Econstudentlog

The history of astronomy

It’s been a while since I read this book, and I was for a while strongly considering not blogging it at all. In the end I figured I ought to cover it after all in at least a little bit of detail, though when I made the decision to cover the book here I also decided not to cover it in nearly as much detail as I usually cover the books in this series.

Below some random observations from the book which I found sufficiently interesting to add here.

“The Almagest is a magisterial work that provided geometrical models and related tables by which the movements of the Sun, Moon, and the five lesser planets could be calculated for the indefinite future. […] Its catalogue contains over 1,000 fixed stars arranged in 48 constellations, giving the longitude, latitude, and apparent brightness of each. […] the Almagest would dominate astronomy like a colossus for 14 centuries […] In the universities of the later Middle Ages, students would be taught Aristotle in philosophy and a simplified Ptolemy in astronomy. From Aristotle they would learn the basic truth that the heavens rotate uniformly about the central Earth. From the simplified Ptolemy they would learn of epicycles and eccentrics that violated this basic truth by generating orbits whose centre was not the Earth; and those expert enough to penetrate deeper into the Ptolemaic models would encounter equant theories that violated the (yet more basic) truth that heavenly motion is uniform. […] with the models of the Almagest – whose parameters would be refined over the centuries to come – the astronomer, and the astrologer, could compute the future positions of the planets with economy and reasonable accuracy. There were anomalies – the Moon, for example, would vary its apparent size dramatically in the Ptolemaic model but does not do so in reality, and Venus and Mercury were kept close to the Sun in the sky by a crude ad hoc device – but as a geometrical compendium of how to grind out planetary tables, the Almagest worked, and that was what mattered.”

“The revival of astronomy – and astrology – among the Latins was stimulated around the end of the first millennium when the astrolabe entered the West from Islamic Spain. Astrology in those days had a [‘]rational[‘] basis rooted in the Aristotelian analogy between the microcosm – the individual living body – and the macrocosm, the cosmos as a whole. Medical students were taught how to track the planets, so that they would know when the time was favourable for treating the corresponding organs in their patients.” [Aaargh! – US]

“The invention of printing in the 15th century had many consequences, none more significant than the stimulus it gave to the mathematical sciences. All scribes, being human, made occasional errors in preparing a copy of a manuscript. These errors would often be transmitted to copies of the copy. But if the works were literary and the later copyists attended to the meaning of the text, they might recognize and correct many of the errors introduced by their predecessors. Such control could rarely be exercised by copyists required to reproduce texts with significant numbers of mathematical symbols. As a result, a formidable challenge faced the medieval student of a mathematical or astronomical treatise, for it was available to him only in a manuscript copy that had inevitably become corrupt in transmission. After the introduction of printing, all this changed.”

“Copernicus, like his predecessors, had been content to work with observations handed down from the past, making new ones only when unavoidable and using instruments that left much to be desired. Tycho [Brahe], whose work marks the watershed between observational astronomy ancient and modern, saw accuracy of observation as the foundation of all good theorizing. He dreamed of having an observatory where he could pursue the research and development of precision instrumentation, and where a skilled team of assistants would test the instruments even as they were compiling a treasury of observations. Exploiting his contacts at the highest level, Tycho persuaded King Frederick II of Denmark to grant him the fiefdom of the island of Hven, and there, between 1576 and 1580, he constructed Uraniborg (‘Heavenly Castle’), the first scientific research institution of the modern era. […] Tycho was the first of the modern observers, and in his catalogue of 777 stars the positions of the brightest are accurate to a minute or so of arc; but he himself was probably most proud of his cosmology, which Galileo was not alone in seeing as a retrograde compromise. Tycho appreciated the advantages of heliocentic planetary models, but he was also conscious of the objections […]. In particular, his inability to detect annual parallax even with his superb instrumentation implied that the Copernican excuse, that the stars were too far away for annual parallax to be detected, was now implausible in the extreme. The stars, he calculated, would have to be at least 700 times further away than Saturn for him to have failed for this reason, and such a vast, purposeless empty space between the planets and the stars made no sense. He therefore looked for a cosmology that would have the geometrical advantages of the heliocentric models but would retain the Earth as the body physically at rest at the centre of the cosmos. The solution seems obvious in hindsight: make the Sun (and Moon) orbit the central Earth, and make the five planets into satellites of the Sun.”

