1c beyond the normal biological and analytical variation in HbA1c […] Using this definition of significant increase as a ≥9.9% rise in subsequent HbA1c, our data show that the proportion of patients showing this magnitude of rise increased month to month, with increasing intervals between tests for each of the three centers. […] testing at 2–3-monthly intervals would, at a population level, result in a marked reduction in the proportion of cases demonstrating a significant increase compared with annual testing […] irrespective of the baseline HbA1c, there was a generally linear relationship between interval and the proportion demonstrating a significant increase in HbA1c, though the slope of this relationship increased with rising initial HbA1c.”

“Previous data from our and other groups on requesting patterns indicated that relatively few patients in general practice were tested annually (5,6). […] Our data indicate that for a HbA1c retest interval of more than 2 months, there was a direct relationship between retesting interval and control […], with a retest frequency of greater than 6 months being associated with deterioration in control. The data showed that for diabetic patients as a whole, the optimum repeat testing interval should be four times per year, particularly in those with poorer diabetes control (starting HbA1c >7% [≥53 mmol/mol]). […] The optimum retest interval across the three centers was similar, suggesting that our findings may be unrelated to clinical laboratory factors, local policies/protocols on testing, or patient demographics.”

It might be important to mention that there are important cross-country differences in terms of how often people with diabetes get HbA1c measured – I’m unsure of whether or not standards have changed since then, but at least in Denmark a specific treatment goal of the Danish Regions a few years ago was whether or not 95% of diabetics had had their HbA1c measured within the last year (here’s a relevant link to some stuff I wrote about related topics a while back).

October 2, 2017 Posted by | Cardiology, Diabetes, Immunology, Medicine, Neurology, Psychology, Statistics, Studies | Leave a comment

A few diabetes papers of interest

i. Glycated Hemoglobin and All-Cause and Cause-Specific Mortality in Singaporean Chinese Without Diagnosed Diabetes: The Singapore Chinese Health Study.

“Previous studies have reported that elevated levels of HbA1c below the diabetes threshold (<6.5%) are associated with an increased risk for cardiovascular morbidity and mortality (312). Yet, this research base is not comprehensive, and data from Chinese populations are scant, especially in those without diabetes. This gap in the literature is important since Southeast Asian populations are experiencing epidemic rates of type 2 diabetes and related comorbidities with a substantial global health impact (1316).

Overall, there are few cohort studies that have examined the etiologic association between HbA1c levels and all-cause and cause-specific mortality. There is even lesser insight on the nature of the relationship between HbA1c and significant clinical outcomes in Southeast Asian populations. Therefore, we examined the association between HbA1c and all-cause and cause-specific mortality in the Singapore Chinese Health Study (SCHS).”

“The design of the SCHS has been previously summarized (17). Briefly, the cohort was drawn from men and women, aged 45–74 years, who belonged to one of the major dialect groups (Hokkien or Cantonese) of Chinese in Singapore. […] Between April 1993 and December 1998, 63,257 individuals completed an in-person interview that included questions on usual diet, demographics, height and weight, use of tobacco, usual physical activity, menstrual and reproductive history (women only), medical history including history of diabetes diagnosis by a physician, and family history of cancer. […] At the follow-up interview (F1), which occurred in 1999–2004, subjects were asked to update their baseline interview information. […] The study population derived from 28,346 participants of the total 54,243 who were alive and participated at F1, who provided consent at F1 to collect subsequent blood samples (a consent rate of ∼65%). The participants for this study were a random selection of individuals from the full study population who did not report a history of diabetes or CVD at the baseline or follow-up interview and reported no history of cancer.”

“During 74,890 person-years of follow-up, there were 888 total deaths, of which 249 were due to CVD, 388 were due to cancer, and 169 were recorded as respiratory mortality. […] There was a positive association between HbA1c and age, BMI, and prevalence of self-reported hypertension, while an inverse association was observed between educational attainment and HbA1c. […] The crude mortality rate was 1,186 deaths per 100,000 person-years. The age- and sex-standardized mortality rates for all-cause, CVD, and cerebrovascular each showed a J-shaped pattern according to HbA1c level. The CHD and cancer mortality rates were higher for HbA1c ≥6.5% (≥48 mmol/mol) and otherwise displayed no apparent pattern. […] There was no association between any level of HbA1c and respiratory causes of death.”

“Chinese men and women with no history of cancer, reported diabetes, or CVD with an HbA1c level ≥6.5% (≥48 mmol/mol) were at a significant increased risk of mortality during follow-up relative to their peers with an HbA1c of 5.4–5.6% (36–38 mmol/mol). No other range of HbA1c was significantly associated with risk of mortality during follow-up, and in secondary analyses, when the HbA1c level ≥6.5% (≥48 mmol/mol) was divided into four categories, this increased risk was observed in all four categories; thus, these data represent a clear threshold association between HbA1c and mortality in this population. These results are consistent with previous prospective cohort studies identifying chronically high HbA1c, outside of diabetes, to be associated with increased risk for all-cause and CVD-related mortality (312,22).”

“Hyperglycemia is a known risk factor for CVD, not limited to individuals with diabetes. This may be in part due to the vascular damage caused by oxidative stress in periods of hypo- and hyperglycemia (23,24). For individuals with impaired fasting glucose and impaired glucose tolerance, increased oxidative stress and endothelial dysfunction are present before the onset of diabetes (25). The association between chronically high levels of HbA1c and development of and death from cancer is not as well defined (9,2630). Abnormal metabolism may play a role in cancer development and death. This is important, considering cancer is the leading cause of death in Singapore for adults 15–59 years of age (31). Increased risk for cancer mortality was found in individuals with impaired glucose tolerance (30). […] Hyperinsulinemia and IGF-I are associated with increased cancer risk, possibly through mitogenic effects and tumor formation (27,28,37). This is the basis for the insulin-cancer hypothesis. Simply put, chronic levels of hyperinsulinemia reduce the production of IGF binding proteins 1 and 2. The absence of these proteins results in excess bioactive IGF-I, supporting tumor development (38). Chronic hyperglycemia, indicating high levels of insulin and IGF-I, may explain inhibition of cell apoptosis, increased cell proliferation, and increased cancer risk (39).”

ii. The Cross-sectional and Longitudinal Associations of Diabetic Retinopathy With Cognitive Function and Brain MRI Findings: The Action to Control Cardiovascular Risk in Diabetes (ACCORD) Trial.

“Brain imaging studies suggest that type 2 diabetes–related microvascular disease may affect the central nervous system in addition to its effects on other organs, such as the eye and kidney. Histopathological evidence indicates that microvascular disease in the brain can lead to white matter lesions (WMLs) visible with MRI of the brain (1), and risk for them is often increased by type 2 diabetes (26). Type 2 diabetes also has recently been associated with lower brain volume, particularly gray matter volume (79).

The association between diabetic retinopathy and changes in brain tissue is of particular interest because retinal and cerebral small vessels have similar anatomy, physiology, and embryology (10). […] the preponderance of evidence suggests diabetic retinopathy is associated with increased WML burden (3,1214), although variation exists. While cross-sectional studies support a correlation between diabetic retinopathy and WMLs (2,3,6,15), diabetic retinopathy and brain atrophy (16), diabetic retinopathy and psychomotor speed (17,18), and psychomotor speed and WMLs (5,19,20), longitudinal evidence demonstrating the assumed sequence of disease development, for example, vascular damage of eye and brain followed by cognitive decline, is lacking.

Using Action to Control Cardiovascular Risk in Diabetes (ACCORD) data, in which a subset of participants received longitudinal measurements of diabetic retinopathy, cognition, and MRI variables, we analyzed the 1) cross-sectional associations between diabetic retinopathy and evidence of brain microvascular disease and 2) determined whether baseline presence or severity of diabetic retinopathy predicts 20- or 40-month changes in cognitive performance or brain microvascular disease.”

“The ACCORD trial (21) was a multicenter randomized trial examining the effects of intensive glycemic control, blood pressure, and lipids on cardiovascular disease events. The 10,251 ACCORD participants were aged 40–79 years, had poorly controlled type 2 diabetes (HbA1c > 7.5% [58.5 mmol/mol]), and had or were at high risk for cardiovascular disease. […] The ACCORD-Eye sample comprised 3,472 participants who did not report previous vitrectomy or photocoagulation surgery for proliferative diabetic retinopathy at baseline […] ACCORD-MIND included a subset of 2,977 ACCORD participants who completed a 30-min cognitive testing battery, 614 of whom also had useable scans from the MRI substudy (23,24). […] ACCORD-MIND had visits at three time points: baseline, 20 months, and 40 months. MRI of the brain was completed at baseline and the 40-month time point.”

“Baseline diabetic retinopathy was associated with more rapid 40-month declines in DSST and MMSE [Mini-Mental State Examination] when adjusting for demographics and lifestyle factors in model 1 […]. Moreover, increasing severity of diabetic retinopathy was associated with increased amounts of decline in DSST [Digit Symbol Substitution Test] performance (−1.30, −1.76, and −2.81 for no, mild, and moderate/severe NPDR, respectively; P = 0.003) […Be careful about how to interpret that p-value – see below, US] . The associations remained virtually unchanged after further adjusting for vascular and diabetes risk factors, depression, and visual acuity using model 2.”

“This longitudinal study provides new evidence that diabetic retinopathy is associated with future cognitive decline in persons with type 2 diabetes and confirms the finding from the Edinburgh Type 2 Diabetes Study derived from cross-sectional data that lifetime cognitive decline is associated with diabetic retinopathy (32). We found that the presence of diabetic retinopathy, independent of visual acuity, predicts greater declines in global cognitive function measured with the MMSE and that the magnitude of decline in processing speed measured with the DSST increased with increasing severity of baseline diabetic retinopathy. The association with psychomotor speed is consistent with prior cross-sectional findings in community-based samples of middle-aged (18) and older adults (17), as well as prospective studies of a community-based sample of middle-aged adults (33) and patients with type 1 diabetes (34) showing that retinopathy with different etiologies predicted a subsequent decline in psychomotor speed. This study extends these findings to patients with type 2 diabetes.”

“we tested a number of different associations but did not correct P values for multiple testing” [Aargh!, US.]

iii. Incidence of Remission in Adults With Type 2 Diabetes: The Diabetes & Aging Study.

(Note to self before moving on to the paper: these people identified type 1 diabetes by self-report or diabetes onset at <30 years of age, treated with insulin only and never treated with oral agents).

“It is widely believed that type 2 diabetes is a chronic progressive condition, which at best can be controlled, but never cured (1), and that once treatment with glucose-lowering medication is initiated, it is required indefinitely and is intensified over time (2,3). However, a growing body of evidence from clinical trials and case-control studies (46) has reported the remission of type 2 diabetes in certain populations, most notably individuals who received bariatric surgery. […] Despite the clinical relevance and importance of remission, little is known about the incidence of remission in community settings (11,12). Studies to date have focused largely on remission after gastric bypass or relied on data from clinical trials, which have limited generalizability. Therefore, we conducted a retrospective cohort study to describe the incidence rates and variables associated with remission among adults with type 2 diabetes who received usual care, excluding bariatric surgery, in a large, ethnically diverse population. […] 122,781 individuals met our study criteria, yielding 709,005 person-years of total follow-up time.”

“Our definitions of remission were based on the 2009 ADA consensus statement (10). “Partial remission” of diabetes was defined as having two or more consecutive subdiabetic HbA1c measurements, all of which were in the range of 5.7–6.4% [39–46 mmol/mol] over a period of at least 12 months. “Complete remission” was defined as having two or more consecutive normoglycemic HbA1c measurements, all of which were <5.7% [<39 mmol/mol] over a period of at least 12 months. “Prolonged remission” was defined as having two or more consecutive normoglycemic HbA1c measurements, all of which were <5.7% [<39 mmol/mol] over a period of at least 60 months. Each definition of remission requires the absence of pharmacologic treatment during the defined observation period.”

“The average age of participants was 62 years, 47.1% were female, and 51.6% were nonwhite […]. The mean (SD) interval between HbA1c tests in the remission group was 256 days (139 days). The mean interval (SD) between HbA1c tests among patients not in the remission group was 212 days (118 days). The median time since the diagnosis of diabetes in our cohort was 5.9 years, and the average baseline HbA1c level was 7.4% [57 mmol/mol]. The 18,684 individuals (15.2%) in the subset with new-onset diabetes, defined as ≤2 years since diagnosis, were younger, were more likely to have their diabetes controlled by diet, and had fewer comorbidities […] The incidence densities of partial, complete, and prolonged remission in the full cohort were 2.8 (95% CI 2.6–2.9), 0.24 (95% CI 0.20–0.28), and 0.04 (95% CI 0.01–0.06) cases per 1,000 person-years, respectively […] The 7-year cumulative incidences of partial, complete, and prolonged remission were 1.5% (95% CI 1.4–1.5%), 0.14% (95% CI 0.12–0.16%), and 0.01% (95% CI 0.003–0.02%), respectively. The 7-year cumulative incidence of any remission decreased with longer time since diagnosis from a high of 4.6% (95% CI 4.3–4.9%) for individuals diagnosed with diabetes in the past 2 years to a low of 0.4% (95% CI 0.3–0.5%) in those diagnosed >10 years ago. The 7-year cumulative incidence of any remission was much lower for individuals using insulin (0.05%; 95% CI 0.03–0.1%) or oral agents (0.3%; 95% CI 0.2–0.3%) at baseline compared with diabetes patients not using medication at baseline (12%; 95% CI 12–13%).”

“In this large cohort of insured adults with type 2 diabetes not treated with bariatric surgery, we found that 1.5% of individuals with recent evidence of clinical diabetes achieved at least partial remission over a 7-year period. If these results were generalized to the 25.6 million U.S. adults living with type 2 diabetes in 2010 (25), they would suggest that 384,000 adults could experience remission over the next 7 years. However, the rate of prolonged remission was extremely rare (0.007%), translating into only 1,800 adults in the U.S. experiencing remission lasting at least 5 years. To provide context, 1.7% of the cohort died, while only 0.8% experienced any level of remission, during the calendar year 2006. Thus, the chances of dying were higher than the chances of any remission. […] Although remission of type 2 diabetes is uncommon, it does occur in patients who have not undergone surgical interventions. […] Our analysis shows that remission is rare and variable. The likelihood of remission is more common among individuals with early-onset diabetes and those not treated with glucose-lowering medications at the point of diabetes diagnosis. Although rare, remission can also occur in individuals with more severe diabetes and those previously treated with insulin.”

iv. Blood pressure control for diabetic retinopathy (Cochrane review).

“Diabetic retinopathy is a common complication of diabetes and a leading cause of visual impairment and blindness. Research has established the importance of blood glucose control to prevent development and progression of the ocular complications of diabetes. Simultaneous blood pressure control has been advocated for the same purpose, but findings reported from individual studies have supported varying conclusions regarding the ocular benefit of interventions on blood pressure. […] The primary aim of this review was to summarize the existing evidence regarding the effect of interventions to control or reduce blood pressure levels among diabetics on incidence and progression of diabetic retinopathy, preservation of visual acuity, adverse events, quality of life, and costs. A secondary aim was to compare classes of anti-hypertensive medications with respect to the same outcomes.”

“We included 15 RCTs, conducted primarily in North America and Europe, that had enrolled 4157 type 1 and 9512 type 2 diabetic participants, ranging from 16 to 2130 participants in individual trials. […] Study designs, populations, interventions, and lengths of follow-up (range one to nine years) varied among the included trials. Overall, the quality of the evidence for individual outcomes was low to moderate.”

“The evidence from these trials supported a benefit of more intensive blood pressure control intervention with respect to 4- to 5-year incidence of diabetic retinopathy (estimated risk ratio (RR) 0.80; 95% confidence interval (CI) 0.71 to 0.92) and the combined outcome of incidence and progression (estimated RR 0.78; 95% CI 0.63 to 0.97). The available evidence provided less support for a benefit with respect to 4- to 5-year progression of diabetic retinopathy (point estimate was closer to 1 than point estimates for incidence and combined incidence and progression, and the CI overlapped 1; estimated RR 0.88; 95% CI 0.73 to 1.05). The available evidence regarding progression to proliferative diabetic retinopathy or clinically significant macular edema or moderate to severe loss of best-corrected visual acuity did not support a benefit of intervention on blood pressure: estimated RRs and 95% CIs 0.95 (0.83 to 1.09) and 1.06 (0.85 to 1.33), respectively, after 4 to 5 years of follow-up. Findings within subgroups of trial participants (type 1 and type 2 diabetics; participants with normal blood pressure levels at baseline and those with elevated levels) were similar to overall findings.”

“The available evidence supports a beneficial effect of intervention to reduce blood pressure with respect to preventing diabetic retinopathy for up to 4 to 5 years. However, the lack of evidence to support such intervention to slow progression of diabetic retinopathy or to prevent other outcomes considered in this review, along with the relatively modest support for the beneficial effect on incidence, weakens the conclusion regarding an overall benefit of intervening on blood pressure solely to prevent diabetic retinopathy.”

v. Early Atherosclerosis Relates to Urinary Albumin Excretion and Cardiovascular Risk Factors in Adolescents With Type 1 Diabetes: Adolescent Type 1 Diabetes cardio-renal Intervention Trial (AdDIT).

“Children with type 1 diabetes are at greatly increased risk for the development of both renal and cardiovascular disease in later life (1,2). Evidence is accumulating that these two complications may have a common pathophysiology, with endothelial dysfunction a key early event.

Microalbuminuria is a recognized marker of endothelial damage (3) and predicts progression to proteinuria and diabetic nephropathy, as well as to atherosclerosis (4) and increased cardiovascular risk (5). It is, however, rare in adolescents with type 1 diabetes who more often have higher urinary albumin excretion rates within the normal range, which are associated with later progression to microalbuminuria and proteinuria (6).”

“The Adolescent Type 1 Diabetes cardio-renal Intervention Trial (AdDIT) (10) is designed to examine the impact of minor differences in albumin excretion in adolescents on the initiation and progression of cardiovascular and renal disease. The primary cardiovascular end point in AdDIT is carotid intima-media thickness (cIMT). Subclinical atherosclerosis can be detected noninvasively using high-resolution ultrasound to measure the intima-media thickness (IMT) of the carotid arteries, which predicts cardiovascular morbidity and mortality (11,12). […] The primary aim of this study was to examine the relationship of increased urinary albumin excretion and cardiovascular risk factors in adolescents with type 1 diabetes with structural arterial wall changes. We hypothesized that even minor increases in albumin excretion would be associated with early atherosclerosis but that this would be detectable only in the abdominal aorta. […] A total of 406 adolescents, aged 10–16 years, with type 1 diabetes for more than 1 year, recruited in five centers across Australia, were enrolled in this cross-sectional study”.

“Structural changes in the aorta and carotid arteries could be detected in >50% of adolescents with type 1 diabetes […] The difference in aIMT [aortic intima-media thickness] between type 1 diabetic patients and age- and sex-matched control subjects was equivalent to that seen with a 5- to 6-year age increase in the type 1 diabetic patients. […] Aortic IMT was […] able to better differentiate adolescents with type 1 diabetes from control subjects than was carotid wall changes. Aortic IMT enabled detection of the very early wall changes that are present with even small differences in urinary albumin excretion. This not only supports the concept of early intervention but provides a link between renal and cardiovascular disease.

The independent relationship between aIMT and urinary albumin excretion extends our knowledge of the pathogenesis of cardiovascular and renal disease in type 1 diabetes by showing that the first signs of the development of cardiovascular disease and diabetic nephropathy are related. The concept that microalbuminuria is a marker of a generalized endothelial damage, as well as a marker of renal disease, has been recognized for >20 years (3,20,21). Endothelial dysfunction is the first critical step in the development of atherosclerosis (22). Early rises in urinary albumin excretion precede the development of microalbuminuria and proteinuria (23). It follows that the first structural changes of atherosclerosis could relate to the first biochemical changes of diabetic nephropathy. To our knowledge, this is the first study to provide evidence of this.”

“In conclusion, atherosclerosis is detectable from early adolescence in type 1 diabetes. Its early independent associations are male sex, age, systolic blood pressure, LDL cholesterol, and, importantly, urinary albumin excretion. […] Early rises in urinary albumin excretion during adolescence not only are important for determining risk of progression to microalbuminuria and diabetic nephropathy but also may alert the clinician to increased risk of cardiovascular disease.”

vi. Impact of Islet Autoimmunity on the Progressive β-Cell Functional Decline in Type 2 Diabetes.

“Historically, type 2 diabetes (T2D) has not been considered to be immune mediated. However, many notable discoveries in recent years have provided evidence to support the concept of immune system involvement in T2D pathophysiology (15). Immune cells have been identified in the pancreases of phenotypic T2D patients (35). Moreover, treatment with interleukin-1 receptor agonist improves β-cell function in T2D patients (68). These studies suggest that β-cell damage/destruction mediated by the immune system may be a component of T2D pathophysiology.