“Until the invention of the telescope, each generation of astronomers had looked at much the same sky as their predecessors. If they knew more, it was chiefly because they had more books to read, more records to mine. […] Galileo could say of his predecessors, ‘If they had seen what we see, they would have judged as we judge’; and ever since his time, the astronomers of each generation have had an automatic advantage over their predecessors, because they possess apparatus that allows them access to objects unseen, unknown, and therefore unstudied in the past. […] astronomers [for a long time] found themselves in a situation where, as telescopes improved, the two coordinates of a star’s position on the heavenly sphere were being measured with ever increasing accuracy, whereas little was known of the star’s third coordinate, distance, except that its scale was enormous. Even the assumption that the nearest stars were the brightest was […rightly, US] being called into question, as the number of known proper motions increased and it emerged that not all the fastest-moving stars were bright.”

“We know little of how Newton’s thinking developed between 1679 and the visit from Halley in 1684, except for a confused exchange of letters between Newton and the Astronomer Royal, John Flamsteed […] the visit from the suitably deferential and tactful Halley encouraged Newton to promise him written proof that elliptical orbits would result from an inverse-square force of attraction residing in the Sun. The drafts grew and grew, and eventually resulted in The Mathematical Principles of Natural Philosophy (1687), better known in its abbreviated Latin title of the Principia. […] All three of Kepler’s laws (the second in ‘area’ form), which had been derived by their author from observations, with the help of a highly dubious dynamics, were now shown to be consequences of rectilinear motion under an inverse-square force. […] As the drafts of Principia multiplied, so too did the number of phenomena that at last found their explanation. The tides resulted from the difference between the effects on the land and on the seas of the attraction of Sun and Moon. The spinning Earth bulged at the equator and was flattened at the poles, and so was not strictly spherical; as a result, the attraction of Sun and Moon caused the Earth’s axis to wobble and so generated the precession of the equinoxes first noticed by Hipparchus. […] Newton was able to use the observed motions of the moons of Earth, Jupiter, and Saturn to calculate the masses of the parent planets, and he found that Jupiter and Saturn were huge compared to Earth – and, in all probability, to Mercury, Venus, and Mars.”

Advertisements

December 5, 2017 Posted by | Astronomy, Books, History, Mathematics, Physics | Leave a comment

Radioactivity

A few quotes from the book and some related links below. Here’s my very short goodreads review of the book.

Quotes:

“The main naturally occurring radionuclides of primordial origin are uranium-235, uranium-238, thorium-232, their decay products, and potassium-40. The average abundance of uranium, thorium, and potassium in the terrestrial crust is 2.6 parts per million, 10 parts per million, and 1% respectively. Uranium and thorium produce other radionuclides via neutron- and alpha-induced reactions, particularly deeply underground, where uranium and thorium have a high concentration. […] A weak source of natural radioactivity derives from nuclear reactions of primary and secondary cosmic rays with the atmosphere and the lithosphere, respectively. […] Accretion of extraterrestrial material, intensively exposed to cosmic rays in space, represents a minute contribution to the total inventory of radionuclides in the terrestrial environment. […] Natural radioactivity is [thus] mainly produced by uranium, thorium, and potassium. The total heat content of the Earth, which derives from this radioactivity, is 12.6 × 1024 MJ (one megajoule = 1 million joules), with the crust’s heat content standing at 5.4 × 1021 MJ. For comparison, this is significantly more than the 6.4 × 1013 MJ globally consumed for electricity generation during 2011. This energy is dissipated, either gradually or abruptly, towards the external layers of the planet, but only a small fraction can be utilized. The amount of energy available depends on the Earth’s geological dynamics, which regulates the transfer of heat to the surface of our planet. The total power dissipated by the Earth is 42 TW (one TW = 1 trillion watts): 8 TW from the crust, 32.3 TW from the mantle, 1.7 TW from the core. This amount of power is small compared to the 174,000 TW arriving to the Earth from the Sun.”