Although the β-cell damage and destruction in autoimmune diabetes is most likely T-cell mediated (T), immune markers of autoimmune diabetes have primarily centered on the presence of circulating autoantibodies (Abs) to various islet antigens (915). Abs commonly positive in type 1 diabetes (T1D), especially GAD antibody (GADA) and islet cell Abs (ICA), have been shown to be more common in patients with T2D than in nondiabetic control populations, and the presence of multiple islet Abs, such as GADA, ICA, and tyrosine phosphatase-2 (insulinoma-associated protein 2 [IA-2]), have been demonstrated to be associated with an earlier need for insulin treatment in adult T2D patients (14,1620).”

“In this study, we observed development of islet autoimmunity, measured by islet Abs and islet-specific T-cell responses, in 61% of the phenotypic T2D patients. We also observed a significant association between positive islet-reactive T-cell responses and a more rapid decline in β-cell function as assessed by FCP and glucagon-SCP responses. […] The results of this pilot study led us to hypothesize that islet autoimmunity is present or will develop in a large portion of phenotypic T2D patients and that the development of islet autoimmunity is associated with a more rapid decline in β-cell function. Moreover, the prevalence of islet autoimmunity in most previous studies is grossly underestimated because these studies have not tested for islet-reactive T cells in T2D patients but have based the presence of autoimmunity on antibody testing alone […] The results of this pilot study suggest important changes to our understanding of T2D pathogenesis by demonstrating that the prevalence of islet autoimmune development is not only more prevalent in T2D patients than previously estimated but may also play an important role in β-cell dysfunction in the T2D disease process.”

September 18, 2017 Posted by | Cancer/oncology, Cardiology, Diabetes, Epidemiology, Immunology, Medicine, Nephrology, Neurology, Ophthalmology, Studies | Leave a comment

Gastrointestinal Function in Diabetes (II)

Some more observations from the book below.

“In comparison with other parts of the gastrointestinal tract, the human oesophagus is a relatively simple organ with relatively simple functions. Despite this simplicity, disordered oesophageal function is not uncommon. […] The human oesophagus is a muscular tube that connects the pharyngeal cavity to the stomach. […] The most important functions of the human oesophagus and its sphincters are to propel swallowed food boluses to the stomach and to prevent gastro-oesophageal and oesophagopharyngeal reflux. […] Whereas the passage of liquid and solid food boluses through the oesophagus, and even acid gastrooesophageal reflux, are usually not perceived, the likelihood of perception is greater under pathological circumstances […] However, the relationship between oesophageal perception and stimulation is highly variable, e.g. patients with severe oesophagitis may deny any oesophageal symptom, while others with an endoscopically normal oesophagus may suffer from severe reflux symptoms.”

“While it is clear that oesophageal dysfunction occurs frequently in diabetes mellitus, there is considerable variation in the reported prevalence between different studies. […] Numerous studies have shown that oesophageal transit, as measured with radionuclide techniques, is slower in patients with diabetes than in age- and sex-matched healthy controls […] oesophageal transit appears to be delayed in 40–60% of patients with long-standing diabetes […] Although information relating to the prevalence of manometric abnormalities of the oesophagus [relevant link] is limited, the available data indicate that these are evident in approximately 50% of patients with diabetes […] A variety of oesophageal motor abnormalities has been demonstrated in patients with diabetes mellitus […]. These include a decreased amplitude […] and number […] of peristaltic contractions […], and an increased incidence of simultaneous […] and nonpropagated [10] contractions, as well as abnormal wave forms [17,30,32]. […] there is unequivocal evidence of damage to the extrinsic nerve supply to the oesophagus in diabetes mellitus. The results of examination of the oesophagus in 20 patients who died from diabetes disclosed histologic abnormalities in 18 of them […] The available information indicates that the prevalence of gastro-oesophageal reflux disease is higher in diabetes. Murray and co-workers studied 20 diabetic patients (14 type 1, six type 2), of whom nine (45%) were found to have excessive gastro-oesophageal acid reflux […] In a larger study of 50 type 1 diabetic patients without symptoms or history of gastro-oesophageal disease, abnormal gastro-oesophageal reflux, defined as a percentage of time with esophageal pH < 4 exceeding 3.5%, was detected in 14 patients (28%) [37].”

“Several studies have shown that the gastrointestinal motor responses to various stimuli are impaired during acute hyperglycaemia in both healthy subjects and diabetic patients […] acute hyperglycaemia reduces LOS [lower oesophageal sphincter, US] pressure and impairs oesophageal motility […] Several studies have shown that abnormal oesophageal motility is more frequent in diabetic patients who have evidence of peripheral or autonomic neuropathy than in those without […] In one of the largest studies that focused on the relationship between neuropathy and disordered oesophageal function, 50 […] insulin-requiring diabetics were stratified into three groups: (a) patients without peripheral neuropathy (n = 18); (b) patients with peripheral neuropathy but no autonomic neuropathy (n = 20); and (c) patients with both peripheral and autonomic neuropathy (n = 12). Radionuclide oesophageal emptying was found to be abnormal in 55%, 70% and 83% of patients in groups A, B and C, respectively [17]. […] It must be emphasised, however, that although several studies have provided evidence for the existence of a relationship between disordered oesophageal function and diabetic autonomic neuropathy, this relationship is relatively weak [13,14,17,27,37,49].”

“There is considerable disagreement in the literature as to the prevalence of symptoms of oesophageal dysfunction in diabetes mellitus. Some publications indicate that patients with diabetes mellitus usually do not complain about oesophageal symptoms, even when severe oesophageal dysfunction is present. […] However, in other studies a high prevalence of oesophageal symptoms in diabetics has been documented. For example, 27% of 137 unselected diabetics attending an outpatient clinic admitted to having dysphagia when specifically asked […] The poor association between oesophageal dysfunction and symptoms in patients with diabetes may reflect impaired perception of oesophageal stimuli caused by neuropathic abnormalities in afferent pathways. The development of symptoms and signs of gastro-oesophageal reflux disease in diabetics may in part be counteracted by a decrease in gastric acid secretion [59]. […] [However] oesophageal acid exposure is increased in about 40% of diabetics and it is known that the absence of reflux symptoms does not exclude the presence of severe oesophagitis and/or Barrett’s metaplasia. Due to impaired oesophageal perception, the proportion of asymptomatic patients with reflux disease may be higher in the presence of diabetes than when diabetes is absent. It might, therefore, be argued that a screening upper gastrointestinal endoscopy should be performed in diabetic patients, even when no oesophageal or gastric symptoms are reported. However, [a] more cost-effective
and realistic approach may be to perform endoscopy in diabetics with other risk factors for reflux disease, in particular severe obesity.
[…] Since upper gastrointestinal symptoms correlate poorly with objective abnormalities of gastrointestinal motor function in diabetes, the symptomatic benefit that could be expected from correction of these motor abnormalities is questionable. […] Little or nothing is known about the prognosis of disordered oesophageal function in diabetes. Long-term follow-up studies are lacking.

“Abnormally delayed gastric emptying, or gastroparesis, was once considered to be a rare sequela of diabetes mellitus, occurring occasionally in patients who had long-standing diabetes complicated by symptomatic autonomic neuropathy, and inevitably associated with both intractable upper gastrointestinal symptoms and a poor prognosis [1]. Consequent upon the development of a number of techniques to quantify gastric motility […] and the rapid expansion of knowledge relating to both normal and disordered gastric motor function in humans over the last ∼ 20 years, it is now recognised that these concepts are incorrect. […] Delayed gastric emptying represents a frequent, and clinically important, complication of diabetes mellitus. […] Cross-sectional studies […] have established that gastric emptying of solid, or nutrient liquid, meals is abnormally slow in some 30–50% of outpatients with longstanding type 1 [7–20] or type 2 [20–26] diabetes […]. Early studies, using insensitive barium contrast techniques to quantify gastric emptying, clearly underestimated the prevalence substantially [1,27]. The reported prevalence of delayed gastric emptying is highest when gastric emptying of both solid and nutrient-containing liquids (or semi-solids) are measured, either simultaneously or on separate occasions [17,28,29], as there is a relatively poor correlation between gastric emptying of solids and liquids in diabetes [28–30]. […] It is now recognised that delayed gastric emptying also occurs frequently (perhaps about 30%) in children and adolescents with type 1 diabetes [37–39]. […] intragastric meal distribution is also frequently abnormal in outpatients with diabetes, with increased retention of food in both the proximal and distal stomach [31,33]. The former may potentially be important in the aetiology of gastro-oesophageal reflux [34], which appears to occur more frequently in patients with diabetes […] Diabetic gastroparesis is often associated with motor dysfunction in other areas of the gut, e.g. oesophageal transit is delayed in some 50% of patients with long-standing diabetes [8].”

“Overall patterns of gastric emptying are critically dependent on the physical and chemical composition of a meal, so that there are substantial differences between solids, semi-solids, nutrient liquids and non-nutrient liquids [70]. […] The major factor regulating gastric emptying of nutrients (liquids and ‘liquefied’ solids) is feedback inhibition, triggered by receptors that are distributed throughout the small intestine [72]; as a result of this inhibition, nutrient-containing liquids usually empty from the stomach at an overall rate of about 2 kcal/min, after an initial emptying phase that may be somewhat faster [73]. These small intestinal receptors also respond to pH, osmolality and distension, as well as nutrient content. […] While the differential emptying rates of solids, nutrient and non-nutrient liquids when ingested alone is well established, there is much less information about the interaction between different meal components. When liquids and solids are consumed together, liquids empty preferentially (∼ 80% before the solid starts to empty) […] and the presence of a solid meal results in an overall slowing of a simultaneously ingested liquid [71,75,76]. Therefore, while it is clear that the stomach can, to some extent, regulate the emptying of liquids and solids separately, the mechanisms by which this is accomplished remain poorly defined. Extracellular fat has a much lower density than water and is liquid at body temperature. The pattern of gastric emptying of fat, and its effects on emptying of other meal components are, therefore, dependent on posture — in the left lateral posture oil accumulates in the stomach and empties early, which markedly delays emptying of a nutrient liquid [77]. Gastric emptying is also influenced by patterns of previous nutrient intake. In healthy young and older subjects, supplementation of the diet with glucose is associated with acceleration of gastric emptying of glucose [78,79], while short-term starvation slows gastric emptying”.

“[I]n animal models of diabetes a number of morphological changes are evident in the autonomic nerves supplying the gut and the myenteric plexus, including a reduction in the number of myelinated axons in the vagosympathetic trunk and neurons in the dorsal root ganglia, abnormalities in neurotransmitters […] as well as a reduced number of interstitial cells of Cajal in the fundus and antrum [89–92]. In contrast, there is hitherto little evidence of a fixed pathological process in the neural tissue of humans with diabetes […] While a clear-cut association between disordered gastrointestinal function in diabetes mellitus and the presence of autonomic neuropathy remains to be established, it is now recognised that acute changes in the blood glucose concentration have a substantial, and reversible, effect on gastric (as well as oesophageal, intestinal, gallbladder and anorectal) motility, in both healthy subjects and patients with diabetes […] Marked hyperglycaemia (blood glucose concentration ∼ 15 mmol/l) affects motility in every region of the gastrointestinal tract [103]. […] In healthy subjects [114] and patients with uncomplicated type 1 diabetes […] gastric emptying is accelerated markedly during hypoglycaemia […] this response is likely to be important in the counterregulation of hypoglycaemia. It is not known whether the magnitude of the effect of hypoglycaemia on gastric emptying is influenced by gastroparesis and/or autonomic neuropathy. Recent studies have established that changes in the blood glucose concentration within the normal postprandial range also influence gastric emptying and motility [104–106]; emptying of solids and nutrient-containing liquids is slower at a blood glucose of 8 mmol/l than at 4 mmol/l in both healthy subjects and patients with type 1 diabetes […] Recent studies suggest that the rate of gastric emptying is a significant factor in postprandial hypotension. The latter, which may lead to syncope and falls, is an important clinical problem, particularly in the elderly and patients with autonomic dysfunction (usually diabetes mellitus), occurring more frequently than orthostatic hypotension [154].”

“Gastric emptying is potentially an important determinant of oral drug absorption; most orally administered drugs (including alcohol) are absorbed more slowly from the stomach than from the small intestine because the latter has a much greater surface area [179,180]. Thus, delayed gastric emptying (particularly that of tablets or capsules, which are not degraded easily in the stomach) and a reduction in antral phase 3 activity, may potentially lead to fluctuations in the serum concentrations of orally administered drugs. This may be particularly important when a rapid onset of drug effect is desirable, as with some oral hypoglycaemic drugs […]. There is relatively little information about drug absorption in patients with diabetic gastroparesis [179] and additional studies are required.”

“Glycated haemoglobin is influenced by both fasting and postprandial glucose levels; while their relative contributions have not been defined precisely [181], it is clear that improved overall glycaemic control, as assessed by glycated haemoglobin, can be achieved by lowering postprandial blood glucose concentrations, even at the expense of higher fasting glucose levels [182]. Accordingly, the control of postprandial blood glucose levels, as opposed to glycated haemoglobin, now represents a specific target for treatment […] It remains to be established whether postprandial glycaemia per se, including the magnitude of postprandial hyperglycaemic spikes, has a distinct role in the pathogenesis of diabetic complications, but there is increasing data to support this concept [181,183,184]. It is also possible that the extent of blood glucose fluctuations is an independent determinant of the risk for long-term diabetic complications [184]. […] postprandial blood glucose levels are potentially determined by a number of factors, including preprandial glucose concentrations, the glucose content of a meal, small intestinal delivery and absorption of nutrients, insulin secretion, hepatic glucose metabolism and peripheral insulin sensitivity. Although the relative contribution of these factors remains controversial, and is likely to vary with time after a meal, it is now recognised that gastric emptying accounts for at least 35% of the variance in peak glucose levels after oral glucose (75 g) in both healthy individuals and patients with type 2 diabetes […] It is also clear that even modest perturbations in gastric emptying of carbohydrate have a major effect on postprandial glycaemia [76,79]. […] it appears that much of the observed variation in the glycaemic response to different food types (‘glycaemic indices’) in both normal subjects and patients with diabetes is attributable to differences in rates of gastric emptying [103]. […] In type 1 patients with gastroparesis […] less insulin is initially required to maintain euglycaemia after a meal when compared to those with normal gastric emptying [187]. […] There are numerous uncontrolled reports supporting the concept […] that in type 1 patients gastroparesis is a risk factor for poor glycaemic control.”

“The potential for the modulation of gastric emptying, by dietary or pharmacological means, to minimise postprandial glucose excursions and optimise glycaemic control, represents a novel approach to the optimisation of glycaemic control in diabetes, which is now being explored actively. It is important to appreciate that the underlying strategies are likely to differ fundamentally between type 1 and type 2 diabetes. In type 1 diabetes, interventions that improve the coordination between nutrient absorption and the action of exogenous insulin are likely to be beneficial, even in those patients who have delayed gastric emptying, i.e. by accelerating or even slowing gastric emptying, so that the rate of nutrient delivery (and hence absorption) is more predictable. In contrast, in type 2 diabetes, it may be anticipated that slowing of the absorption of nutrients would be desirable […] In the treatment of type 2 diabetes mellitus, dietary modifications potentially represent a more attractive and cost-effective approach than drugs […] A number of dietary strategies may slow carbohydrate absorption […] an increase in dietary fibre […] Fat is a potent inhibitor of gastric emptying and […] these effects may be dependent on posture [77]; there is the potential for relatively small quantities of fat given immediately before consumption of, or with, a meal to slow gastric emptying of other meal components, so that the postprandial rise in blood glucose is minimised [210] (this is analogous to the slowing of alcohol absorption and liquid gastric emptying when alcohol is ingested after a solid meal, rather than in the fasted state [75]). […] there is evidence that the suppression of subsequent food intake by the addition of fat to a meal may exceed the caloric value of the fat load [212]. In the broadest sense, the glycaemic response to a meal is also likely to be critically dependent on whether food from the previous meal is still present in the stomach and/or small intestine at the time of its ingestion, so that glucose tolerance may be expected to be worse in the fasted state […] than after a meal.”

“At present it is not known whether normalisation of gastric emptying in either type 1 or type 2 patients with gastroparesis improves glycaemic control. […] prokinetic drugs would not be expected to have a beneficial effect on glycaemic control in type 2 patients who are not using insulin. Erythromycin may, however, as a result of its interaction with motilin receptors, also stimulate insulin secretion (and potentially improve glycaemic control by this mechanism) in type 2 diabetes [220] […] It should […] be recognised that any drug that slows gastric emptying has the potential to induce or exacerbate upper gastrointestinal symptoms, delay oral drug absorbtion and impair the counter-regulation of glycaemia. […] At present, the use of prokinetic drugs (mainly cisapride, domperidone, metoclopramide and erythromycin) forms the mainstay of therapy [167,244–259], and most patients will require drug treatment. In general, these drugs all result in dose-related improvements in gastric emptying after acute administration […] The response to prokinetic therapy (magnitude of acceleration in gastric emptying) tends to be greater when gastric emptying is more delayed. It should be recognised that relatively few controlled studies have evaluated the effects of ‘prolonged’ (> 8 weeks) prokinetic therapy, that in many studies the sample sizes have been small, and that the assessments of gastrointestinal symptoms have, not infrequently, been suboptimal; furthermore, the results of some of these studies have been negative [32]. There have hitherto been relatively few randomised controlled trials of high quality, and those that are available differ substantially in design. […] In general, there is a poor correlation between effects on symptoms and gastric emptying — prokinetic drugs may improve symptoms by effects unrelated to acceleration of gastric emptying or central anti-emetic properties [254].”

“Autoimmune factors are well recognised to play a role in the aetiology of type 1 diabetes [316,317]. In such patients there is an increased prevalence of autoimmune aggression against non-endocrine tissues, including the gastric mucosa. The reported prevalence of parietal cell antibodies in patients with type 1 diabetes is in the range 5–28%, compared to 1.4–12% in non-diabetic controls […] The autoimmune response to parietal cell antibodies may lead to atrophic gastritis, pernicious anaemia and iron deficiency anaemia […] Parietal cell antibodies can inhibit the secretion of intrinsic factor, which is necessary for the absorption of vitamin B12, potentially resulting in pernicious anaemia. The prevalence of latent and overt pernicious anaemia in type 1 diabetes has been reported to be 1.6–4% and 0.4%, respectively […] screening for parietal cell antibodies in patients with type 1 diabetes currently appears inappropriate. However, there should be a low threshold for further investigation in those patients presenting with anaemia”.

September 1, 2017 Posted by | Books, Diabetes, Gastroenterology, Immunology, Medicine, Neurology | Leave a comment

Utility of Research Autopsies for Understanding the Dynamics of Cancer

A few links:
Pancreatic cancer.
Jaccard index.
Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer.
Epitope.
Tissue-specific mutation accumulation in human adult stem cells during life.
Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis.

August 25, 2017 Posted by | Cancer/oncology, Genetics, Immunology, Lectures, Medicine, Statistics | Leave a comment

Infectious Disease Surveillance (III)

I have added some more observations from the book below.

“Zoonotic diseases are infections transmitted between animals and humans […]. A recent survey identified more than 1,400 species of human disease–causing agents, over half (58%) of which were zoonotic [2]. Moreover, nearly three-quarters (73%) of infectious diseases considered to be emerging or reemerging were zoonotic [2]. […] In many countries there is minimal surveillance for live animal imports or imported wildlife products. Minimal surveillance prevents the identification of wildlife trade–related health risks to the public, agricultural industry, and native wildlife [36] and has led to outbreaks of zoonotic diseases […] Southeast Asia [is] a hotspot for emerging zoonotic diseases because of rapid population growth, high population density, and high biodiversity […] influenza virus in particular is of zoonotic importance as multiple human infections have resulted from animal exposure [77–79].”

“[R]abies is an important cause of death in many countries, particularly in Africa and Asia [85]. Rabies is still underreported throughout the developing world, and 100-fold underreporting of human rabies is estimated for most of Africa [44]. Reasons for underreporting include lack of public health personnel, difficulties in identifying suspect animals, and limited laboratory capacity for rabies testing. […] Brucellosis […] is transmissible to humans primarily through consumption of unpasteurized milk or dairy products […] Brucella is classified as a category B bioterrorism agent [90] because of its potential for aerosolization [I should perhaps here mention that the book coverage does overlaps a bit with that of Fong & Alibek’s book – which I covered here – but that I decided against covering those topics in much detail here – US] […] The key to preventing brucellosis in humans is to control or eliminate infections in animals [91–93]; therefore, veterinarians are crucial to the identification, prevention, and control of brucellosis [89]. […] Since 1954 [there has been] an ongoing eradication program involving surveillance testing of cattle at slaughter, testing at livestock markets, and whole-herd testing on the farm [in the US] […] Except for endemic brucellosis in wildlife in the Greater Yellowstone Area, all 50 states and territories in the United States are free of bovine brucellosis [94].”