“Charged particles such as protons, beta and alpha particles, or heavier ions that bombard human tissue dissipate their energy locally, interacting with the atoms via the electromagnetic force. This interaction ejects electrons from the atoms, creating a track of electron–ion pairs, or ionization track. The energy that ions lose per unit path, as they move through matter, increases with the square of their charge and decreases linearly with their energy […] The energy deposited in the tissues and organs of your body by ionizing radiation is defined absorbed dose and is measured in gray. The dose of one gray corresponds to the energy of one joule deposited in one kilogram of tissue. The biological damage wrought by a given amount of energy deposited depends on the kind of ionizing radiation involved. The equivalent dose, measured in sievert, is the product of the dose and a factor w related to the effective damage induced into the living matter by the deposit of energy by specific rays or particles. For X-rays, gamma rays, and beta particles, a gray corresponds to a sievert; for neutrons, a dose of one gray corresponds to an equivalent dose of 5 to 20 sievert, and the factor w is equal to 5–20 (depending on the neutron energy). For protons and alpha particles, w is equal to 5 and 20, respectively. There is also another weighting factor taking into account the radiosensitivity of different organs and tissues of the body, to evaluate the so-called effective dose. Sometimes the dose is still quoted in rem, the old unit, with 100 rem corresponding to one sievert.”

“Neutrons emitted during fission reactions have a relatively high velocity. When still in Rome, Fermi had discovered that fast neutrons needed to be slowed down to increase the probability of their reaction with uranium. The fission reaction occurs with uranium-235. Uranium-238, the most common isotope of the element, merely absorbs the slow neutrons. Neutrons slow down when they are scattered by nuclei with a similar mass. The process is analogous to the interaction between two billiard balls in a head-on collision, in which the incoming ball stops and transfers all its kinetic energy to the second one. ‘Moderators’, such as graphite and water, can be used to slow neutrons down. […] When Fermi calculated whether a chain reaction could be sustained in a homogeneous mixture of uranium and graphite, he got a negative answer. That was because most neutrons produced by the fission of uranium-235 were absorbed by uranium-238 before inducing further fissions. The right approach, as suggested by Szilárd, was to use separated blocks of uranium and graphite. Fast neutrons produced by the splitting of uranium-235 in the uranium block would slow down, in the graphite block, and then produce fission again in the next uranium block. […] A minimum mass – the critical mass – is required to sustain the chain reaction; furthermore, the material must have a certain geometry. The fissile nuclides, capable of sustaining a chain reaction of nuclear fission with low-energy neutrons, are uranium-235 […], uranium-233, and plutonium-239. The last two don’t occur in nature but can be produced artificially by irradiating with neutrons thorium-232 and uranium-238, respectively – via a reaction called neutron capture. Uranium-238 (99.27%) is fissionable, but not fissile. In a nuclear weapon, the chain reaction occurs very rapidly, releasing the energy in a burst.”

“The basic components of nuclear power reactors, fuel, moderator, and control rods, are the same as in the first system built by Fermi, but the design of today’s reactors includes additional components such as a pressure vessel, containing the reactor core and the moderator, a containment vessel, and redundant and diverse safety systems. Recent technological advances in material developments, electronics, and information technology have further improved their reliability and performance. […] The moderator to slow down fast neutrons is sometimes still the graphite used by Fermi, but water, including ‘heavy water’ – in which the water molecule has a deuterium atom instead of a hydrogen atom – is more widely used. Control rods contain a neutron-absorbing material, such as boron or a combination of indium, silver, and cadmium. To remove the heat generated in the reactor core, a coolant – either a liquid or a gas – is circulating through the reactor core, transferring the heat to a heat exchanger or directly to a turbine. Water can be used as both coolant and moderator. In the case of boiling water reactors (BWRs), the steam is produced in the pressure vessel. In the case of pressurized water reactors (PWRs), the steam generator, which is the secondary side of the heat exchanger, uses the heat produced by the nuclear reactor to make steam for the turbines. The containment vessel is a one-metre-thick concrete and steel structure that shields the reactor.”

“Nuclear energy contributed 2,518 TWh of the world’s electricity in 2011, about 14% of the global supply. As of February 2012, there are 435 nuclear power plants operating in 31 countries worldwide, corresponding to a total installed capacity of 368,267 MW (electrical). There are 63 power plants under construction in 13 countries, with a capacity of 61,032 MW (electrical).”