“Because of its high mortality rate in humans in the absence of early treatment, Y. pestis is viewed as one of the most pathogenic human bacteria [101]. In the United States, plague is most often found in the Southwest where it is transmitted by fleas and maintained in rodent populations [102]. Deer mice and voles typically serve as maintenance hosts [and] these animals are often resistant to plague [102]. In contrast, in amplifying host species such as prairie dogs, ground squirrels, chipmunks, and wood rats, plague spreads rapidly and results in high mortality [103]. […] Human infections with Y. pestis can result in bubonic, pneumonic, or septicemic plague, depending on the route of exposure. Bubonic plague is most common; however, pneumonic plague poses a more serious public health risk since it can be easily transmitted person-to-person through inhalation of aerosolized bacteria […] Septicemic plague is characterized by bloodstream infection with Y. pestis and can occur secondary to pneumonic or bubonic forms of infection or as a primary infection [6,60].
Plague outbreaks are often correlated with animal die-offs in the area [104], and rodent control near human residences is important to prevent disease [103]. […] household pets can be an important route of plague transmission and flea control in dogs and cats is an important prevention measure [105]. Plague surveillance involves monitoring three populations for infection: vectors (e.g., fleas), humans, and rodents [106]. In the past 20 years, the numbers of human cases of plague reported in the United States have varied from 1 to 17 cases per year [90]. […]
Since rodent species are the main reservoirs of the bacteria, these animals can be used for sentinel surveillance to provide an early warning of the public health risk to humans [106]. […] Rodent die-offs can often be an early indicator of a plague outbreak”.

“Zoonotic disease surveillance is crucial for protection of human and animal health. An integrated, sustainable system that collects data on incidence of disease in both animals and humans is necessary to ensure prompt detection of zoonotic disease outbreaks and a timely and focused response [34]. Currently, surveillance systems for animals and humans [operate] largely independently [34]. This results in an inability to rapidly detect zoonotic diseases, particularly novel emerging diseases, that are detected in the human population only after an outbreak occurs [109]. While most industrialized countries have robust disease surveillance systems, many developing countries currently lack the resources to conduct both ongoing and real-time surveillance [34,43].”

“Acute hepatitis of any cause has similar, usually indistinguishable, signs and symptoms. Acute illness is associated with fever, fatigue, nausea, abdominal pain, followed by signs of liver dysfunction, including jaundice, light to clay-colored stool, dark urine, and easy bruising. The jaundice, dark urine, and abnormal stool are because of the diminished capacity of the inflamed liver to handle the metabolism of bilirubin, which is a breakdown product of hemoglobin released as red blood cells are normally replaced. In severe hepatitis that is associated with fulminant liver disease, the liver’s capacity to produce clotting factors and to clear potential toxic metabolic products is severely impaired, with resultant bleeding and hepatic encephalopathy. […] An effective vaccine to prevent hepatitis A has been available for more than 15 years, and incidence rates of hepatitis A are dropping wherever it is used in routine childhood immunization programs. […] Currently, hepatitis A vaccine is part of the U.S. childhood immunization schedule recommended by the Advisory Committee on Immunization Practices (ACIP) [31].”

Chronic hepatitis — persistent and ongoing inflammation that can result from chronic infection — usually has minimal to no signs or symptoms […] Hepatitis B and C viruses cause acute hepatitis as well as chronic hepatitis. The acute component is often not recognized as an episode of acute hepatitis, and the chronic infection may have little or no symptoms for many years. With hepatitis B, clearance of infection is age related, as is presentation with symptoms. Over 90% of infants exposed to HBV develop chronic infection, while <1% have symptoms; 5–10% of adults develop chronic infection, but 50% or more have symptoms associated with acute infection. Among those who acquire hepatitis C, 15–45% clear the infection; the remainder have lifelong infection unless treated specifically for hepatitis C.”

“[D]ata are only received on individuals accessing care. Asymptomatic acute infection and poor or unavailable measurements for high risk populations […] have resulted in questionable estimates of the prevalence and incidence of hepatitis B and C. Further, a lack of understanding of the different types of viral hepatitis by many medical providers [18] has led to many undiagnosed individuals living with chronic infection, who are not captured in disease surveillance systems. […] Evaluation of acute HBV and HCV surveillance has demonstrated a lack of sensitivity for identifying acute infection in injection drug users; it is likely that most cases in this population go undetected, even if they receive medical care [36]. […] Best practices for conducting surveillance for chronic hepatitis B and C are not well established. […] The role of health departments in responding to infectious diseases is typically responding to acute disease. Response to chronic HBV infection is targeted to prevention of transmission to contacts of those infected, especially in high risk situations. Because of the high risk of vertical transmission and likely development of chronic disease in exposed newborns, identification and case management of HBV-infected pregnant women and their infants is a high priority. […] For a number of reasons, states do not conduct uniform surveillance for chronic hepatitis C. There is not agreement as to the utility of surveillance for chronic HCV infection, as it is a measurement of prevalent rather than incident cases.”

“Among all nationally notifiable diseases, three STDs (chlamydia, gonorrhea, and syphilis) are consistently in the top five most commonly reported diseases annually. These three STDs made up more than 86% of all reported diseases in the United States in 2010 [2]. […] The true burden of STDs is likely to be higher, as most infections are asymptomatic [4] and are never diagnosed or reported. A synthesis of a variety of data sources estimated that in 2008 there were over 100 million prevalent STDs and nearly 20 million incident STDs in the United States [5]. […] Nationally, 72% of all reported STDs are among persons aged 15–24 years [3], and it is estimated that 1 in 4 females aged 14–19 has an STD [7]. […] In 2011, the rates of chlamydia, gonorrhea, and primary and secondary syphilis among African-­Americans were, respectively, 7.5, 16.9, and 6.7 times the rates among whites [3]. Additionally, men who have sex with men (MSM) are disproportionately infected with STDs. […] several analyses have shown risk ratios above 100 for the associations between being an MSM and having syphilis or HIV [9,10]. […] Many STDs can be transmitted congenitally during pregnancy or birth. In 2008, over 400,000 neonatal deaths and stillbirths were associated with syphilis worldwide […] untreated chlamydia and gonorrhea can cause ophthalmia neonatorum in newborns, which can result in blindness [13]. The medical and societal costs for STDs are high. […] One estimate in 2008 put national costs at $15.6 billion [15].”

“A significant challenge in STD surveillance is that the term “STD” encompasses a variety of infections. Currently, there are over 35 pathogens that can be transmitted sexually, including bacteria […] protozoa […] and ectoparasites […]. Some infections can cause clinical syndromes shortly after exposure, whereas others result in no symptoms or have a long latency period. Some STDs can be easily diagnosed using self-collected swabs, while others require a sample of blood or a physical examination by a clinician. Consequently, no one particular surveillance strategy works for all STDs. […] The asymptomatic nature of most STDs limits inferences from case­-based surveillance, since in order to be counted in this system an infection must be diagnosed and reported. Additionally, many infections never result in disease. For example, an estimated 90% of human papillomavirus (HPV) infections resolve on their own without sequelae [24]. As such, simply counting infections may not be appropriate, and sequelae must also be monitored. […] Strategies for STD surveillance include case reporting; sentinel surveillance; opportunistic surveillance, including use of administrative data and positivity in screened populations; and population-­based studies […] the choice of strategy depends on the type of STD and the population of interest.”

“Determining which diseases and conditions should be included in mandatory case reporting requires balancing the benefits to the public health system (e.g., utility of the data) with the costs and burdens of case reporting. While many epidemiologists and public health practitioners follow the mantra “the more data, the better,” the costs (in both dollars and human resources) of developing and maintaining a robust case­-based reporting system can be large. Case­-based surveillance has been mandated for chlamydia, gonorrhea, syphilis, and chancroid nationally; but expansion of state­-initiated mandatory reporting for other STDs is controversial.”

August 18, 2017 Posted by | Books, Epidemiology, Immunology, Infectious disease, Medicine | Leave a comment

Harnessing phenotypic heterogeneity to design better therapies

Unlike many of the IAS lectures I’ve recently blogged this one is a new lecture – it was uploaded earlier this week. I have to say that I was very surprised – and disappointed – that the treatment strategy discussed in the lecture had not already been analyzed in a lot of detail and been implemented in clinical practice for some time. Why would you not expect the composition of cancer cell subtypes in the tumour microenvironment to change when you start treatment – in any setting where a subgroup of cancer cells has a different level of responsiveness to treatment than ‘the average’, that would to me seem to be the expected outcome. And concepts such as drug holidays and dose adjustments as treatment responses to evolving drug resistance/treatment failure seem like such obvious approaches to try out here (…the immunologists dealing with HIV infection have been studying such things for decades). I guess ‘better late than never’.

A few papers mentioned/discussed in the lecture:

Impact of Metabolic Heterogeneity on Tumor Growth, Invasion, and Treatment Outcomes.
Adaptive vs continuous cancer therapy: Exploiting space and trade-offs in drug scheduling.
Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer.

June 11, 2017 Posted by | Cancer/oncology, Genetics, Immunology, Lectures, Mathematics, Medicine, Studies | Leave a comment

A few diabetes papers of interest

i. Association Between Blood Pressure and Adverse Renal Events in Type 1 Diabetes.

“The Joint National Committee and American Diabetes Association guidelines currently recommend a blood pressure (BP) target of <140/90 mmHg for all adults with diabetes, regardless of type (13). However, evidence used to support this recommendation is primarily based on data from trials of type 2 diabetes (46). The relationship between BP and adverse outcomes in type 1 and type 2 diabetes may differ, given that the type 1 diabetes population is typically much younger at disease onset, hypertension is less frequently present at diagnosis (3), and the basis for the pathophysiology and disease complications may differ between the two populations.

Prior prospective cohort studies (7,8) of patients with type 1 diabetes suggested that lower BP levels (<110–120/70–80 mmHg) at baseline entry were associated with a lower risk of adverse renal outcomes, including incident microalbuminuria. In one trial of antihypertensive treatment in type 1 diabetes (9), assignment to a lower mean arterial pressure (MAP) target of <92 mmHg (corresponding to ∼125/75 mmHg) led to a significant reduction in proteinuria compared with a MAP target of 100–107 mmHg (corresponding to ∼130–140/85–90 mmHg). Thus, it is possible that lower BP (<120/80 mmHg) reduces the risk of important renal outcomes, such as proteinuria, in patients with type 1 diabetes and may provide a synergistic benefit with intensive glycemic control on renal outcomes (1012). However, fewer studies have examined the association between BP levels over time and the risk of more advanced renal outcomes, such as stage III chronic kidney disease (CKD) or end-stage renal disease (ESRD)”.

“The primary objective of this study was to determine whether there is an association between lower BP levels and the risk of more advanced diabetic nephropathy, defined as macroalbuminuria or stage III CKD, within a background of different glycemic control strategies […] We included 1,441 participants with type 1 diabetes between the ages of 13 and 39 years who had previously been randomized to receive intensive versus conventional glycemic control in the Diabetes Control and Complications Trial (DCCT). The exposures of interest were time-updated systolic BP (SBP) and diastolic BP (DBP) categories. Outcomes included macroalbuminuria (>300 mg/24 h) or stage III chronic kidney disease (CKD) […] During a median follow-up time of 24 years, there were 84 cases of stage III CKD and 169 cases of macroalbuminuria. In adjusted models, SBP in the 2 (95% CI 1.05–1.21), and a 1.04 times higher risk of ESRD (95% CI 0.77–1.41) in adjusted Cox models. Every 10 mmHg increase in DBP was associated with a 1.17 times higher risk of microalbuminuria (95% CI 1.03–1.32), a 1.15 times higher risk of eGFR decline to 2 (95% CI 1.04–1.29), and a 0.80 times higher risk of ESRD (95% CI 0.47–1.38) in adjusted models. […] Because these data are observational, they cannot prove causation. It remains possible that subtle kidney disease may lead to early elevations in BP, and we cannot rule out the potential for reverse causation in our findings. However, we note similar trends in our data even when imposing a 7-year lag between BP and CKD ascertainment.”

CONCLUSIONS A lower BP (<120/70 mmHg) was associated with a substantially lower risk of adverse renal outcomes, regardless of the prior assigned glycemic control strategy. Interventional trials may be useful to help determine whether the currently recommended BP target of 140/90 mmHg may be too high for optimal renal protection in type 1 diabetes.”

It’s important to keep in mind when interpreting these results that endpoints like ESRD and stage III CKD are not the only relevant outcomes in this setting; even mild-stage kidney disease in diabetics significantly increase the risk of death from cardiovascular disease, and a substantial proportion of patients may die from cardiovascular disease before reaching a late-stage kidney disease endpoint (here’s a relevant link).

Identifying Causes for Excess Mortality in Patients With Diabetes: Closer but Not There Yet.

“A number of epidemiological studies have quantified the risk of death among patients with diabetes and assessed the causes of death (26), with highly varying results […] Overall, the studies to date have confirmed that diabetes is associated with an increased risk of all-cause mortality, but the magnitude of this excess risk is highly variable, with the relative risk ranging from 1.15 to 3.15. Nevertheless, all studies agree that mortality is mainly attributable to cardiovascular causes (26). On the other hand, studies of cancer-related death have generally been lacking despite the diabetes–cancer association and a number of plausible biological mechanisms identified to explain this link (8,9). In fact, studies assessing the specific causes of noncardiovascular death in diabetes have been sparse. […] In this issue of Diabetes Care, Baena-Díez et al. (10) report on an observational study of the association between diabetes and cause-specific death. This study involved 55,292 individuals from 12 Spanish population cohorts with no prior history of cardiovascular disease, aged 35 to 79 years, with a 10-year follow-up. […] This study found that individuals with diabetes compared with those without diabetes had a higher risk of cardiovascular death, cancer death, and noncardiovascular noncancer death with similar estimates obtained using the two statistical approaches. […] Baena-Díez et al. (10) showed that individuals with diabetes have an approximately threefold increased risk of cardiovascular mortality, which is much higher than what has been reported by recent studies (5,6). While this may be due to the lack of adjustment for important confounders in this study, there remains uncertainty regarding the magnitude of this increase.”

“[A]ll studies of excess mortality associated with diabetes, including the current one, have produced highly variable results. The reasons may be methodological. For instance, it may be that because of the wide range of age in these studies, comparing the rates of death between the patients with diabetes and those without diabetes using a measure based on the ratio of the rates may be misleading because the ratio can vary by age [it almost certainly does vary by age, US]. Instead, a measure based on the difference in rates may be more appropriate (16). Another issue relates to the fact that the studies include patients with longstanding diabetes of variable duration, resulting in so-called prevalent cohorts that can result in muddled mortality estimates since these are necessarily based on a mix of patients at different stages of disease (17). Thus, a paradigm change may be in order for future observational studies of diabetes and mortality, in the way they are both designed and analyzed. With respect to cancer, such studies will also need to tease out the independent contribution of antidiabetes treatments on cancer incidence and mortality (1820). It is thus clear that the quantification of the excess mortality associated with diabetes per se will need more accurate tools.”

iii. Risk of Cause-Specific Death in Individuals With Diabetes: A Competing Risks Analysis. This is the paper some of the results of which were discussed above. I’ll just include the highlights here:

RESULTS We included 55,292 individuals (15.6% with diabetes and overall mortality of 9.1%). The adjusted hazard ratios showed that diabetes increased mortality risk: 1) cardiovascular death, CSH = 2.03 (95% CI 1.63–2.52) and PSH = 1.99 (1.60–2.49) in men; and CSH = 2.28 (1.75–2.97) and PSH = 2.23 (1.70–2.91) in women; 2) cancer death, CSH = 1.37 (1.13–1.67) and PSH = 1.35 (1.10–1.65) in men; and CSH = 1.68 (1.29–2.20) and PSH = 1.66 (1.25–2.19) in women; and 3) noncardiovascular noncancer death, CSH = 1.53 (1.23–1.91) and PSH = 1.50 (1.20–1.89) in men; and CSH = 1.89 (1.43–2.48) and PSH = 1.84 (1.39–2.45) in women. In all instances, the cumulative mortality function was significantly higher in individuals with diabetes.

CONCLUSIONS Diabetes is associated with premature death from cardiovascular disease, cancer, and noncardiovascular noncancer causes.”

“Summary

Diabetes is associated with premature death from cardiovascular diseases (coronary heart disease, stroke, and heart failure), several cancers (liver, colorectal, and lung), and other diseases (chronic obstructive pulmonary disease and liver and kidney disease). In addition, the cause-specific cumulative mortality for cardiovascular, cancer, and noncardiovascular noncancer causes was significantly higher in individuals with diabetes, compared with the general population. The dual analysis with CSH and PSH methods provides a comprehensive view of mortality dynamics in the population with diabetes. This approach identifies the individuals with diabetes as a vulnerable population for several causes of death aside from the traditionally reported cardiovascular death.”

iv. Disability-Free Life-Years Lost Among Adults Aged ≥50 Years With and Without Diabetes.

RESEARCH DESIGN AND METHODS Adults (n = 20,008) aged 50 years and older were followed from 1998 to 2012 in the Health and Retirement Study, a prospective biannual survey of a nationally representative sample of adults. Diabetes and disability status (defined by mobility loss, difficulty with instrumental activities of daily living [IADL], and/or difficulty with activities of daily living [ADL]) were self-reported. We estimated incidence of disability, remission to nondisability, and mortality. We developed a discrete-time Markov simulation model with a 1-year transition cycle to predict and compare lifetime disability-related outcomes between people with and without diabetes. Data represent the U.S. population in 1998.

RESULTS From age 50 years, adults with diabetes died 4.6 years earlier, developed disability 6–7 years earlier, and spent about 1–2 more years in a disabled state than adults without diabetes. With increasing baseline age, diabetes was associated with significant (P < 0.05) reductions in the number of total and disability-free life-years, but the absolute difference in years between those with and without diabetes was less than at younger baseline age. Men with diabetes spent about twice as many of their remaining years disabled (20–24% of remaining life across the three disability definitions) as men without diabetes (12–16% of remaining life across the three disability definitions). Similar associations between diabetes status and disability-free and disabled years were observed among women.

CONCLUSIONS Diabetes is associated with a substantial reduction in nondisabled years, to a greater extent than the reduction of longevity. […] Using a large, nationally representative cohort of Americans aged 50 years and older, we found that diabetes is associated with a substantial deterioration of nondisabled years and that this is a greater number of years than the loss of longevity associated with diabetes. On average, a middle-aged adult with diabetes has an onset of disability 6–7 years earlier than one without diabetes, spends 1–2 more years with disability, and loses 7 years of disability-free life to the condition. Although other nationally representative studies have reported large reductions in complications (9) and mortality among the population with diabetes in recent decades (1), these studies, akin to our results, suggest that diabetes continues to have a substantial impact on morbidity and quality of remaining years of life.”

v. Association Between Use of Lipid-Lowering Therapy and Cardiovascular Diseases and Death in Individuals With Type 1 Diabetes.

“People with type 1 diabetes have a documented shorter life expectancy than the general population without diabetes (1). Cardiovascular disease (CVD) is the main cause of the excess morbidity and mortality, and despite advances in management and therapy, individuals with type 1 diabetes have a markedly elevated risk of cardiovascular events and death compared with the general population (2).

Lipid-lowering treatment with hydroxymethylglutaryl-CoA reductase inhibitors (statins) prevents major cardiovascular events and death in a broad spectrum of patients (3,4). […] We hypothesized that primary prevention with lipid-lowering therapy (LLT) can reduce the incidence of cardiovascular morbidity and mortality in individuals with type 1 diabetes. The aim of the study was to examine this in a nationwide longitudinal cohort study of patients with no history of CVD. […] A total of 24,230 individuals included in 2006–2008 NDR with type 1 diabetes without a history of CVD were followed until 31 December 2012; 18,843 were untreated and 5,387 treated with LLT [Lipid-Lowering Therapy] (97% statins). The mean follow-up was 6.0 years. […] Hazard ratios (HRs) for treated versus untreated were as follows: cardiovascular death 0.60 (95% CI 0.50–0.72), all-cause death 0.56 (0.48–0.64), fatal/nonfatal stroke 0.56 (0.46–0.70), fatal/nonfatal acute myocardial infarction 0.78 (0.66–0.92), fatal/nonfatal coronary heart disease 0.85 (0.74–0.97), and fatal/nonfatal CVD 0.77 (0.69–0.87).

CONCLUSIONS This observational study shows that LLT is associated with 22–44% reduction in the risk of CVD and cardiovascular death among individuals with type 1 diabetes without history of CVD and underlines the importance of primary prevention with LLT to reduce cardiovascular risk in type 1 diabetes.”

vi. Prognostic Classification Factors Associated With Development of Multiple Autoantibodies, Dysglycemia, and Type 1 Diabetes—A Recursive Partitioning Analysis.

“In many prognostic factor studies, multivariate analyses using the Cox proportional hazards model are applied to identify independent prognostic factors. However, the coefficient estimates derived from the Cox proportional hazards model may be biased as a result of violating assumptions of independence. […] RPA [Recursive Partitioning Analysis] classification is a useful tool that could prioritize the prognostic factors and divide the subjects into distinctive groups. RPA has an advantage over the proportional hazards model in identifying prognostic factors because it does not require risk factor independence and, as a nonparametric technique, makes no requirement on the underlying distributions of the variables considered. Hence, it relies on fewer modeling assumptions. Also, because the method is designed to divide subjects into groups based on the length of survival, it defines groupings for risk classification, whereas Cox regression models do not. Moreover, there is no need to explicitly include covariate interactions because of the recursive splitting structure of tree model construction.”

“This is the first study that characterizes the risk factors associated with the transition from one preclinical stage to the next following a recommended staging classification system (9). The tree-structured prediction model reveals that the risk parameters are not the same across each transition. […] Based on the RPA classification, the subjects at younger age and with higher GAD65Ab [an important biomarker in the context of autoimmune forms of diabetes, US – here’s a relevant link] titer are at higher risk for progression to multiple positive autoantibodies from a single autoantibody (seroconversion). Approximately 70% of subjects with a single autoantibody were positive for GAD65Ab, much higher than for insulin autoantibody (24%) and IA-2A [here’s a relevant link – US] (5%). Our study results are consistent with those of others (2224) in that seroconversion is age related. Previous studies in infants and children at an early age have shown that progression from single to two or more autoantibodies occurs more commonly in children 25). The subjects ≤16 years of age had almost triple the 5-year risk compared with subjects >16 years of age at the same GAD65Ab titer level. Hence, not all individuals with a single islet autoantibody can be thought of as being at low risk for disease progression.”

“This is the first study that identifies the risk factors associated with the timing of transitions from one preclinical stage to the next in the development of T1D. Based on RPA risk parameters, we identify the characteristics of groups with similar 5-year risks for advancing to the next preclinical stage. It is clear that individuals with one or more autoantibodies or with dysglycemia are not homogeneous with regard to the risk of disease progression. Also, there are differences in risk factors at each stage that are associated with increased risk of progression. The potential benefit of identifying these groups allows for a more informed discussion of diabetes risk and the selective enrollment of individuals into clinical trials whose risk more appropriately matches the potential benefit of an experimental intervention. Since the risk levels in these groups are substantial, their definition makes possible the design of more efficient trials with target sample sizes that are feasible, opening up the field of prevention to additional at-risk cohorts. […] Our results support the evidence that autoantibody titers are strong predictors at each transition leading to T1D development. The risk of the development of multiple autoantibodies was significantly increased when the GAD65Ab titer level was elevated, and the risk of the development of dysglycemia was increased when the IA-2A titer level increased. These indicate that better risk prediction on the timing of transitions can be obtained by evaluating autoantibody titers. The results also suggest that an autoantibody titer should be carefully considered in planning prevention trials for T1D in addition to the number of positive autoantibodies and the type of autoantibody.”

May 17, 2017 Posted by | Diabetes, Epidemiology, Health Economics, Immunology, Medicine, Nephrology, Statistics, Studies | Leave a comment

Today’s Landscape of Pharmaceutical Research in Cancer

It’s been a while since I watched this lecture so I don’t remember the details very well, but I usually add notes in my bookmarks when I watch lectures so that I know what details to include in my comments here on the blog, and I have added the details from the bookmark notes below.

It is a short lecture, the lecture itself lasts only roughly 30 minutes; it doesn’t really start until roughly the 9 minutes and 30 seconds mark, and it finishes around the 44 min mark (the rest is Q&A – I skipped some of the introduction, but watched the Q&A). The lecture is not very technical, I think the content is perfectly understandable also to people without a medical background. One data point from the lecture which I thought worth including in these comments is this: According to Sigal, “roughly 30 per cent of the biopharmaceutical industry’s portfolio … is focused on research in oncology.”

May 17, 2017 Posted by | Cancer/oncology, Health Economics, Immunology, Lectures, Medicine, Pharmacology | Leave a comment

Standing on the Shoulders of Mice: Aging T-cells

Most of the lecture is not about mice, but rather about stuff like this and this (both papers are covered in the lecture). I’ve read about related topics before (see e.g this), but if you haven’t some parts of the lecture will probably be too technical for you to follow.

May 3, 2017 Posted by | Cancer/oncology, Cardiology, Genetics, Immunology, Lectures, Medicine, Papers | Leave a comment

Biodemography of aging (II)

In my first post about the book I included a few general remarks about the book and what it’s about. In this post I’ll continue my coverage of the book, starting with a few quotes from and observations related to the content in chapter 4 (‘Evidence for Dependence Among Diseases‘).

“To compare the effects of public health policies on a population’s characteristics, researchers commonly estimate potential gains in life expectancy that would result from eradication or reduction of selected causes of death. For example, Keyfitz (1977) estimated that eradication of cancer would result in 2.265 years of increase in male life expectancy at birth (or by 3 % compared to its 1964 level). Lemaire (2005) found that the potential gain in the U.S. life expectancy from cancer eradication would not exceed 3 years for both genders. Conti et al. (1999) calculated that the potential gain in life expectancy from cancer eradication in Italy would be 3.84 years for males and 2.77 years for females. […] All these calculations assumed independence between cancer and other causes of death. […] for today’s populations in developed countries, where deaths from chronic non-communicable diseases are in the lead, this assumption might no longer be valid. An important feature of such chronic diseases is that they often develop in clusters manifesting positive correlations with each other. The conventional view is that, in a case of such dependence, the effect of cancer eradication on life expectancy would be even smaller.”

I think the great majority of people you asked would have assumed that the beneficial effect of hypothetical cancer eradication in humans on human life expectancy would be much larger than this, but that’s just an impression. I’ve seen estimates like these before, so I was not surprised – but I think many people would be if they knew this. A very large number of people die as a result of developing cancer today, but the truth of the matter is that if they hadn’t died from cancer they’d have died anyway, and on average probably not really all that much later. I linked to Richard Alexander’s comments on this topic in my last post about the book, and again his observations apply so I thought I might as well add the relevant quote from the book here:

“In the course of working against senescence, selection will tend to remove, one by one, the most frequent sources of mortality as a result of senescence. Whenever a single cause of mortality, such as a particular malfunction of any vital organ, becomes the predominant cause of mortality, then selection will more effectively reduce the significance of that particular defect (meaning those who lack it will outreproduce) until some other achieves greater relative significance. […] the result will be that all organs and systems will tend to deteriorate together. […] The point is that as we age, and as senescence proceeds, large numbers of potential sources of mortality tend to lurk ever more malevolently just “below the surface,”so that, unfortunately, the odds are very high against any dramatic lengthening of the maximum human lifetime through technology.”

Remove one cause of death and there are plenty of others standing in line behind it. We already knew that; two hundred years ago one out of every four deaths in England was the result of tuberculosis, but developing treatments for tuberculosis and other infectious diseases did not mean that English people stopped dying; these days they just die from cardiovascular disease and cancer instead. Do note in the context of that quote that Alexander is talking about the maximum human lifetime, not average life expectancy; again, we know and have known for a long time that human technology can have a dramatic effect on the latter variable. Of course a shift in one distribution will be likely to have spill-over effects on the other (if more people are alive at the age of 70, the potential group of people also living on to reach e.g. 100 years is higher, even if the mortality rate for the 70-100 year old group did not change) the point is just that these effects are secondary effects and are likely to be marginal at best.

Anyway, some more stuff from the chapter. Just like the previous chapter in the book did, this one also includes analyses of very large data sets:

The Multiple Cause of Death (MCD) data files contain information about underlying and secondary causes of death in the U.S. during 1968–2010. In total, they include more than 65 million individual death certificate records. […] we used data for the period 1979–2004.”

There’s some formal modelling stuff in the chapter which I won’t go into in detail here, this is the chapter in which I encountered the comment about ‘the multivariate lognormal frailty model’ I included in my first post about the book. One of the things the chapter looks at are the joint frequencies of deaths from cancer and other fatal diseases; it turns out that there are multiple diseases that are negatively related with cancer as a cause of death when you look at the population-level data mentioned above. The chapter goes into some of the biological mechanisms which may help explain why these associations look the way they do, and I’ll quote a little from that part of the coverage. A key idea here is (as always..?) that there are tradeoffs at play; some genetic variants may help protect you against e.g. cancer, but at the same time increase the risk of other diseases for the same reason that they protect you against cancer. In the context of the relationship between cancer deaths and deaths from other diseases they note in the conclusion that: “One potential biological mechanism underlying the negative correlation among cancer and other diseases could be related to the differential role of apoptosis in the development of these diseases.” The chapter covers that stuff in significantly more detail, and I decided to add some observations from the chapter on these topics below:

“Studying the role of the p53 gene in the connection between cancer and cellular aging, Campisi (2002, 2003) suggested that longevity may depend on a balance between tumor suppression and tissue renewal mechanisms. […] Although the mechanism by which p53 regulates lifespan remains to be determined, […] findings highlight the possibility that careful manipulation of p53 activity during adult life may result in beneficial effects on healthy lifespan. Other tumor suppressor genes are also involved in regulation of longevity. […] In humans, Dumont et al. (2003) demonstrated that a replacement of arginine (Arg) by proline (Pro) at position 72 of human p53 decreases its ability to initiate apoptosis, suggesting that these variants may differently affect longevity and vulnerability to cancer. Van Heemst et al. (2005) showed that individuals with the Pro/Pro genotype of p53 corresponding to reduced apoptosis in cells had significantly increased overall survival (by 41%) despite a more than twofold increased proportion of cancer deaths at ages 85+, together with a decreased proportion of deaths from senescence related causes such as COPD, fractures, renal failure, dementia, and senility. It was suggested that human p53 may protect against cancer but at a cost of longevity. […] Other biological factors may also play opposing roles in cancer and aging and thus contribute to respective trade-offs […]. E.g., higher levels of IGF-1 [have been] linked to both cancer and attenuation of phenotypes of physical senescence, such as frailty, sarcopenia, muscle atrophy, and heart failure, as well as to better muscle regeneration”.

“The connection between cancer and longevity may potentially be mediated by trade-offs between cancer and other diseases which do not necessarily involve any basic mechanism of aging per se. In humans, it could result, for example, from trade-offs between vulnerabilities to cancer and AD, or to cancer and CVD […] There may be several biological mechanisms underlying the negative correlation among cancer and these diseases. One can be related to the differential role of apoptosis in their development. For instance, in stroke, the number of dying neurons following brain ischemia (and thus probability of paralysis or death) may be less in the case of a downregulated apoptosis. As for cancer, the downregulated apoptosis may, conversely, mean a higher risk of the disease because more cells may survive damage associated with malignant transformation. […] Also, the role of the apoptosis may be different or even opposite in the development of cancer and Alzheimer’s disease (AD). Indeed, suppressed apoptosis is a hallmark of cancer, while increased apoptosis is a typical feature of AD […]. If so, then chronically upregulated apoptosis (e.g., due to a genetic polymorphism) may potentially be protective against cancer, but be deleterious in relation to AD. […] Increased longevity can be associated not only with increased but also with decreased chances of cancer. […] The most popular to-date “anti-aging” intervention, caloric restriction, often results in increased maximal life span along with reduced tumor incidence in laboratory rodents […] Because the rate of apoptosis was significantly and consistently higher in food restricted mice regardless of age, James et al. (1998) suggested that caloric restriction may have a cancer-protective effect primarily due to the upregulated apoptosis in these mice.”

Below I’ll discuss content covered in chapter 5, which deals with ‘Factors That May Increase Vulnerability to Cancer and Longevity in Modern Human Populations’. I’ll start out with a few quotes:

“Currently, the overall cancer incidence rate (age-adjusted) in the less developed world is roughly half that seen in the more developed world […] For countries with similar levels of economic development but different climate and ethnic characteristics […], the cancer rate patterns look much more similar than for the countries that share the same geographic location, climate, and ethnic distribution, but differ in the level of economic development […]. This suggests that different countries may share common factors linked to economic prosperity that could be primarily responsible for the modern increases in overall cancer risk. […] Population aging (increases in the proportion of older people) may […] partly explain the rise in the global cancer burden […]; however, it cannot explain increases in age-specific cancer incidence rates over time […]. Improved diagnostics and elevated exposures to carcinogens may explain increases in rates for selected cancer sites, but they cannot fully explain the increase in the overall cancer risk, nor incidence rate trends for most individual cancers (Jemal et al. 2008, 2013).”

“[W]e propose that the association between the overall cancer risk and the economic progress and spread of the Western lifestyle could in part be explained by the higher proportion of individuals more susceptible to cancer in the populations of developed countries, and discuss several mechanisms of such an increase in the proportion of the vulnerable. […] mechanisms include but are not limited to: (i) Improved survival of frail individuals. […] (ii) Avoiding or reducing traditional exposures. Excessive disinfection and hygiene typical of the developed world can diminish exposure to some factors that were abundant in the past […] Insufficiently or improperly trained immune systems may be less capable of resisting cancer. (iii) Burden of novel exposures. Some new medicines, cleaning agents, foods, etc., that are not carcinogenic themselves may still affect the natural ways of processing carcinogens in the body, and through this increase a person’s susceptibility to established carcinogens. [If this one sounds implausible to you, I’ll remind you that drug metabolism is complicatedUS] […] (iv) Some of the factors linked to economic prosperity and the Western lifestyle (e.g., delayed childbirth and food enriched with growth factors) may antagonistically influence aging and cancer risk.”

They provide detailed coverage of all of these mechanisms in the chapter, below I have included a few select observations from that part of the coverage.

“There was a dramatic decline in infant and childhood mortality in developed countries during the last century. For example, the infant mortality rate in the United States was about 6 % of live births in 1935, 3 % in 1950, 1.3 % in 1980, and 0.6 % in 2010. That is, it declined tenfold over the course of 75 years […] Because almost all children (including those with immunity deficiencies) survive, the proportion of the children who are inherently more vulnerable could be higher in the more developed countries. This is consistent with a typically higher proportion of children with chronic inflammatory immune disorders such as asthma and allergy in the populations of developed countries compared to less developed ones […] Over-reduction of such traditional exposures may result in an insufficiently/improperly trained immune system early in life, which could make it less able to resist diseases, including cancer later in life […] There is accumulating evidence of the important role of these effects in cancer risk. […] A number of studies have connected excessive disinfection and lack of antigenic stimulation (especially in childhood) of the immune system in Westernized communities with increased risks of both chronic inflammatory diseases and cancer […] The IARC data on migrants to Israel […] allow for comparison of the age trajectories of cancer incidence rates between adult Jews who live in Israel but were born in other countries […] [These data] show that Jews born in less developed regions (Africa and Asia) have overall lower cancer risk than those born in the more developed regions (Europe and America).  The discrepancy is unlikely to be due to differences in cancer diagnostics because at the moment of diagnosis all these people were citizens of the same country with the same standard of medical care. These results suggest that surviving childhood and growing up in a less developed country with diverse environmental exposures might help form resistance to cancer that lasts even after moving to a high risk country.”

I won’t go much into the ‘burden of novel exposures’ part, but I should note that exposures that may be relevant include factors like paracetamol use and antibiotics for treatment of H. pylori. Paracetamol is not considered carcinogenic by the IARC, but we know from animal studies that if you give rats paratamol and then expose them to an established carcinogen (with the straightforward name N-nitrosoethyl-N-hydroxyethylamine), the number of rats developing kidney cancer goes up. In the context of H. pylori, we know that these things may cause stomach cancer, but when you treat rats with metronidazol (which is used to treat H. pylori) and expose them to an established carcinogen, they’re more likely to develop colon cancer. The link between colon cancer and antibiotics use has been noted in other contexts as well; decreased microbial diversity after antibiotics use may lead to suppression of the bifidobacteria and promotion of E. coli in the colon, the metabolic products of which may lead to increased cancer risk. Over time an increase in colon cancer risk and a decrease in stomach cancer risk has been observed in developed societies, but aside from changes in diet another factor which may play a role is population-wide exposure to antibiotics. Colon and stomach cancers are incidentally not the only ones of interest in this particular context; it has also been found that exposure to chloramphenicol, a broad-spectrum antibiotic used since the 40es, increases the risk of lymphoma in mice when the mice are exposed to a known carcinogen, despite the drug itself again not being clearly carcinogenic on its own.

Many new exposures aside from antibiotics are of course relevant. Two other drug-related ones that might be worth mentioning are hormone replacement therapy and contraceptives. HRT is not as commonly used today as it was in the past, but to give some idea of the scope here, half of all women in the US aged 50-65 are estimated to have been on HRT at the peak of its use, around the turn of the millennium, and HRT is assumed to be partly responsible for the higher incidence of hormone-related cancers observed in female populations living in developed countries. It’s of some note that the use of HRT dropped dramatically shortly after this peak (from 61 million prescriptions in 2001 to 21 million in 2004), and that the incidence of estrogen-receptor positive cancers subsequently dropped. As for oral contraceptives, these have been in use since the 1960s, and combined hormonal contraceptives are known to increase the risk of liver- and breast cancer, while seemingly also having a protective effect against endometrial cancer and ovarian cancer. The authors speculate that some of the cancer incidence changes observed in the US during the latter half of the last century, with a decline in female endometrial and ovarian cancer combined with an increase in breast- and liver cancer, could in part be related to widespread use of these drugs. An estimated 10% of all women of reproductive age alive in the world, and 16% of those living in the US, are estimated to be using combined hormonal contraceptives. In the context of the protective effect of the drugs, it should perhaps be noted that endometrial cancer in particular is strongly linked to obesity so if you are not overweight you are relatively low-risk.

Many ‘exposures’ in a cancer context are not drug-related. For example women in Western societies tend to go into menopause at a higher age, and higher age of menopause has been associated with hormone-related cancers; but again the picture is not clear in terms of how the variable affects longevity, considering that later menopause has also been linked to increased longevity in several large studies. In the studies the women did have higher mortality from the hormone-related cancers, but on the other hand they were less likely to die from some of the other causes, such as pneumonia, influenza, and falls. Age of childbirth is also a variable where there are significant differences between developed countries and developing countries, and this variable may also be relevant to cancer incidence as it has been linked to breast cancer and melanoma; in one study women who first gave birth after the age of 35 had a 40% increased risk of breast cancer compared to mothers who gave birth before the age of 20 (good luck ‘controlling for everything’ in a context like that, but…), and in a meta-analysis the relative risk for melanoma was 1.47 for women in the oldest age group having given birth, compared to the youngest (again, good luck controlling for everything, but at least it’s not just one study). Lest you think this literature only deals with women, it’s also been found that parental age seems to be linked to cancers in the offspring (higher parental age -> higher cancer risk in the offspring), though the effect sizes are not mentioned in the coverage.

Here’s what they conclude at the end of the chapter:

“Some of the factors associated with economic prosperity and a Western lifestyle may influence both aging and vulnerability to cancer, sometimes oppositely. Current evidence supports a possibility of trade-offs between cancer and aging-related phenotypes […], which could be influenced by delayed reproduction and exposures to growth factors […]. The latter may be particularly beneficial at very old age. This is because the higher levels of growth factors may attenuate some phenotypes of physical senescence, such as decline in regenerative and healing ability, sarcopenia, frailty, elderly fractures and heart failure due to muscles athrophy. They may also increase the body’s vulnerability to cancer, e.g., through growth promoting and anti-apoptotic effects […]. The increase in vulnerability to cancer due to growth factors can be compatible with extreme longevity because cancer is a major contributor to mortality mainly before age 85, while senescence-related causes (such as physical frailty) become major contributors to mortality at oldest old ages (85+). In this situation, the impact of growth factors on vulnerability to death could be more deleterious in middle-to-old life (~before 85) and more beneficial at older ages (85+).

The complex relationships between aging, cancer, and longevity are challenging. This complexity warns against simplified approaches to extending longevity without taking into account the possible trade-offs between phenotypes of physical aging and various health disorders, as well as the differential impacts of such tradeoffs on mortality risks at different ages (e.g., Ukraintseva and Yashin 2003a; Yashin et al. 2009; Ukraintseva et al. 2010, 2016).”

March 7, 2017 Posted by | Books, Cancer/oncology, Epidemiology, Genetics, Immunology, Medicine, Pharmacology | Leave a comment

The Ageing Immune System and Health (II)

Here’s the first post about the book. I finished it a while ago but I recently realized I had not completed my intended coverage of the book here on the blog back then, and as some of the book’s material sort-of-kind-of relates to material encountered in a book I’m currently reading (Biodemography of Aging) I decided I might as well finish my coverage of the book now in order to review some things I might have forgot in the meantime, by providing coverage here of some of the material covered in the second half of the book. It’s a nice book with some interesting observations, but as I also pointed out in my first post it is definitely not an easy read. Below I have included some observations from the book’s second half.

Lungs:

“The aged lung is characterised by airspace enlargement similar to, but not identical with acquired emphysema [4]. Such tissue damage is detected even in non-smokers above 50 years of age as the septa of the lung alveoli are destroyed and the enlarged alveolar structures result in a decreased surface for gas exchange […] Additional problems are that surfactant production decreases with age [6] increasing the effort needed to expand the lungs during inhalation in the already reduced thoracic cavity volume where the weakened muscles are unable to thoroughly ventilate. […] As ageing is associated with respiratory muscle strength reduction, coughing becomes difficult making it progressively challenging to eliminate inhaled particles, pollens, microbes, etc. Additionally, ciliary beat frequency (CBF) slows down with age impairing the lungs’ first line of defence: mucociliary clearance [9] as the cilia can no longer repel invading microorganisms and particles. Consequently e.g. bacteria can more easily colonise the airways leading to infections that are frequent in the pulmonary tract of the older adult.”