“Since the first nuclear fusion, more than 60 years ago, many have argued that we need at least 30 years to develop a working fusion reactor, and this figure has stayed the same throughout those years.”

“[I]onizing radiation is […] used to improve many properties of food and other agricultural products. For example, gamma rays and electron beams are used to sterilize seeds, flour, and spices. They can also inhibit sprouting and destroy pathogenic bacteria in meat and fish, increasing the shelf life of food. […] More than 60 countries allow the irradiation of more than 50 kinds of foodstuffs, with 500,000 tons of food irradiated every year. About 200 cobalt-60 sources and more than 10 electron accelerators are dedicated to food irradiation worldwide. […] With the help of radiation, breeders can increase genetic diversity to make the selection process faster. The spontaneous mutation rate (number of mutations per gene, for each generation) is in the range 10-8–10-5. Radiation can increase this mutation rate to 10-5–10-2. […] Long-lived cosmogenic radionuclides provide unique methods to evaluate the ‘age’ of groundwaters, defined as the mean subsurface residence time after the isolation of the water from the atmosphere. […] Scientists can date groundwater more than a million years old, through chlorine-36, produced in the atmosphere by cosmic-ray reactions with argon.”

“Radionuclide imaging was developed in the 1950s using special systems to detect the emitted gamma rays. The gamma-ray detectors, called gamma cameras, use flat crystal planes, coupled to photomultiplier tubes, which send the digitized signals to a computer for image reconstruction. Images show the distribution of the radioactive tracer in the organs and tissues of interest. This method is based on the introduction of low-level radioactive chemicals into the body. […] More than 100 diagnostic tests based on radiopharmaceuticals are used to examine bones and organs such as lungs, intestines, thyroids, kidneys, the liver, and gallbladder. They exploit the fact that our organs preferentially absorb different chemical compounds. […] Many radiopharmaceuticals are based on technetium-99m (an excited state of technetium-99 – the ‘m’ stands for ‘metastable’ […]). This radionuclide is used for the imaging and functional examination of the heart, brain, thyroid, liver, and other organs. Technetium-99m is extracted from molybdenum-99, which has a much longer half-life and is therefore more transportable. It is used in 80% of the procedures, amounting to about 40,000 per day, carried out in nuclear medicine. Other radiopharmaceuticals include short-lived gamma-emitters such as cobalt-57, cobalt-58, gallium-67, indium-111, iodine-123, and thallium-201. […] Methods routinely used in medicine, such as X-ray radiography and CAT, are increasingly used in industrial applications, particularly in non-destructive testing of containers, pipes, and walls, to locate defects in welds and other critical parts of the structure.”

“Today, cancer treatment with radiation is generally based on the use of external radiation beams that can target the tumour in the body. Cancer cells are particularly sensitive to damage by ionizing radiation and their growth can be controlled or, in some cases, stopped. High-energy X-rays produced by a linear accelerator […] are used in most cancer therapy centres, replacing the gamma rays produced from cobalt-60. The LINAC produces photons of variable energy bombarding a target with a beam of electrons accelerated by microwaves. The beam of photons can be modified to conform to the shape of the tumour, which is irradiated from different angles. The main problem with X-rays and gamma rays is that the dose they deposit in the human tissue decreases exponentially with depth. A considerable fraction of the dose is delivered to the surrounding tissues before the radiation hits the tumour, increasing the risk of secondary tumours. Hence, deep-seated tumours must be bombarded from many directions to receive the right dose, while minimizing the unwanted dose to the healthy tissues. […] The problem of delivering the needed dose to a deep tumour with high precision can be solved using collimated beams of high-energy ions, such as protons and carbon. […] Contrary to X-rays and gamma rays, all ions of a given energy have a certain range, delivering most of the dose after they have slowed down, just before stopping. The ion energy can be tuned to deliver most of the dose to the tumour, minimizing the impact on healthy tissues. The ion beam, which does not broaden during the penetration, can follow the shape of the tumour with millimetre precision. Ions with higher atomic number, such as carbon, have a stronger biological effect on the tumour cells, so the dose can be reduced. Ion therapy facilities are [however] still very expensive – in the range of hundreds of millions of pounds – and difficult to operate.”