“With age there are dramatic changes in neutrophil function, including reduced chemotaxis, phagocytosis and bactericidal mechanisms […] reduced bactericidal function will predispose to infection but the reduced chemotaxis also has consequences for lung tissue as this results in increased tissue bystander damage from neutrophil elastases released during migration […] It is currently accepted that alterations in pulmonary PPAR profile, more precisely loss of PPARγ activity, can lead to inflammation, allergy, asthma, COPD, emphysema, fibrosis, and cancer […]. Since it has been reported that PPARγ activity decreases with age, this provides a possible explanation for the increasing incidence of these lung diseases and conditions in older individuals [6].”

Cancer:

“Age is an important risk factor for cancer and subjects aged over 60 also have a higher risk of comorbidities. Approximately 50 % of neoplasms occur in patients older than 70 years […] a major concern for poor prognosis is with cancer patients over 70–75 years. These patients have a lower functional reserve, a higher risk of toxicity after chemotherapy, and an increased risk of infection and renal complications that lead to a poor quality of life. […] [Whereas] there is a difference in organs with higher cancer incidence in developed versus developing countries [,] incidence increases with ageing almost irrespective of country […] The findings from Surveillance, Epidemiology and End Results Program [SEERincidentally I likely shall at some point discuss this one in much more detail, as the aforementioned biodemography textbook covers this data in a lot of detail.. – US] [6] show that almost a third of all cancer are diagnosed after the age of 75 years and 70 % of cancer-related deaths occur after the age of 65 years. […] The traditional clinical trial focus is on younger and healthier patient, i.e. with few or no co-morbidities. These restrictions have resulted in a lack of data about the optimal treatment for older patients [7] and a poor evidence base for therapeutic decisions. […] In the older patient, neutropenia, anemia, mucositis, cardiomyopathy and neuropathy — the toxic effects of chemotherapy — are more pronounced […] The correction of comorbidities and malnutrition can lead to greater safety in the prescription of chemotherapy […] Immunosenescence is a general classification for changes occurring in the immune system during the ageing process, as the distribution and function of cells involved in innate and adaptive immunity are impaired or remodelled […] Immunosenescence is considered a major contributor to cancer development in aged individuals“.

Neurodegenerative diseases:

“Dementia and age-related vision loss are major causes of disability in our ageing population and it is estimated that a third of people aged over 75 are affected. […] age is the largest risk factor for the development of neurodegenerative diseases […] older patients with comorbidities such as atherosclerosis, type II diabetes or those suffering from repeated or chronic systemic bacterial and viral infections show earlier onset and progression of clinical symptoms […] analysis of post-mortem brain tissue from healthy older individuals has provided evidence that the presence of misfolded proteins alone does not correlate with cognitive decline and dementia, implying that additional factors are critical for neural dysfunction. We now know that innate immune genes and life-style contribute to the onset and progression of age-related neuronal dysfunction, suggesting that chronic activation of the immune system plays a key role in the underlying mechanisms that lead to irreversible tissue damage in the CNS. […] Collectively these studies provide evidence for a critical role of inflammation in the pathogenesis of a range of neurodegenerative diseases, but the factors that drive or initiate inflammation remain largely elusive.”

“The effect of infection, mimicked experimentally by administration of bacterial lipopolysaccharide (LPS) has revealed that immune to brain communication is a critical component of a host organism’s response to infection and a collection of behavioural and metabolic adaptations are initiated over the course of the infection with the purpose of restricting the spread of a pathogen, optimising conditions for a successful immune response and preventing the spread of infection to other organisms [10]. These behaviours are mediated by an innate immune response and have been termed ‘sickness behaviours’ and include depression, reduced appetite, anhedonia, social withdrawal, reduced locomotor activity, hyperalgesia, reduced motivation, cognitive impairment and reduced memory encoding and recall […]. Metabolic adaptation to infection include fever, altered dietary intake and reduction in the bioavailability of nutrients that may facilitate the growth of a pathogen such as iron and zinc [10]. These behavioural and metabolic adaptions are evolutionary highly conserved and also occur in humans”.

“Sickness behaviour and transient microglial activation are beneficial for individuals with a normal, healthy CNS, but in the ageing or diseased brain the response to peripheral infection can be detrimental and increases the rate of cognitive decline. Aged rodents exhibit exaggerated sickness and prolonged neuroinflammation in response to systemic infection […] Older people who contract a bacterial or viral infection or experience trauma postoperatively, also show exaggerated neuroinflammatory responses and are prone to develop delirium, a condition which results in a severe short term cognitive decline and a long term decline in brain function […] Collectively these studies demonstrate that peripheral inflammation can increase the accumulation of two neuropathological hallmarks of AD, further strengthening the hypothesis that inflammation i[s] involved in the underlying pathology. […] Studies from our own laboratory have shown that AD patients with mild cognitive impairment show a fivefold increased rate of cognitive decline when contracting a systemic urinary tract or respiratory tract infection […] Apart from bacterial infection, chronic viral infections have also been linked to increased incidence of neurodegeneration, including cytomegalovirus (CMV). This virus is ubiquitously distributed in the human population, and along with other age-related diseases such as cardiovascular disease and cancer, has been associated with increased risk of developing vascular dementia and AD [66, 67].”

Frailty:

“Frailty is associated with changes to the immune system, importantly the presence of a pro-inflammatory environment and changes to both the innate and adaptive immune system. Some of these changes have been demonstrated to be present before the clinical features of frailty are apparent suggesting the presence of potentially modifiable mechanistic pathways. To date, exercise programme interventions have shown promise in the reversal of frailty and related physical characteristics, but there is no current evidence for successful pharmacological intervention in frailty. […] In practice, acute illness in a frail person results in a disproportionate change in a frail person’s functional ability when faced with a relatively minor physiological stressor, associated with a prolonged recovery time […] Specialist hospital services such as surgery [15], hip fractures [16] and oncology [17] have now begun to recognise frailty as an important predictor of mortality and morbidity.

I should probably mention here that this is another area where there’s an overlap between this book and the biodemography text I’m currently reading; chapter 7 of the latter text is about ‘Indices of Cumulative Deficits’ and covers this kind of stuff in a lot more detail than does this one, including e.g. detailed coverage of relevant statistical properties of one such index. Anyway, back to the coverage:

“Population based studies have demonstrated that the incidence of infection and subsequent mortality is higher in populations of frail people. […] The prevalence of pneumonia in a nursing home population is 30 times higher than the general population [39, 40]. […] The limited data available demonstrates that frailty is associated with a state of chronic inflammation. There is also evidence that inflammageing predates a diagnosis of frailty suggesting a causative role. […] A small number of studies have demonstrated a dysregulation of the innate immune system in frailty. Frail adults have raised white cell and neutrophil count. […] High white cell count can predict frailty at a ten year follow up [70]. […] A recent meta-analysis and four individual systematic reviews have found beneficial evidence of exercise programmes on selected physical and functional ability […] exercise interventions may have no positive effect in operationally defined frail individuals. […] To date there is no clear evidence that pharmacological interventions improve or ameliorate frailty.”

Exercise:

“[A]s we get older the time and intensity at which we exercise is severely reduced. Physical inactivity now accounts for a considerable proportion of age-related disease and mortality. […] Regular exercise has been shown to improve neutrophil microbicidal functions which reduce the risk of infectious disease. Exercise participation is also associated with increased immune cell telomere length, and may be related to improved vaccine responses. The anti-inflammatory effect of regular exercise and negative energy balance is evident by reduced inflammatory immune cell signatures and lower inflammatory cytokine concentrations. […] Reduced physical activity is associated with a positive energy balance leading to increased adiposity and subsequently systemic inflammation [5]. […] Elevated neutrophil counts accompany increased inflammation with age and the increased ratio of neutrophils to lymphocytes is associated with many age-related diseases including cancer [7]. Compared to more active individuals, less active and overweight individuals have higher circulating neutrophil counts [8]. […] little is known about the intensity, duration and type of exercise which can provide benefits to neutrophil function. […] it remains unclear whether exercise and physical activity can override the effects of NK cell dysfunction in the old. […] A considerable number of studies have assessed the effects of acute and chronic exercise on measures of T-cell immunesenescence including T cell subsets, phenotype, proliferation, cytokine production, chemotaxis, and co-stimulatory capacity. […] Taken together exercise appears to promote an anti-inflammatory response which is mediated by altered adipocyte function and improved energy metabolism leading to suppression of pro-inflammatory cytokine production in immune cells.”

February 24, 2017 Posted by | Biology, Books, Cancer/oncology, Epidemiology, Immunology, Medicine, Neurology | Leave a comment

Diabetes and the Brain (II)

Here’s my first post about the book, which I recently finished – here’s my goodreads review. I added the book to my list of favourite books on goodreads, it’s a great textbook. Below some observations from the first few chapters of the book.

“Several studies report T1D [type 1 diabetes] incidence numbers of 0.1–36.8/100,000 subjects worldwide (2). Above the age of 15 years ketoacidosis at presentation occurs on average in 10% of the population; in children ketoacidosis at presentation is more frequent (3, 4). Overall, publications report a male predominance (1.8 male/female ratio) and a seasonal pattern with higher incidence in November through March in European countries. Worldwide, the incidence of T1D is higher in more developed countries […] After asthma, T1D is a leading cause of chronic disease in children. […]  twin studies show a low concordant prevalence of T1D of only 30–55%. […] Diabetes mellitus type 1 may be sporadic or associated with other autoimmune diseases […] The latter has been classified as autoimmune polyglandular syndrome type II (APS-II). APS-II is a polygenic disorder with a female preponderance which typically occurs between the ages of 20 and 40 years […] In clinical practice, anti-thyroxine peroxidase (TPO) positive hypothyroidism is the most frequent concomitant autoimmune disease in type 1 diabetic patients, therefore all type 1 diabetic patients should annually be screened for the presence of anti-TPO antibodies. Other frequently associated disorders are atrophic gastritis leading to vitamin B12 deficiency (pernicious anemia) and vitiligo. […] The normal human pancreas contains a superfluous amount of β-cells. In T1D, β-cell destruction therefore remains asymptomatic until a critical β-cell reserve is left. This destructive process takes months to years […] Only in a minority of type 1 diabetic patients does the disease begin with diabetic ketoacidosis, the majority presents with a milder course that may be mistaken as type 2 diabetes (7).”

“Insulin is the main regulator of glucose metabolism by stimulating glucose uptake in tissues and glycogen storage in liver and muscle and by inhibiting gluconeogenesis in the liver (11). Moreover, insulin is a growth factor for cells and cell differentiation, and acting as anabolic hormone insulin stimulates lipogenesis and protein synthesis. Glucagon is the counterpart of insulin and is secreted by the α-cells in the pancreatic islets in an inversely proportional quantity to the insulin concentration. Glucagon, being a catabolic hormone, stimulates glycolysis and gluconeogenesis in the liver as well as lipolysis and uptake of amino acids in the liver. Epinephrine and norepinephrine have comparable catabolic effects […] T1D patients lose the glucagon response to hypoglycemia after several years, when all β-cells are destructed […] The risk of hypoglycemia increases with improved glycemic control, autonomic neuropathy, longer duration of diabetes, and the presence of long-term complications (17) […] Long-term complications are prevalent in any population of type 1 diabetic patients with increasing prevalence and severity in relation to disease duration […] The pathogenesis of diabetic complications is multifactorial, complicated, and not yet fully elucidated.”

“Cataract is much more frequent in patients with diabetes and tends to become clinically significant at a younger age. Glaucoma is markedly increased in diabetes too.” (I was unaware of this).

“T1D should be considered as an independent risk factor for atherosclerosis […] An older study shows that the cumulative mortality of coronary heart disease in T1D was 35% by the age 55 (34). In comparison, the Framingham Heart Study showed a cardiovascular mortality of 8% of men and 4% of women without diabetes, respectively. […] Atherosclerosis is basically a systemic disease. Patients with one clinically apparent localization are at risk for other manifestations. […] Musculoskeletal disease in diabetes is best viewed as a systemic disorder with involvement of connective tissue. Potential pathophysiological mechanisms that play a role are glycosylation of collagen, abnormal cross-linking of collagen, and increased collagen hydration […] Dupuytren’s disease […] may be observed in up to 42% of adults with diabetes mellitus, typically in patients with long-standing T1D. Dupuytren’s is characterized by thickening of the palmar fascia due to fibrosis with nodule formation and contracture, leading to flexion contractures of the digits, most commonly affecting the fourth and fifth digits. […] Foot problems in diabetes are common and comprise ulceration, infection, and gangrene […] The lifetime risk of a foot ulcer for diabetic patients is about 15% (42). […] Wound depth is an important determinant of outcome (46, 47). Deep ulcers with cellulitis or abscess formation often involve osteomyelitis. […] Radiologic changes occur late in the course of osteomyelitis and negative radiographs certainly do not exclude it.”

“Education of people with diabetes is a comprehensive task and involves teamwork by a team that comprises at least a nurse educator, a dietician, and a physician. It is, however, essential that individuals with diabetes assume an active role in their care themselves, since appropriate self-care behavior is the cornerstone of the treatment of diabetes.” (for much more on these topics, see Simmons et al.)

“The International Diabetes Federation estimates that more than 245 million people around the world have diabetes (4). This total is expected to rise to 380 million within 20 years. Each year a further 7 million people develop diabetes. Diabetes, mostly type 2 diabetes (T2D), now affects 5.9% of the world’s adult population with almost 80% of the total in developing countries. […] According to […] 2007 prevalence data […] [a]lmost 25% of the population aged 60 years and older had diabetes in 2007. […] It has been projected that one in three Americans born in 2000 will develop diabetes, with the highest estimated lifetime risk among Latinos (males, 45.4% and females, 52.5%) (6). A rise in obesity rates is to blame for much of the increase in T2D (7). Nearly two-thirds of American adults are overweight or obese (8). [my bold, US]

“In the natural history of progression to diabetes, β-cells initially increase insulin secretion in response to insulin resistance and, for a period of time, are able to effectively maintain glucose levels below the diabetic range. However, when β-cell function begins to decline, insulin production is inadequate to overcome the insulin resistance, and blood glucose levels rise. […] Insulin resistance, once established, remains relatively stable over time. […] progression of T2D is a result of worsening β-cell function with pre-existing insulin resistance.”

“Lifestyle modification (i.e., weight loss through diet and increased physical activity) has proven effective in reducing incident T2D in high-risk groups. The Da Qing Study (China) randomly allocated 33 clinics (557 persons with IGT) to 1 of 4 study conditions: control, diet, exercise, or diet plus exercise (23). Compared with the control group, the incidence of diabetes was reduced in the three intervention groups by 31, 46, and 42%, respectively […] The Finnish Diabetes Prevention Study evaluated 522 obese persons with IGT randomly allocated on an individual basis to a control group or a lifestyle intervention group […] During the trial, the incidence of diabetes was reduced by 58% in the lifestyle group compared with the control group. The US Diabetes Prevention Program is the largest trial of primary prevention of diabetes to date and was conducted at 27 clinical centers with 3,234 overweight and obese participants with IGT randomly allocated to 1 of 3 study conditions: control, use of metformin, or intensive lifestyle intervention […] Over 3 years, the incidence of diabetes was reduced by 31% in the metformin group and by 58% in the lifestyle group; the latter value is identical to that observed in the Finnish Study. […] Metformin is recommended as first choice for pharmacologic treatment [of type 2 diabetes] and has good efficacy to lower HbA1c […] However, most patients will eventually require treatment with combinations of oral medications with different mechanisms of action simultaneously in order to attain adequate glycemic control.”

CVD [cardiovascular disease, US] is the cause of 65% of deaths in patients with T2D (31). Epidemiologic studies have shown that the risk of a myocardial infarction (MI) or CVD death in a diabetic individual with no prior history of CVD is comparable to that of an individual who has had a previous MI (32, 33). […] Stroke is the second leading cause of long-term disability in high-income countries and the second leading cause of death worldwide. […] Stroke incidence is highly age-dependent. The median stroke incidence in persons between 15 and 49 years of age is 10 per 100,000 per year, whereas this is 2,000 per 100,000 for persons aged 85 years or older. […] In Western communities, about 80% of strokes are caused by focal cerebral ischemia, secondary to arterial occlusion, 15% by intracerebral hemorrhage, and 5% by subarachnoid hemorrhage (2). […] Patients with ischemic stroke usually present with focal neurological deficit of sudden onset. […] Common deficits include dysphasia, dysarthria, hemianopia, weakness, ataxia, sensory loss, and cognitive disorders such as spatial neglect […] Mild-to-moderate headache is an accompanying symptom in about a quarter of all patients with ischemic stroke […] The risk of symptomatic intracranial hemorrhage after thrombolysis is higher with more severe strokes and higher age (21). [worth keeping in mind when in the ‘I-am-angry-and-need-someone-to-blame-for-the-death-of-individual-X-phase’ – if the individual died as a result of the treatment, the prognosis was probably never very good to start with..] […] Thirty-day case fatality rates for ischemic stroke in Western communities generally range between 10 and 17% (2). Stroke outcome strongly depends not only on age and comorbidity, but also on the type and cause of the infarct. Early case fatality can be as low as 2.5% in patients with lacunar infarcts (7) and as high as 78% in patients with space-occupying hemispheric infarction (8).”

“In the previous 20 years, ten thousands of patients with acute ischemic stroke have participated in hundreds of clinical trials of putative neuroprotective therapies. Despite this enormous effort, there is no evidence of benefit of a single neuroprotective agent in humans, whereas over 500 have been effective in animal models […] the failure of neuroprotective agents in the clinic may […] be explained by the fact that most neuroprotectants inhibit only a single step in the broad cascade of events that lead to cell death (9). Currently, there is no rationale for the use of any neuroprotective medication in patients with acute ischemic stroke.”

“Between 5 and 10% of patients with ischemic stroke suffer from epileptic seizures in the first week and about 3% within the first 24 h […] Post-stroke seizures are not associated with a higher mortality […] About 1 out of every 11 patient with an early epileptic seizure develops epilepsy within 10 years after stroke onset (51) […] In the first 12 h after stroke onset, plasma glucose concentrations are elevated in up to 68% of patients, of whom more than half are not known to have diabetes mellitus (53). An initially high blood glucose concentration in patients with acute stroke is a predictor of poor outcome (53, 54). […] Acute stroke is associated with a blood pressure higher than 170/110 mmHg in about two thirds of patients. Blood pressure falls spontaneously in the majority of patients during the first week after stroke. High blood pressure during the acute phase of stroke has been associated with a poor outcome (56). It is unclear how blood pressure should be managed during the acute phase of ischemic stroke. […] routine lowering of the blood pressure is not recommended in the first week after stroke, except for extremely elevated values on repeated measurements […] Urinary incontinence affects up to 60% of stroke patients admitted to hospital, with 25% still having problems on hospital discharge, and around 15% remaining incontinent at 1 year. […] Between 22 and 43% of patients develop fever or subfebrile temperatures during the first days after stroke […] High body temperature in the first days after stroke is associated with poor outcome (42, 67). There is currently no evidence from randomized trials to support the routine lowering of body temperature above 37◦C.”

December 28, 2016 Posted by | Books, Cardiology, Diabetes, Epidemiology, Immunology, Medicine, Neurology, Ophthalmology | Leave a comment

The Ageing Immune System and Health (I)

as we age, we observe a greater heterogeneity of ability and health. The variation in, say, walking speed is far greater in a group of 70 year olds, than in a group on 20 year olds. This makes the study of ageing and the factors driving that heterogeneity of health and functional ability in old age vital. […] The study of the immune system across the lifespan has demonstrated that as we age the immune system undergoes a decline in function, termed immunosenescence. […] the decline in function is not universal across all aspects of the immune system, and neither is the magnitude of functional loss similar between individuals. The theory of inflammageing, which represents a chronic low grade inflammatory state in older people, has been described as a major consequence of immunosenescence, though lifestyle factors such as reduced physical activity and increased adiposity also play a major role […] In poor health, older people accumulate disease, described as multimorbidity. This in turn means traditional single system based health care becomes less valid as each system affected by disease impacts on other systems. This leads some older people to be at greater risk of adverse events such as disability and death. The syndrome of this increased vulnerability is described as frailty, and increasing fundamental evidence is emerging that suggests immunosenescence and inflammageing may underpin frailty […] Thus frailty is seen as one clinical manifestation of immunosenescence.”

The above quotes are from the book‘s preface. I gave it 3 stars on goodreads. I should probably, considering that this topic is mentioned in the preface, mention explicitly that the book doesn’t actually go into a lot of details about the downsides of ‘traditional single system based health care’; the book is mainly about immunology and related topics, and although it provides coverage of intervention studies etc., it doesn’t really provide detailed coverage about issues like the optimization of organizational structures/systems analysis etc.. The book I was currently reading while I started out writing this post – Integrated Diabetes Care – A Multidisciplinary Approach (blog coverage here) – is incidentally pretty much exclusively devoted to providing coverage of these sorts of topics (and it did a fine job).

If you have never read any sort of immunology text before the book will probably be unreadable to you – “It is aimed at fundamental scientists and clinicians with an interest in ageing or the immune system.” In my coverage below I have not made any efforts towards picking out quotes which would be particularly easy for the average reader to read and understand; this is another way of saying that the post is mainly written for my own benefit, perhaps even more so than is usually the case, not for the benefit of potential readers reading along here.

“Physiological ageing is associated with significant re-modelling of the immune system. Termed immunosenescence, age-related changes have been described in the composition, phenotype and function of both the innate and adaptive arms of the immune system. […] Neutrophils are the most abundant leukocyte in circulation […] The first step in neutrophil anti-microbial defence is their extravasation from the bloodstream and migration to the site of infection. Whilst age appears to have no effect upon the speed at which neutrophils migrate towards chemotactic signals in vitro [15], the directional accuracy of neutrophil migration to inflammatory agonists […] as well as bacterial peptides […] is significantly reduced [15]. […] neutrophils from older adults clearly exhibit defects in several key defensive mechanisms, namely chemotaxis […], phagocytosis of opsonised pathogens […] and NET formation […]. Given this near global impairment in neutrophil function, alterations to a generic signalling element rather than defects in molecules specific to each anti-microbial defence strategy is likely to explain the aberrations in neutrophil function that occur with age. In support of this idea, ageing in rodents is associated with a significant increase in neutrophil membrane fluidity, which coincides with a marked reduction in neutrophil function […] ageing results in a reduction in NK cell production and proliferation […] Numerous studies have examined the impact of age […], with the general consensus that at the single cell level, NK cell cytotoxicity (NKCC) is reduced with age […] retrospective and prospective studies have reported relationships between low NK cell activity in older adults and (1) a past history of severe infection, (2) an increased risk of future infection, (3) a reduced probability of surviving infectious episodes and (4) infectious morbidity [49–51]. Related to this increased risk of infection, reduced NKCC prior to and following influenza vaccination in older adults has been shown to be associated with reduced protective anti-hemagglutinin titres, worsened health status and an increased incidence of respiratory tract infection […] Whilst age has no effect upon the frequency or absolute number of monocytes [54, 55], the composition of the monocyte pool is markedly different in older adults, who present with an increased frequency of non-classical and intermediate monocytes, and fewer classical monocytes when compared to their younger counterparts”.

“Via their secretion of growth factors, pro-inflammatory cytokines, and proteases, senescent cells compromise tissue homeostasis and function, and their presence has been causally implicated in the development of such age-associated conditions as sarcopenia and cataracts [92]. Several studies have demonstrated a role for innate immune cells in the recognition and clearance of senescent cells […] ageing is associated with a low-grade systemic up-regulation of circulating inflammatory mediators […] Results from longitudinal-based studies suggest inflammageing is deleterious to human health with studies in older cohorts demonstrating that low-grade increases in the circulating levels of TNF-α [103], IL-6 […] and CRP [105] are associated with both all-cause […] and cause-specific […] mortality. Furthermore, inflammageing is a predictor of frailty [106] and is considered a major factor in the development of several age-related pathologies, such as atherosclerosis [107], Alzheimer’s disease [100] and sarcopenia [108].”

“Persistent viral infections, reduced vaccination responses, increased autoimmunity, and a rise in inflammatory syndromes all typify immune ageing. […] These changes can be in part attributed to the accumulation of highly differentiated senescent T cells, characterised by their decreased proliferative capacity and the activation of senescence signaling pathways, together with alterations in the functional competence of regulatory cells, allowing inflammation to go unchecked. […] Immune senescence results from defects in different leukocyte populations, however the dysfunction is most profound in T cells [6, 7]. The responses of T cells from aged individuals are typically slower and of a lower magnitude than those of young individuals […] while not all equally affected by age, the overall T cell number does decline dramatically as a result of thymic atrophy […] T cell differentiation is a highly complex process controlled not only by costimulation but also by the strength and duration of T cell receptor (TCR) signalling [34]. Nearly all TCR signalling pathways have been found altered during ageing […] two phenotypically distinct subsets of B cells […] have been demonstrated to exert immunosuppressive functions. The frequency and function of both these Breg subsets declines with age”.

“The immune impairments in patients with chronic hyperglycemia resemble those seen during ageing, namely poor control of infections and reduced vaccination response [99].” [This is hardly surprising. ‘Hyperglycemia -> accelerated ageing’ seems generally to be a good (over-)simplified model in many contexts. To give another illustrative example from Czernik & Fowlkes text, “approximately 4–6 years of diabetes exposure in some children may be sufficient to increase skin AGEs to levels that would naturally accumulate only after ~25 years of chronological aging”].

“The term “immunosenescence” is commonly taken to mean age-associated changes in immune parameters hypothesized to contribute to increased susceptibility and severity of the older adult to infectious disease, autoimmunity and cancer. In humans, it is characterized by lower numbers and frequencies of naïve T and B cells and higher numbers and frequencies of late-differentiated T cells, especially CD8+ T cells, in the peripheral blood. […] Low numbers of naïve cells render the aged highly susceptible to pathogens to which they have not been previously exposed, but are not otherwise associated with an “immune risk profile” predicting earlier mortality. […] many of the changes, or most often, differences, in immune parameters of the older adult relative to the young have not actually been shown to be detrimental. The realization that compensatory changes may be developing over time is gaining ground […] Several studies have now shown that lower percentages and absolute numbers of naïve CD8+ T cells are seen in all older subjects whereas the accumulation of very large numbers of CD8+ late-stage differentiated memory cells is seen in a majority but not in all older adults [2]. The major difference between this majority of subjects with such accumulations of memory cells and those without is that the former are infected with human herpesvirus 5 (Cytomegalovirus, CMV). Nevertheless, the question of whether CMV is associated with immunosenescence remains so far uncertain as no causal relationship has been unequivocally established [5]. Because changes are seen rapidly after primary infection in transplant patients [6] and infants [7], it is highly likely that CMV does drive the accumulation of CD8+ late-stage memory cells, but the relationship of this to senescence remains unclear. […] In CMV-seropositive people, especially older people, a remarkably high fraction of circulating CD8+ T lymphocytes is often found to be specific for CMV. However, although the proportion of naïve CD8+ T cells is lower in the old than the young whether or not they are CMV-infected, the gross accumulation of late-stage differentiated CD8+ T cells only occurs in CMV-seropositive individuals […] It is not clear whether this is adaptive or pathological […] The total CMV-specific T-cell response in seropositive subjects constitutes on average approximately 10 % of both the CD4+ and CD8+ memory compartments, and can be far greater in older people. […] there are some published data suggesting that that in young humans or young mice, CMV may improve immune responses to some antigens and to influenza virus, probably by way of increased pro-inflammatory responses […] observations suggest that the effect of CMV on the immune system may be highly dependent also on an individuals’ age and circumstances, and that what is viewed as ageing is in fact later collateral damage from immune reactivity that was beneficial in earlier life [47, 48]. This is saying nothing more than that the same immune pathology that always accompanies immune responses to acute viruses is also caused by CMV, but over a chronic time scale and usually subclinical. […] data suggest that the remodeling of the T-cell compartment in the presence of a latent infection with CMV represents a crucial adaptation of the immune system towards the chronic challenge of lifelong CMV.”

The authors take issue with using the term ‘senescence’ to describe some of the changes discussed above, because this term by definition should be employed only in the context of changes that are demonstrably deleterious to health. It should be kept in mind in this context that insufficient immunological protection against CMV in old age could easily be much worse than the secondary inflammatory effects, harmful though these may well be; CMV in the context of AIDS, organ transplantation (“CMV is the most common and single most important viral infection in solid organ transplant recipients” – medscape) and other disease states involving compromised immune systems can be really bad news (“Disease caused by human herpesviruses tends to be relatively mild and self-limited in immunocompetent persons, although severe and quite unusual disease can be seen with immunosuppression.” Holmes et al.)

“The role of CMV in the etiology of […] age-associated diseases is currently under intensive investigation […] in one powerful study, the impact of CMV infection on mortality was investigated in a cohort of 511 individuals aged at least 65 years at entry, who were then followed up for 18 years. Infection with CMV was associated with an increased mortality rate in healthy older individuals due to an excess of vascular deaths. It was estimated that those elderly who were CMV- seropositive at the beginning of the study had a near 4-year reduction in lifespan compared to those who were CMV-seronegative, a striking result with major implications for public health [59]. Other data, such as those from the large US NHANES-III survey, have shown that CMV seropositivity together with higher than median levels of the inflammatory marker CRP correlate with a significantly lower 10-year survival rate of individuals who were mostly middle-aged at the start of the study [63]. Further evidence comes from a recently published Newcastle 85+ study of the immune parameters of 751 octogenarians investigated for their power to predict survival during a 65-month follow-up. It was documented that CMV-seropositivity was associated with increased 6-year cardiovascular mortality or death from stroke and myocardial infarction. It was therefore concluded that CMV-seropositivity is linked to a higher incidence of coronary heart disease in octogenarians and that senescence in both the CD4+ and CD8+ T-cell compartments is a predictor of overall cardiovascular mortality”.

“The incidence and severity of many infections are increased in older adults. Influenza causes approximately 36,000 deaths and more than 100,000 hospitalizations in the USA every year […] Vaccine uptake differs tremendously between European countries with more than 70 % of the older population being vaccinated against influenza in The Netherlands and the United Kingdom, but below 10 % in Poland, Latvia and Estonia during the 2012–2013 season […] several systematic reviews and meta-analyses have estimated the clinical efficacy and/or effectiveness of a given influenza vaccine, taking into consideration not only randomized trials, but also cohort and case-control studies. It can be concluded that protection is lower in the old than in young adults […] [in one study including “[m]ore than 84,000 pneumococcal vaccine-naïve persons above 65 years of age”] the effect of age on vaccine efficacy was studied and the statistical model showed a decline of vaccine efficacy for vaccine-type CAP and IPD [Invasive Pneumococcal Disease] from 65 % (95 % CI 38–81) in 65-year old subjects, to 40 % (95 % CI 17–56) in 75-year old subjects […] The most effective measure to prevent infectious disease is vaccination. […] Over the last 20–30 years tremendous progress has been achieved in developing novel/improved vaccines for children, but a lot of work still needs to be done to optimize vaccines for the elderly.”

December 12, 2016 Posted by | Books, Cardiology, Diabetes, Epidemiology, Immunology, Infectious disease, Medicine, Microbiology | Leave a comment

Role of Biomarkers in Medicine

“The use of biomarkers in basic and clinical research has become routine in many areas of medicine. They are accepted as molecular signatures that have been well characterized and repeatedly shown to be capable of predicting relevant disease states or clinical outcomes. In Role of Biomarkers in Medicine, expert researchers in their individual field have reviewed many biomarkers or potential biomarkers in various types of diseases. The topics address numerous aspects of medicine, demonstrating the current conceptual status of biomarkers as clinical tools and as surrogate endpoints in clinical research.”

The above quote is from the preface of the book. Here’s my goodreads review. I have read about biomarkers before – for previous posts on this topic, see this link. I added the link in part because the coverage provided in this book is in my opinion generally of a somewhat lower quality than is the coverage that has been provided in some of the other books I’ve read on these topics. However the fact that the book is not amazing should probably not keep me from sharing some observations of interest from the book, which I have done in this post.

we suggest more precise studies to establish the exact role of this hormone […] additional studies are necessary […] there are conflicting results […] require further investigation […] more intervention studies with long-term follow-up are required. […] further studies need to be conducted […] further research is needed (There are a lot of comments like these in the book, I figured I should include a few in my coverage…)

“Cancer biomarkers (CB) are biomolecules produced either by the tumor cells or by other cells of the body in response to the tumor, and CB could be used as screening/early detection tool of cancer, diagnostic, prognostic, or predictor for the overall outcome of a patient. Moreover, cancer biomarkers may identify subpopulations of patients who are most likely to respond to a given therapy […] Unfortunately, […] only very few CB have been approved by the FDA as diagnostic or prognostic cancer markers […] 25 years ago, the clinical usefulness of CB was limited to be an effective tool for patient’s prognosis, surveillance, and therapy monitoring. […] CB have [since] been reported to be used also for screening of general population or risk groups, for differential diagnosis, and for clinical staging or stratification of cancer patients. Additionally, CB are used to estimate tumor burden and to substitute for a clinical endpoint and/or to measure clinical benefit, harm or lack of benefit, or harm [4, 18, 30]. Among commonly utilized biomarkers in clinical practice are PSA, AFP, CA125, and CEA.”

“Bladder cancer (BC) is the second most common malignancy in the urologic field. Preoperative predictive biomarkers of cancer progression and prognosis are imperative for optimizing […] treatment for patients with BC. […] Approximately 75–85% of BC cases are diagnosed as nonmuscle-invasive bladder cancer (NMIBC) […] NMIBC has a tendency to recur (50–70%) and may progress (10–20%) to a higher grade and/or muscle-invasive BC (MIBC) in time, which can lead to high cancer-specific mortality [2]. Histological tumor grade is one of the clinical factors associated with outcomes of patients with NMIBC. High-grade NMIBC generally exhibits more aggressive behavior than low-grade NMIBC, and it increases the risk of a poorer prognosis […] Cystoscopy and urine cytology are commonly used techniques for the diagnosis and surveillance of BC. Cystoscopy can identify […] most papillary and solid lesions, but this is highly invasive […] urine cytology is limited by examiner experience and low sensitivity. For these reasons, some tumor markers have been investigated […], but their sensitivity and specificity are limited [5] and they are unable to predict the clinical outcome of BC patients. […] Numerous efforts have been made to identify tumor markers. […] However, a serum marker that can serve as a reliable detection marker for BC has yet to be identified.”

“Endometrial cancer (EmCa) is the most common type of gynecological cancer. EmCa is the fourth most common cancer in the United States, which has been linked to increased incidence of obesity. […] there are no reliable biomarker tests for early detection of EmCa and treatment effectiveness. […] Approximately 75% of women with EmCa are postmenopausal; the most common symptom is postmenopausal bleeding […] Approximately 15% of women diagnosed with EmCa are younger than 50 years of age, while 5% are diagnosed before the age of 40 [29]. […] Roughly, half of the EmCa cases are linked to obesity. Obese women are four times more likely to develop EmCa when compared to normal weight women […] Obese individuals oftentimes exhibit resistance to leptin and show high levels of the adipokine in blood, which is known as leptin resistance […] prolonged exposure of leptin damages the hypothalamus causing it to become insensitive to the effects of leptin […] Evidence shows that leptin is an important pro-inflammatory, pro-angiogenic, and mitogenic factor for cancer. Leptin produced by cancer cells acts in an autocrine and paracrine manner to promote tumor cell proliferation, migration and invasion, pro-inflammation, and angiogenesis [58, 70]. High levels of leptin […] are associated with metastasis and decreased survival rates in breast cancer patients [58]. […] Metabolic syndrome including obesity, hypertension, insulin resistance, diabetes, and dyslipidemia increase the risk of developing multiple malignancies, particularly EmCa [30]. Younger women diagnosed with EmCa are usually obese, and their carcinomas show a well-differentiated histology [20].

“Normally, tumor suppressor genes act to inhibit or arrest cell proliferation and tumor development [37]. However; when mutated, tumor suppressors become inactive, thus permitting tumor growth. For example, mutations in p53 have been determined in various cancers such as breast, colon, lung, endometrium, leukemias, and carcinomas of many tissues. These p53 mutations are found in approximately 50% of all cancers [38]. Roughly 10–20% of endometrial carcinomas exhibit p53 mutations [37]. […] overexpression of mutated tumor suppressor p53 has been associated with Type II EmCa (poor histologic grade, non-endometrioid histology, advanced stage, and poor survival).”

“Increasing data indicate that oxidative stress is involved in the development of DR [diabetic retinopathy] [16–19]. The retina has a high content of polyunsaturated fatty acids and has the highest oxygen uptake and glucose oxidation relative to any other tissue. This phenomenon renders the retina more susceptible to oxidative stress [20]. […] Since long-term exposure to oxidative stress is strongly implicated in the pathogenesis of diabetic complications, polymorphic genes of detoxifying enzymes may be involved in the development of DR. […] A meta-analysis comprising 17 studies, including type 1 and type 2 diabetic patients from different ethnic origins, implied that the C (Ala) allele of the C47T polymorphism in the MnSOD gene had a significant protective effect against microvascular complications (DR and diabetic nephropathy) […] In the development of DR, superoxide levels are elevated in the retina, antioxidant defense system is compromised, MnSOD is inhibited, and mitochondria are swollen and dysfunctional [77,87–90]. Overexpression of MnSOD protects [against] diabetes-induced mitochondrial damage and the development of DR [19,91].”

Continuous high level of blood glucose in diabetes damages micro and macro blood vessels throughout the body by altering the endothelial cell lining of the blood vessels […] Diabetes threatens vision, and patients with diabetes develop cataracts at an earlier age and are nearly twice as likely to get glaucoma compared to non-diabetic[s] [3]. More than 75% of patients who have had diabetes mellitus for more than 20 years will develop diabetic retinopathy (DR) [4]. […] DR is a slow progressive retinal disease and occurs as a consequence of longstanding accumulated functional and structural impairment of the retina by diabetes. It is a multifactorial condition arising from the complex interplay between biochemical and metabolic abnormalities occurring in all cells of the retina. DR has been classically regarded as a microangiopathy of the retina, involving changes in the vascular wall leading to capillary occlusion and thereby retinal ischemia and leakage. And more recently, the neural defects in the retina are also being appreciated […]. Recently, various clinical investigators [have detected] neuronal dysfunction at very early stages of diabetes and numerous abnormalities in the retina can be identified even before the vascular pathology appears [76, 77], thus suggesting a direct effect of diabetes on the neural retina. […] An emerging issue in DR research is the focus on the mechanistic link between chronic low-grade inflammation and angiogenesis. Recent evidence has revealed that extracellular high-mobility group box-1 (HMGB1) protein acts as a potent proinflammatory cytokine that triggers inflammation and recruits leukocytes to the site of tissue damage, and exhibits angiogenic effects. The expression of HMGB1 is upregulated in epiretinal membranes and vitreous fluid from patients with proliferative DR and in the diabetic retina. […] HMGB1 may be a potential biomarker [for diabetic retinopathy] […] early blockade of HMGB1 may be an effective strategy to prevent the progression of DR.”

“High blood pressure is one of the leading risk factors for global mortality and is estimated to have caused 9.4 million deaths in 2010. A meta‐analysis which includes 1 million individuals has indicated that death from both CHD [coronary heart disease] and stroke increase progressively and linearly from BP levels as low as 115 mmHg systolic and 75 mmHg diastolic upwards [138]. The WHO [has] pointed out that a “reduction in systolic blood pressure of 10 mmHg is associated with a 22% reduction in coronary heart disease, 41% reduction in stroke in randomized trials, and a 41–46% reduction in cardiometabolic mortality in epidemiological studies” [139].”

Several reproducible studies have ascertained that individuals with autism demonstrate an abnormal brain 5-HT system […] peripheral alterations in the 5-HT system may be an important marker of central abnormalities in autism. […] In a recent study, Carminati et al. [129] tested the therapeutic efficacy of venlafaxine, an antidepressant drug that inhibits the reuptake of 5-HT, and [found] that venlafaxine at a low dose [resulted in] a substantial improvement in repetitive behaviors, restricted interests, social impairment, communication, and language. Venlafaxine probably acts via serotonergic mechanisms  […] OT [Oxytocin]-related studies in autism have repeatedly reported lower blood OT level in autistic patients compared to age- and gender-matched control subjects […] autistic patients demonstrate an altered neuroinflammatory response throughout their lives; they also show increased astrocyte and microglia inflammatory response in the cortex and the cerebellum  [47, 48].”

November 3, 2016 Posted by | autism, Books, Cancer/oncology, Cardiology, Diabetes, Epidemiology, Genetics, Immunology, Medicine, Neurology, Ophthalmology, Pharmacology | Leave a comment

Respirology

I was debating whether to blog this book at all, as it’s neither very long nor very good, but I decided it was worth adding a few observations from the book here. You can read my goodreads review of the publication here. Whenever quotes look a bit funny in the coverage below (i.e. when you see things like words in brackets or strangely located ‘[…]’, assume that the reason for this is that I tried to improve upon the occasionally frankly horrible language of some of the contributors to the publication. If you want to know exactly what they wrote, rather than what they presumably meant to write (basic grammar errors due to the authors having trouble with the English language are everywhere in this publication, and although I did choose to do so here I do feel a bit uncomfortable quoting a publication like this one verbatim on my blog), read the book.

I went off on a tangent towards the end of the post and I ended up adding some general remarks about medical cost, insurance and various other topics. So the post may have something of interest even to people who may not be highly interested in any of the stuff covered in the book itself.

“Despite intensive recommendations, [the] influenza vaccination rate in medical staff in Poland ranges from about 20 % in physicians to 10 % in nurses. […] It has been demonstrated that vaccination of health care workers against influenza significantly decreases mortality of elderly people remaining under [long-term care]. […] Vaccinating health care workers also substantially reduces sickness absenteeism, especially in emergency units […] Concerning physicians, vaccination avoidance stemmed from the lack of knowledge of protective value of vaccine (33 %), lack of time to get vaccinated (29 %), and Laziness (24 %). In nurses, these figures amounted to 55 %, 12 %, and 5 %, respectively (Zielonka et al. 2009).”

I just loved the fact that ‘laziness’ was included here as an explanatory variable, but on the other hand the fact that one-third of doctors cited lack of knowledge about the protective value of vaccination as a reason for not getting vaccinated is … well, let’s use the word ‘interesting’. But it gets even better:

“The questions asked and opinions expressed by physicians or nurses on vaccinations showed that their knowledge in this area was far from the current evidence-based medicine recommendations. Nurses, in particular, commonly presented opinions similar to those which can be found in anti-vaccination movements and forums […] The attitude of physicians toward influenza vaccination vary greatly. In many a ward, a majority of physicians were vaccinated (70–80 %). However, in the neurology and intensive care units the proportion of vaccinated physicians amounted only to 20 %. The reason for such a small yield […] was a critical opinion about the effectiveness and safety of vaccination. Similar differences, depending on medical specialty, were observed in Germany (4–71% of vaccines) (Roggendorf et al. 2011) […] It is difficult to explain the fear of influenza vaccination among the staff of intensive care units, since these are exactly the units where many patients with most severe cases of influenza are admitted and often die (Ayscue et al. 2014). In this group of health care workers, high efficiency of influenza vaccination has been clearly demonstrated […] In the present study a strong difference between the proportion of vaccinated physicians (55 %) and nurses (21 %) was demonstrated, which is in line with some data coming from other countries. In the US, 69 % of physicians and 46 % of nurses get a vaccine shot […] and in Germany the respective percentages are 39 % and 17 % […] In China, 21 % of nurses and only 13 % of physicians are vaccinated against influenza (Seale et al. 2010a), and in [South] Korea, 91 % and 68 % respectively (Lee et al. 2008).”

“[A] survey was conducted among Polish (243) and foreign (80) medical students at the Pomeranian Medical University in Szczecin, Poland. […] The survey results reveal that about 40 % of students were regular or occasional smoker[s]. […] 60 % of students declared themselves to be non-smokers, 20 % were occasional smokers, and 20 % were regular smokers”

40 % of medical students in a rather large sample turned out to be smokers. Wow. Yeah, I hadn’t seen that one coming. I’d probably expect a few alcoholics and I would probably not have been surprised about a hypothetical higher-than-average alcohol consumption in a sample like that (they don’t talk about alcohol so I don’t have data on this, I’m just saying I wouldn’t be surprised – after all I do know that doctors are high-risk for suicide), but such a large proportion smoking? That’s unexpected. It probably shouldn’t have been, considering that this is very much in line with the coverage included in Thirlaway & Upton’s book. I include some remarks about their coverage about smoking in my third post about the book here. The important observation of note from that part of the book’s coverage is probably that most smokers want to quit and yet very few manage to actually do it. “Although the majority of smokers want to stop smoking and predict that they will have stopped in twelve months, only 2–3 per cent actually stops permanently a year (Taylor et al. 2006).” If those future Polish doctors know that smoking is bad for them, but they assume that they can just ‘stop in time’ when ‘the time’ comes – well, some of those people are probably in for a nasty surprise (and they should have studied some more, so that they’d known this?).

A prospective study of middle-aged British men […] revealed that the self-assessment of health status was strongly associated with mortality. Men who reported poor health had an eight-fold increase in total mortality compared with those reporting excellent health. Those who assessed their health as poor were manual workers, cigarette smokers, and often heavy drinkers. Half of those with poor health suffered from chest pain on exertion and other chronic diseases. Thus, self-assessment of health status appears to be a good measure of current physical health and risk of death“.

It is estimated that globally 3.1 million people die each year due to chronic obstructive pulmonary disease (COPD). According to the World Health Organization (WHO 2014), the disease was the third leading cause of death worldwide in 2012. [In the next chapter of the book they state that: “COPD is currently the fourth leading cause of death among adult patients globally, and it is projected that it will be the third most common cause of death by 2020.” Whether it’s the third or fourth most common cause of death, it definitely kills a lot of people…] […] Approximately 40–50 % of lifelong smokers will go on to develop COPD […] the number of patients with a primary diagnosis of COPD […] constitutes […] 1.33 % of the total population of Poland. This result is consistent with that obtained during the Polish Spirometry Day in 2011 (Dabrowiecki et al. 2013) when 1.1 % of respondents declared having had a diagnosed COPD, while pulmonary function tests showed objectively the presence of obstruction in 12.3 % of patients.”

Based on numbers like these I feel tempted to conclude that the lungs may be yet another organ in which a substantial proportion of people of advanced age experience low-level organ dysfunction arguably not severe enough to lead to medical intervention. The kidneys are similar, as I also noted when I covered Longmore et al.‘s text.

“Generally, the costs of treatment of patients with COPD are highly variable […] estimates suggest […] that the costs of treatment of moderate stages of COPD may be 3–4-fold higher in comparison with the mild form of the disease, and in the severe form they reach up to 6–10 times the basic cost […] every second person with COPD is of working age […] Admission rates for COPD patients differ as much as 10-fold between European countries (European Lung White Book 2013).”

“In the EU, the costs of respiratory diseases are estimated at 6 % of the budget allocated to health care. Of this amount, 56 % is allocated for the treatment of COPD patients. […] Studies show that one per ten Poles over 30 year of age have COPD symptoms. Each year, around 4 % of all hospitalizations are due to COPD. […] One of the most important parameters regarding pharmacoeconomics is the hospitalization rate […] a high number of hospitalizations due to COPD exacerbations in Poland dramatically increase direct medical costs.”

I bolded the quote above because I knew this but had never seen it stated quite as clearly as it’s stated here, and I may be tempted to quote that one later on. Hospitalizations are often really expensive compared to drugs people who are not hospitalized take for their various health conditions, for example you can probably buy a year’s worth of anti-diabetic drugs, or more, for the costs of just one hospital admission due to drug mis-dosing. Before you get the idea that this might have ‘obvious implications’ for how ‘one’ should structure medical insurance arrangements in terms of copay structures etc., do however keep in mind that the picture here is really confusing:

3-3

Here’s the link, with more details – the key observation is that: “There is no consistency […] in the direction of change in costs resulting from changes in compliance”. That’s not diabetes, that’s ‘stuff in general’.

It would be neat if you could e.g. tell a story about how high costs of a drug always lead to non-compliance, which lead to increased hospitalization rates, which lead to higher costs than if the drugs had been subsidized. That would be a very strong case for subsidization. Or it would be neat if you could say that it doesn’t matter whether you subsidize a drug or not, because the costs of drugs are irrelevant in terms of usage patterns – people are told to take one pill every day by their doctor, and by golly that’s what they’re doing, regardless of what those pills cost. I know someone personally who wrote a PhD thesis about a drug where that clearly wasn’t the case, and the price elasticity was supposed to be ‘theoretically low’ in that case, so that one’s obviously out ‘in general’, but the point is that people have looked at this stuff, a lot. I’m assuming you might be able to spot a dynamic like this in some situations, and different dynamics in the case of other drugs. It gets even better when you include complicating phenomena like cost-switching; perhaps the guy/organization responsible for potentially subsidizing the drug is not the same guy(/-…) as the guy who’s supposed to pay for the medical admissions (this depends on the insurance structure/setup). But that’s not always the case, and the decision as to who pays for what is not necessarily a given; it may depend e.g. on health care provider preferences, and those preferences may themselves depend upon a lot of things unrelated to patient preferences or -incentives. A big question even in the relatively simple situation where the financial structure is – for these purposes at least – simple, is also the extent to which relevant costs are even measured, and/or how they’re measured (if a guy dies due to a binding budget constraint resulting in no treatment for a health condition that would have been treatable with a drug, is that outcome supposed to be ‘very cheap’ (he didn’t pay anything for  drugs, so there were no medical outlays) or very expensive (he could have worked for another two decades if he’d been treated, and those productivity losses need to be included in the calculation somehow; to focus solely on medical outlays is thus to miss the point)? An important analytical point here is that if you don’t explicitly make those deaths/productivity losses expensive, they are going to look very cheap, because the default option will always be to have them go unrecorded and untallied.

A problem not discussed in the coverage was incidentally the extent to which survey results pertaining to the cost of vaccination are worth much. You ask doctors why they didn’t get vaccinated, and they tell you it’s because it’s too expensive. Well, how many of them would you have expected to tell you they did not get vaccinated because the vaccines were too cheap? This is more about providing people with a perceived socially acceptable out than it is about finding stuff out about their actual reasons for behaving the way they do. If the price of vaccination does not vary across communities it’s difficult to estimate the price elasticity, true (if it does, you probably got an elasticity estimate right there), but using survey information to implicitly assess the extent to which the price is too high? Allow the vaccination price to vary next year/change it/etc. (or even simpler/cheaper, if those data exist; look at price variation which happened in the past and observe how the demand varied), and see if/how the doctors and nurses respond. That’s how you do this, you don’t ask people. Asking people is also actually sort of risky; I’m pretty sure a smart doctor could make an argument that if you want doctors to get vaccinated you should pay them for getting the shot – after all, getting vaccinated is unpleasant, and as mentioned there are positive externalities here in terms of improved patient outcomes, which might translate into specific patients not dying, which is probably a big deal, for those patients at least. The smart doctor wouldn’t necessarily be wrong; if the price of vaccination was ‘sufficiently low’, i.e. a ‘large’ negative number (‘if you get vaccinated, we give you $10.000’), I’m pretty sure coverage rates would go up a lot. That doesn’t make it a good idea. (Or a bad idea per se, for that matter – it depends upon the shape of the implicit social welfare function we’re playing around with. Though I must add – so that any smart doctors potentially reading along here don’t get any ideas – that a ‘large’ negative price of vaccination for health care workers is a bad idea if a cheaper option which achieves the same outcome is potentially available to the decision makers in question, which seems highly likely to me. For example vaccination rates of medical staff would also go up a lot if regular vaccinations were made an explicit condition of their employment, the refusal of which would lead to termination of their employment… There would be implicit costs of such a scheme, in terms of staff selection effects, but if you’re comparing solely those options and you’re the guy who makes the financial decisions..?)

August 22, 2016 Posted by | Books, Economics, Health Economics, Immunology, Medicine | Leave a comment

Eating disorders (II)

You can read my first post about the book, which lead to a brief comment exchange which may be of interest to people curious about diagnostics aspects, here. The book has a lot of stuff; in this post I’ll discuss the immune system, covered in chapter 5 of the book, as well as some ways that eating disorders may affect the skin (many of the remaining chapters of the book cover this topic). This will be my last post about the book.

In chapter 5 the authors start out by noting that adequate nutrition is an important factor in terms of maintaining immunocompetence and that malnutrition increases the risk of infection. Quite a few details are known about how specific aspects of nutritional deficiencies affect specific parts of the immune system. When both energy- and protein intake is insufficient (protein-energy malnutrition, PEM) this state of affairs is associated with atrophy of immune organs such as the thymus and spleen, as well as impairments in T cell populations (likely a natural consequence of thymus atrophy – the ‘T’ in ‘T cell’ stands for thymus…). Cytokine prodution (e.g. IL-1, IL-2, interferon-γ) is down-regulated in PEM, and the ability of T cells to respond appropriately to those cytokines is decreased. Impairments in macrophage phagocytotic function and neutrophils have been observed in malnourished individuals.

The authors note in the coverage that there now “seems to be consensus accepting that, overall, the manifestations of the immunocompromised status of ED patients are less frequent and severe than in PEM [3]. In general, the immune function seems to be better preserved than would be expected, considering the highly defective nutritional status of the patients. […] [some of] the most frequent findings described are leukopenia [white blood cell deficiency] with relative lymphocytosis [increased proportion of lymphocytes in the blood], [and] thrombocytopenia [platelet deficiency] […] immunocompetence and particularly T cell subsets are useful tools to follow-up the nutritional status in patients with ED. This asseveration applies also to BN patients, since T cell subsets seem to reflect their subclinical malnutrition, which is not evident from their weight status. […] Vomiting as a purging strategy is associated with a more deleterious effect on T cells […] Complement-system proteins […] have been found decreased in AN [anorexia nervosa] and BN [bulimia nervosa] [6,79] [and] seem to depend also on white adipose tissue mass. […] These proteins might be useful in the follow-up of AN patients, since C3 and C4 falls seem to occur when treated patients resume their restricting habits increasing their risk of relapse [81].”

Despite eating disorders having significant effects on the immune system, infection risk in people with eating disorders seems surprisingly to not be elevated, at least not until an advanced stage of the disease has been reached. There are multiple explanations offered for this observation, but the answer as to why this is is not completely clear. One reason might be that people with eating disorders tend to maintain relatively high protein and vitamin intake in a manner dissimilar from the intake patterns associated with classic starvation, mediating the effects of energy deficiency. Two other reasons offered both relate to the fact that the immune system does not respond normally to pathogens, and so to the extent that symptoms relate to immune responses to infection people with eating disorders have fewer symptoms; this relates to both down-regulation of memory T-cells and suppressed capacity to mount the classic acute-phase response to infection; a reduced febrile response to bacterial infection has been observed in anorexics. In the context of muted responses to infection, the hormone leptin (‘the satiety hormone’) may also be implicated; “there is a function for leptin as an up-regulator factor of inflammatory immune responses. Moreover, leptin production is acutely increased during infection and inflammation […] an impairment in this acute increase in leptin production in AN patients might be related to the lack of infection symptoms in these patients [26].” Interestingly leptin also seems to be downregulated in BN.

Okay, let’s move on and talk a little bit about how eating disorders may affect the skin. The book has a lot of stuff about this so this will not be an exhaustive review of the material covered in the book – but I did think I ought to talk a little bit about this stuff. Skin signs are important in a diagnostic context: “As most patients with eating disorders tend to minimize or even deny their disorder, the skin changes are sometimes the only indication that the patient has an eating disorder.” Some of the skin signs described in the book relate quite directly to specific behaviours (e.g. vomiting in purging subtypes), whereas others are of a more generalized nature and are rather due to the fact that the body does not get enough energy/micronutrients/etc. to handle all the tasks it’s supposed to handle. Some skin signs are considered ‘guiding signs’ of eating disorders, in the sense that they’re signs often found in an eating disorder context but are not usually found in the differential diagnoses natural to consider in the given clinical context, so they can be used as guiding tools in a diagnostic context. Examples of guiding signs include “lanugo-like body hair [very fine, soft, and usually unpigmented, downy hair] due to starvation, Russell’s sign [calluses on the knuckles or back of the hand] and [tooth] enamel erosions due to self-induced vomiting, and self-induced dermatoses due to psychiatric comorbidity.”

Frequent skin signs in eating disorders include dry, scaly skin; orange discolouration of the skin due to excessive consumption of beta carotene (carrots); the aforementioned lanugo-like body hair; coldness of the extremities (feet, toes) and bluish/purplish colouring of the hands and feet, caused by slow circulation (acrocyanosis); hair loss; inflammation of the lips and nail changes. “With a BMI between 17.5 and 16, the skin is usually pale or yellowish and cold, but no specific signs are found.” They note in the book that “Russell sign, dental enamel erosion, and salivary gland enlargement [elsewhere in the coverage they also dub this phenomenon ‘“chipmunk” cheeks of the bulimic’] are pathognomonic of purging behavior”. Dry skin is reported in 70% of people with anorexia nervosa (-AN), and acne is reported in 47–59% of patients – these are very common symptoms/consequences of AN. The same is the case for lanugo; in one study of AN patients (n=62), 77% had lanugo. In one study, alopecia was present in 67% of bulimics (n=122) and 61% of anorexics (n=62).

Observing the hands may be important: “Strumia [1], observing the hand of the patients with anorexia nervosa (AN), noticed that many peculiar skin signs, such as xerosis, acrocyanosis, carotenoderma, evident blood vessels due to decreased subcutaneous tissue, cold hand, nail dystrophy [“Brittle nails affect approximately 30% of patients with anorexia nervosa and bulimia nervosa”], Russell’s sign and artefacta, were located on the hands. Strumia used the term “anorectic’s hand” and suggested that, by examining the hand of a young patient, one can reasonably suspect an eating disorder. Only Russell’s sign is pathognomonic of eating disorders, but at least three signs, excluding Russell’s sign, are required for the diagnosis of “anorectic’s hand”, for example, xerosis, carotenoderma and cold hand. A perspicacious dermatologist should pay attention to this important sign when it appears in young females that show signs of reduced self-esteem and distorted perception of body weight.”

It is noted in the book that classical deficiency syndromes such as scurvy are very rare in AN because “AN is not commonly associated with vitamin deficiencies” – rather it’s the case that many anorectics over-supplement on vitamin supplements, which can paradoxically induce or worsen some skin complaints, such as e.g. xerosis (dry skin).

“the progression of anorexic pathology is accompanied by changing patterns in dietary habits [5]. These patterns include periods of low or no carbohydrate intake and an avoidance of dietary fats. They can also include patterns in which the primary foods consumed are fruits and vegetables. During this period, meat is often avoided. Changes in relative amounts of heavy to light isotopes [of nitrogen] in the hair indicate changes in the body’s metabolic state and dietary intake. […] By definition, individuals with anorexia or anorexia and bulimia are losing weight and do not get adequate nutrition. These individuals get their nitrogen largely from plants, and/or do not get sufficient nitrogen in their diet and are in nitrogen imbalance. By contrast, individuals diagnosed with only bulimia are maintaining their weight, and therefore get adequate nutrition and are likely not to be in nitrogen imbalance. […] Hatch et al. […] suggest that a distinction may be possible between anorexia and bulimia nervosa using 15N/14N and 13C/12C ratios in hair.”

“A reduced pain sensitivity has been found in eating disorder (ED) patients, but it is unclear what physiological and psychological factors are associated with this abnormality.”

January 26, 2016 Posted by | Books, Epidemiology, Immunology, Medicine | Leave a comment

Oxford Handbook of Clinical Medicine (II)

Here’s my first post about the book. I’ve read roughly 75% of the book at this point (~650 pages). The chapters I’ve read so far have dealt with the topics of: ‘thinking about medicine’ (an introductory chapter), ‘history and examination’, cardiovascular medicine, chest medicine, endocrinology, gastroenterology, renal medicine, haematology, infectious diseases, neurology, oncology and palliative care, rheumatology, and surgery (this last one is a long chapter – ~100 pages – which I have not yet finished). In my first post I (…mostly? I can’t recall if I included one or two observations made later in the coverage as well…) talked about observations included in the first 140 pages of the book, which relate only to the first three topics mentioned above; the chapter about chest medicine starts at page 154. In this post I’ll move on and discuss stuff covered in the chapters about cardiovascular medicine, chest medicine, and endocrinology.

In the previous post I talked a little bit about heart failure, acute coronary syndromes and a few related topics, but there’s a lot more stuff in the chapter about cardiovascular medicine and I figured I should add a few more observations – so let’s talk about aortic stenosis. The most common cause is ‘senile calcification’. The authors state that one should think of aortic stenosis in any elderly person with problems of chest pain, shortness of breath during exercise (exertional dyspnoea), and fainting episodes (syncope). Symptomatic aortic stenosis tends to be bad news; “If symptomatic, prognosis is poor without surgery: 2–3yr survival if angina/syncope; 1–2yr if cardiac failure. If moderate-to-severe and treated medically, mortality can be as high as 50% at 2yrs”. Surgery can improve the prognosis quite substantially; they note elsewhere in the coverage that a xenograft (e.g. from a pig) aortic valve replacement can last (“may require replacement at…”) 8-10 years, whereas a mechanical valve lasts even longer than that. Though it should also be noted in that context that the latter type requires life-long anticoagulation, whereas the former only requires this if there is atrial fibrilation.

Next: Infective endocarditis. Half of all cases of endocarditis occur on normal heart valves; the presentation in that case is one of acute heart failure. So this is one of those cases where your heart can be fine one day, and not many days later it’s toast and you’ll die unless you get treatment (often you’ll die even if you do get treatment as mortality is quite high: “Mortality: 5–50% (related to age and embolic events)”; mortality relates to which organism we’re dealing with: “30% with staphs [S. Aureus]; 14% if bowel organisms; 6% if sensitive streptococci.”). Multiple risk factors are known, but some of those are not easily preventable (renal failure, dermatitis, organ transplantation…); don’t be an IV drug (ab)user, and try to avoid getting (type 2) diabetes.. The authors note that: “There is no proven association between having an interventional procedure (dental or non-dental) and the development of IE”, and: “Antibiotic prophylaxis solely to prevent IE is not recommended”.

Speaking of terrible things that can go wrong with your heart for no good reason, hypertrophic cardiomyopathy (-HCM) is the leading cause of sudden cardiac death in young people, with an estimated prevalence of 1 in 500. “Sudden death may be the first manifestation of HCM in many patients”. Yeah…

The next chapter in the book as mentioned covers chest medicine. At the beginning of the chapter there’s some stuff about what the lungs look like and some stuff about how to figure out whether they’re working or not, or why they’re not working – I won’t talk about that here, but I would note that lung problems can relate to stuff besides ‘just’ lack of oxygen; they can also for example be related to retention of carbon dioxide and associated acidosis. In general I won’t talk much about this chapter’s coverage as I’m aware that I have covered many of the topics included in the book before here on the blog in other posts. It should perhaps be noted that whereas the chapter has two pages about lung tumours and two pages about COPD, it has 6 pages about pneumonia; this is still a very important disease and a major killer. Approximately one in five (the number 21% is included in the book) patients with pneumonia in a hospital setting die. Though it should perhaps also be observed that maybe one reason why more stuff is not included about lung cancer in that chapter is that this disease is just depressing and doctors can’t really do all that much. Carcinoma of the bronchus make up ~19% of all cancers and 27% of cancer deaths in the UK. In terms of prognosis, non-small cell lung cancer has a 50% 2-year mortality in cases where the cancer was not spread at presentation and a 90% 2-year mortality in cases with spread. That’s ‘the one you would prefer’: Small cell lung cancer is worse as small cell tumours “are nearly always disseminated at presentation” – here the untreated median survival is 3 months, increasing to 1-1,5 years if treated. The authors note that only 5% (of all cases, including both types) are ‘cured’ (they presumably use those citation marks for a reason). Malignant mesothelioma, a cancer strongly linked to asbestos exposure most often developing in the pleura, incidentally also has a terrible prognosis (”

5-8% of people in the UK have asthma; I was surprised the number was that high. Most people who get it during childhood either grow out of it or suffer much less as adults, but on the other hand there are also many people who develop chronic asthma late in life. In 2009 approximately 1000 people in the UK died of asthma – unless this number is a big underestimate, it would seem to me that asthma at least in terms of mortality is a relatively mild disease (if 5% of the UK population has asthma, that’s 3 million people – and 1000 deaths among 3 million people is not a lot, especially not considering that half of those deaths were in people above the age of 65). COPD is incidentally another respiratory disease which is more common than I had thought; they note that the estimated prevalence in people above the age of 40 in the UK is 10-20%.

The endocrinology chapter has 10 pages about diabetes, and I won’t talk much about that coverage here as I’ve talked about many of these things before on the blog – however a few observations are worth including and discussing here. The authors note that 4% of all pregnancies are complicated by diabetes, with the large majority of cases (3.5%) being new-onset gestational diabetes. In a way the 0,5% could be considered ‘good news’ because they reflect the fact that outcomes have improved so much that a female diabetic can actually carry a child to term without risking her own life or running a major risk that the fetus dies (“As late as 1980, physicians were still counseling diabetic women to avoid pregnancy” – link). But the 3,5%? That’s not good: “All forms [of diabetes] carry an increased risk to mother and foetus: miscarriage, pre-term labour, pre-eclampsia, congenital malformations, macrosomia, and a worsening of diabetic complications”. I’m not fully convinced this statement is actually completely correct, but there’s no doubt that diabetes during pregnancy is not particularly desirable. As to which part of the statement I’m uncertain about, I think gestational diabetes ‘ought to’ have somewhat different effects than type 1 especially in the context of congenial malformations. Based on my understanding of these things, gestational diabetes should be less likely to cause congenital malformations than type 1 diabetes in the mother; diabetes-related congenital malformations tend to happen/develop very early in pregnancy (for details, see the link above) and gestational pregnancy is closely related to hormonal changes and changing metabolic demands which happen over time during pregnancy. Hormonal changes which occur during pregnancy play a key role in the pathogenesis of gestational diabetes, as the hormonal changes in general increase insulin resistance significantly, which is what causes some non-diabetic women to become diabetic during pregnancy; these same processes incidentally also causes the insulin demands of diabetic pregnant women to increase a lot during pregnancy. You’d expect the inherently diabetogenic hormonal and metabolic processes which happen in pregnancy to play a much smaller role in the beginning of the pregnancy than they do later on, especially as women who develop gestational diabetes during their pregnancy would be likely to be able to compensate early in pregnancy, where the increased metabolic demands are much less severe than they are later on. So I’d expect the risk contribution from ‘classic gestational diabetes’ to be larger in the case of macrosomia than in the case of neural tube defects, where type 1s should probably be expected to dominate – a sort of ‘gestational diabetics don’t develop diabetes early enough in pregnancy for the diabetes to be very likely to have much impact on organogenesis’-argument. This is admittedly not a literature I’m intimately familiar with and maybe I’m wrong, but from my reading of their diabetes-related coverage I sort of feel like the authors shouldn’t be expected to be intimately familiar with the literature either, and I’m definitely not taking their views on these sorts of topics to be correct ‘by default’ at this point. This NHS site/page incidentally seems to support my take on this, as it’s clear that the first occasion for even testing for gestational diabetes is at week 8-12, which is actually after a substantial proportion of diabetes-related organ damage would already be expected to have occurred in the type 1 diabetes context (“There is an increased prevalence of congenital anomalies and spontaneous abortions in diabetic women who are in poor glycemic control during the period of fetal organogenesis, which is nearly complete by 7 wk postconception.” – Sperling et al., see again the link provided above. Note that that entire textbook is almost exclusively about type 1 diabetes, so ‘diabetes’ in the context of that quote equals T1DM), and a glucose tolerance test/screen does not in this setting take place until weeks 24-28.

The two main modifiable risk factors in the context of gestational diabetes are weight and age of pregnancy; the risk of developing gestational diabetes  increases with weight and is higher in women above the age of 25. One other sex/gender-related observation to make in the context of diabetes is incidentally that female diabetics are at much higher risk of cardiovascular disease than are non-diabetic females: “DM [diabetes mellitus] removes the vascular advantage conferred by the female sex”. Relatedly, “MI is 4-fold commoner in DM and is more likely to be ‘silent’. Stroke is twice as common.” On a different topic in which I’ve been interested they provided an observation which did not help much: “The role of aspirin prophylaxis […] is uncertain in DM with hypertension.”

They argue in the section about thyroid function tests (p. 209) that people with diabetes mellitus should be screened for abnormalities in thyroid function on the annual review; I’m not actually sure this is done in Denmark and I think it’s not – the DDD annual reports I’ve read have not included this variable, and if it is done I know for a fact that doctors do not report the results to the patient. I’m almost certain they neglected to include a ‘type 1’ in that recommendation, because it makes close to zero sense to screen type 2 diabetics for comorbid autoimmune conditions, and I’d say I’m probably also a little skeptical, though much less skeptical, about annual screenings of all type 1s being potentially cost-effective. Given that autoimmune comorbidities (e.g. Graves’ disease and Hashimoto’s) are much more common in women than in men and that they often present in middle-aged individuals (and given that they’re more common in people who develop diabetes relatively late, unlike me – see Sperling) I would assume I’m relatively low risk and that it would probably not make sense to screen someone like me annually from a cost-benefit/cost-effectiveness perspective; but it might make sense to ask the endocrinologist at my next review about how this stuff is actually being done in Denmark, if only to satisfy my own curiosity. Annual screening of *female*, *type 1* diabetics *above (e.g.) the age of 30* might be a great idea and perhaps less restrictive criteria than that can also be justified relatively easily, but this is an altogether very different recommendation from the suggestion that you should screen all diabetics annually for thyroid problems, which is what they recommend in the book – I guess you can add this one to the list of problems I have with the authors’ coverage of diabetes-related topics (see also my comments in the previous post). The sex- and age-distinction is likely much less important than the ‘type’ restriction and maybe you can justify screening all type 1 diabetics (For example: “Hypothyroid or hyperthyroid AITD [autoimmune thyroid disease] has been observed in 10–24% of patients with type 1 diabetes” – Sperling. Base rates are important here: Type 1 diabetes is rare, and Graves’ disease is rare, but if the same HLA mutation causes both in many cases then the population prevalence is not informative about the risk an individual with diabetes and an HLA mutation has of developing Graves’) – but most diabetics are not type 1 diabetics, and it doesn’t make sense to screen a large number of people without autoimmune disease for autoimmune comorbidities they’re unlikely to have (autoimmunity in diabetes is complicated – see the last part of this comment for a few observations of interest on that topic – but it’s not that complicated; most type 2 diabetics are not sick because of autoimmunity-related disease processes, and type 2 diabetics make up the great majority of people with diabetes mellitus in all patient populations around the world). All this being said, it is worth keeping in mind that despite overt thyroid disease being relatively rare in general, subclinical hypothyroidism is common in middle-aged and elderly individuals (“~10% of those >55yrs”); and the authors recommend treating people in this category who also have DM because they are more likely to develop overt disease (…again it probably makes sense to add a ‘T1’ in front of that DM).

Smoking is sexy, right? (Or at least it used to be…). And alcohol makes other people look sexy, right? In a way I find it a little amusing that alcohol and smoking are nevertheless two of the three big organic causes of erectile dysfunction (the third is diabetes).

How much better does it feel to have sex, compared to how it feels to masturbate? No, they don’t ask that question in the book (leave that to me…) but they do provide part of the answer because actually there are ways to quantify this, sort of: “The prolactin increase ( and ) after coitus is ~400% greater than after masturbation; post-orgasmic prolactin is part of a feedback loop decreasing arousal by inhibiting central dopaminergic processes. The size of post-orgasmic prolactin increase is a neurohormonal index of sexual satisfaction.”

November 1, 2015 Posted by | Books, Cancer/oncology, Cardiology, Diabetes, Epidemiology, Immunology, Medicine | Leave a comment

A couple of lectures and a little bit of random stuff

i. Two lectures from the Institute for Advanced Studies:

The IAS has recently uploaded a large number of lectures on youtube, and the ones I blog here are a few of those where you can actually tell from the title what the lecture is about; I find it outright weird that these people don’t include the topic covered in the lecture in their lecture titles.

As for the video above, as usual for the IAS videos it’s annoying that you can’t hear the questions asked by the audience, but the sound quality of this video is at least quite a bit better than the sound quality of the video below (which has a couple of really annoying sequences, in particular around the 15-16 minutes mark (it gets better), where the image is also causing problems, and in the last couple of minutes of the Q&A things are also not exactly optimal as the lecturer leaves the area covered by the camera in order to write something on the blackboard – but you don’t know what he’s writing and you can’t see the lecturer, because the camera isn’t following him). I found most of the above lecture easier to follow than I did the lecture posted below, though in either case you’ll probably not understand all of it unless you’re an astrophysicist – you definitely won’t in case of the latter lecture. I found it helpful to look up a few topics along the way, e.g. the wiki articles about the virial theorem (/also dealing with virial mass/radius), active galactic nucleus (this is the ‘AGN’ she refers to repeatedly), and the Tully–Fisher relation.

Given how many questions are asked along the way it’s really annoying that you in most cases can’t hear what people are asking about – this is definitely an area where there’s room for improvement in the context of the IAS videos. The lecture was not easy to follow but I figured along the way that I understood enough of it to make it worth watching the lecture to the end (though I’d say you’ll not miss much if you stop after the lecture – around the 1.05 hours mark – and skip the subsequent Q&A). I’ve relatively recently read about related topics, e.g. pulsar formation and wave- and fluid dynamics, and if I had not I probably would not have watched this lecture to the end.

ii. A vocabulary.com update. I’m slowly working my way up to the ‘Running Dictionary’ rank (I’m only a walking dictionary at this point); here’s some stuff from my progress page:

Vocab
I recently learned from a note added to a list that I’ve actually learned a very large proportion of all words available on vocabulary.com, which probably also means that I may have been too harsh on the word selection algorithm in past posts here on the blog; if there aren’t (/m)any new words left to learn it should not be surprising that the algorithm presents me with words I’ve already mastered, and it’s not the algorithm’s fault that there aren’t more words available for me to learn (well, it is to the extent that you’re of the opinion that questions should be automatically created by the algorithm as well, but I don’t think we’re quite there yet at this point). The aforementioned note was added in June, and here’s the important part: “there are words on your list that Vocabulary.com can’t teach yet. Vocabulary.com can teach over 12,000 words, but sadly, these aren’t among them”. ‘Over 12.000’ – and I’ve mastered 11.300. When the proportion of mastered words is this high, not only will the default random word algorithm mostly present you with questions related to words you’ve already mastered; but it actually also starts to get hard to find lists with many words you’ve not already mastered – I’ll often load lists with one hundred words and then realize that I’ve mastered every word on the list. This is annoying if you have a desire to continually be presented with both new words as well as old ones. Unless vocabulary.com increases the rate with which they add new words I’ll run out of new words to learn, and if that happens I’m sure it’ll be much more difficult for me to find motivation to use the site.

With all that stuff out of the way, if you’re not a regular user of the site I should note – again – that it’s an excellent resource if you desire to increase your vocabulary. Below is a list of words I’ve encountered on the site in recent weeks(/months?):

Copaceticfrumpyelisiontermagantharridanquondam, funambulist, phantasmagoriaeyelet, cachinnate, wilt, quidnunc, flocculent, galoot, frangible, prevaricate, clarion, trivet, noisome, revenant, myrmidon (I have included this word once before in a post of this type, but it is in my opinion a very nice word with which more people should be familiar…), debenture, teeter, tart, satiny, romp, auricular, terpsichorean, poultice, ululation, fusty, tangy, honorarium, eyas, bumptious, muckraker, bayou, hobble, omphaloskepsis, extemporize, virago, rarefaction, flibbertigibbet, finagle, emollient.

iii. I don’t think I’d do things exactly the way she’s suggesting here, but the general idea/approach seems to me appealing enough for it to be worth at least keeping in mind if I ever decide to start dating/looking for a partner.

iv. Some wikipedia links:

Tarrare (featured). A man with odd eating habits and an interesting employment history (“Dr. Courville was keen to continue his investigations into Tarrare’s eating habits and digestive system, and approached General Alexandre de Beauharnais with a suggestion that Tarrare’s unusual abilities and behaviour could be put to military use.[9] A document was placed inside a wooden box which was in turn fed to Tarrare. Two days later, the box was retrieved from his excrement, with the document still in legible condition.[9][17] Courville proposed to de Beauharnais that Tarrare could thus serve as a military courier, carrying documents securely through enemy territory with no risk of their being found if he were searched.” Yeah…).

Cauda equina syndromeCastleman’s disease, Astereognosis, Familial dysautonomia, Homonymous hemianopsia, Amaurosis fugax. All of these are of course related to content covered in the Handbook.

1740 Batavia massacre (featured).

v. I am also fun.

October 30, 2015 Posted by | Astronomy, History, Immunology, Language, Lectures, Medicine, Neurology, Personal, Physics, Random stuff, Wikipedia | Leave a comment

Random stuff

It’s been a while since I posted anything here so I figured I should at least post something…

i. A few Khan Academy videos I watched a while back:

(No comments)

(Bookmark remark: (‘Not completely devoid of slight inaccuracies as usual – e.g. in meningitis, neck stiffness is not as much as symptom as it is a clinical sign (see Chamberlain’s symptoms and signs…))’

(Bookmark remark: ‘Very simplified, but not terrible’)

(No comments)

ii. I previously read the wiki on strategic bombing during WW2, but the article did not really satisfy my curiosity and it turns out that the wiki also has a great (featured) article about Air raids on Japan (a topic not covered in a great amount of detail in the aforementioned wiki article). A few random observations from the article:

“Overall, the attacks in May destroyed 94 square miles (240 km2) of buildings, which was equivalent to one seventh of Japan’s total urban area.”

“In Tokyo, Osaka, Nagoya, Yokohama, Kobe, and Kawasaki, “over 126,762 people were killed … and a million and a half dwellings and over 105 square miles (270 km2) of urban space were destroyed.”[136] In Tokyo, Osaka and Nagoya, “the areas leveled (almost 100 square miles (260 km2)) exceeded the areas destroyed in all German cities by both the American and English air forces (approximately 79 square miles (200 km2)).”[136]

“In financial terms, the Allied air campaign and attacks on merchant ships destroyed between one third and a quarter of Japan’s wealth.[289]

“Approximately 40 percent of the urban area of the 66 cities subjected to area attacks were destroyed.[290] This included the loss of about 2.5 million housing units, which rendered 8.5 million people homeless.”

iii. A few longer lectures I’ve watched recently but did not think were particularly good: The Fortress (GM Akobian, Chess), Safety in the Nuclear Industry (Philip Thomas, Gresham College), War, Health and Medicine: The medical lessons of World War I (Mark Harrison, Gresham College – topic had potential, somehow did not like ‘the delivery’; others may find it worth watching).

iv. I play a lot of (too much) chess these days, so I guess it makes sense to post a little on this topic as well. Here’s a list of some of my recent opponents on the ICC: GM Zurab Azmaiparashvili, IM Jerzy Slaby, IM Petar Gojkovic, GM Goran Kosanovic, IM Jeroen Bosch, WGM Alla Grinfeld. I recall encountering a few titled players when I started out on the ICC and my rating was still adjusting and stabilizing, but now I’ve sort of fixed at a level around 1700-1800 in both the 1, 3 and 5 minute pools – sometimes a bit higher, sometimes a bit lower (and I’ve played relatively few 5 minute games so far)). This is a level where at least in bullet some of the semi-regular opponents I’ll meet in the rating pool are guys like these. I was quite dissatisfied with my play when I started out on the ICC because I hadn’t realized how tough it is to maintain a high rating there; having a closer look at which sort of opponents I was actually facing gradually made me realize I was probably doing quite well, all things considered. Lately I’ve been thinking that I have probably even been doing quite a bit better than I’d thought I had. See also this and this link. I’ve gradually concluded that I’m probably never ‘going back’ now that I’ve familiarized myself with the ICC server.

And yes, I do occasionally win against opposition like that, also on position – below an example from a recent game against a player not on the list above (there are quite a few anonymous title-holders as well on the server):

easy-e
Click to view full size – the list to the lower left is a list of other players online on the server at that point in time, ordered by rating; as should be clear, lots of title-holders have relatively low ratings (I’m not completely sure which rating pool was displayed in the sidebar at that time, but the defaults on display for me are 5- or 3-minutes, so for example the international master ‘softrain’ thus had either a 3 or 5 minute rating of 1799 at that time. Do note that ICC requires proof for titles to display on the server; random non-titled players do not display as titleholders on the ICC (actually the formally approved titled accounts obviously do not account for all accounts held by title-holders as some titled players on the server use accounts which do not give away the fact that they have a title).

Here’s another very nice illustration of how tough the X-minute pools are (/how strong the players playing on the ICC are):

Wang Hao
Again, click to view in full size. This is Chinese Grandmaster Wang Hao‘s ICC account. Wang Hao is currently #39 on the FIDE list of active chess players in the world, with a FIDE rating above 2700. Even his 5-minute rating on the ICC, based on more than a thousand games, is below 2300, and his current 3 minute rating is barely above 2000. With numbers like those, I currently feel quite satisfied with my 1700-1800 ratings (although I know I should be spending less time on chess than I currently do).

v. A few words I’ve recently encountered on vocabulary.com: Anaphora, usufruct, mimesis, amanuensis, peculate, elide, ataraxia, myrmidon, velleity.

vi. A few other wiki links: Fritz Haber, Great Stink (featured), Edward Low (a really nice guy, it seems – “A story describes Low burning a French cook alive, saying he was a “greasy fellow who would fry well”, and another tells he once killed 53 Spanish captives with his cutlass.[6]“), 1940 Soviet ultimatum to Lithuania (‘good article’).

vii. A really cute paper from the 2013 Christmas edition of the British Medical Journal: Were James Bond’s drinks shaken because of alcohol induced tremor? Here’s the abstract:

Objective To quantify James Bond’s consumption of alcohol as detailed in the series of novels by Ian Fleming.

Design Retrospective literature review.

Setting The study authors’ homes, in a comfy chair.

Participants Commander James Bond, 007; Mr Ian Lancaster Fleming.

Main outcome measures Weekly alcohol consumption by Commander Bond.

Methods All 14 James Bond books were read by two of the authors. Contemporaneous notes were taken detailing every alcoholic drink taken. Predefined alcohol unit levels were used to calculate consumption. Days when Bond was unable to consume alcohol (such as through incarceration) were noted.

Results After exclusion of days when Bond was unable to drink, his weekly alcohol consumption was 92 units a week, over four times the recommended amount. His maximum daily consumption was 49.8 units. He had only 12.5 alcohol free days out of 87.5 days on which he was able to drink.

Conclusions James Bond’s level of alcohol intake puts him at high risk of multiple alcohol related diseases and an early death. The level of functioning as displayed in the books is inconsistent with the physical, mental, and indeed sexual functioning expected from someone drinking this much alcohol. We advise an immediate referral for further assessment and treatment, a reduction in alcohol consumption to safe levels, and suspect that the famous catchphrase “shaken, not stirred” could be because of alcohol induced tremor affecting his hands.”

viii. A couple of other non-serious links which I found hilarious:
1) The Prof(essor) or Hobo quiz (via SSC).
2) Today’s SMBC. I’ll try to remember the words in the votey in the highly unlikely case I’ll ever have use for them – in my opinion it would be a real tragedy if one were to miss an opportunity to make a statement like that, given that it was at all suitable to the situation at hand..

July 6, 2015 Posted by | Chess, Diabetes, Epidemiology, History, Immunology, Infectious disease, Khan Academy, Lectures, Medicine, Personal | Leave a comment