“About 50 million years ago, a global cooling trend took our planet from the tropical conditions at the beginning of the Tertiary to the ice ages of the Quaternary, when the Arctic ice cap developed. The temperature decrease was accompanied by a decrease in atmospheric CO2 from 2,000 to 300 parts per million. The cooling was probably caused by a reduced greenhouse effect and also by changes in ocean circulation due to plate tectonics. The drop in temperature was not constant as there were some brief periods of sudden warming. Ocean deep-water temperatures dropped from 12°C, 50 million years ago, to 6°C, 30 million years ago, according to archives in deep-sea sediments (today, deep-sea waters are about 2°C). […] During the last 2 million years, the mean duration of the glacial periods was about 26,000 years, while that of the warm periods – interglacials – was about 27,000 years. Between 2.6 and 1.1 million years ago, a full cycle of glacial advance and retreat lasted about 41,000 years. During the past 1.2 million years, this cycle has lasted 100,000 years. Stable and radioactive isotopes play a crucial role in the reconstruction of the climatic history of our planet”.

Links:

CUORE (Cryogenic Underground Observatory for Rare Events).
Borexino.
Lawrence Livermore National Laboratory.
Marie Curie. Pierre Curie. Henri Becquerel. Wilhelm Röntgen. Joseph Thomson. Ernest Rutherford. Hans Geiger. Ernest Marsden. Niels Bohr.
Ruhmkorff coil.
Electroscope.
Pitchblende (uraninite).
Mache.
Polonium. Becquerel.
Radium.
Alpha decay. Beta decay. Gamma radiation.
Plum pudding model.
Spinthariscope.
Robert Boyle. John Dalton. Dmitri Mendeleev. Frederick Soddy. James Chadwick. Enrico Fermi. Lise Meitner. Otto Frisch.
Periodic Table.
Exponential decay. Decay chain.
Positron.
Particle accelerator. Cockcroft-Walton generator. Van de Graaff generator.
Barn (unit).
Nuclear fission.
Manhattan Project.
Chernobyl disaster. Fukushima Daiichi nuclear disaster.
Electron volt.
Thermoluminescent dosimeter.
Silicon diode detector.
Enhanced geothermal system.
Chicago Pile Number 1. Experimental Breeder Reactor 1. Obninsk Nuclear Power Plant.
Natural nuclear fission reactor.
Gas-cooled reactor.
Generation I reactors. Generation II reactor. Generation III reactor. Generation IV reactor.
Nuclear fuel cycle.
Accelerator-driven subcritical reactor.
Thorium-based nuclear power.
Small, sealed, transportable, autonomous reactor.
Fusion power. P-p (proton-proton) chain reaction. CNO cycle. Tokamak. ITER (International Thermonuclear Experimental Reactor).
Sterile insect technique.
Phase-contrast X-ray imaging. Computed tomography (CT). SPECT (Single-photon emission computed tomography). PET (positron emission tomography).
Boron neutron capture therapy.
Radiocarbon dating. Bomb pulse.
Radioactive tracer.
Radithor. The Radiendocrinator.
Radioisotope heater unit. Radioisotope thermoelectric generator. Seebeck effect.
Accelerator mass spectrometry.
Atomic bombings of Hiroshima and Nagasaki. Treaty on the Non-Proliferation of Nuclear Weapons. IAEA.
Nuclear terrorism.
Swiss light source. Synchrotron.
Chronology of the universe. Stellar evolution. S-process. R-process. Red giant. Supernova. White dwarf.
Victor Hess. Domenico Pacini. Cosmic ray.
Allende meteorite.
Age of the Earth. History of Earth. Geomagnetic reversal. Uranium-lead dating. Clair Cameron Patterson.
Glacials and interglacials.
Taung child. Lucy. Ardi. Ardipithecus kadabba. Acheulean tools. Java Man. Ötzi.
Argon-argon dating. Fission track dating.

November 28, 2017 Posted by | Archaeology, Astronomy, Biology, Books, Cancer/oncology, Chemistry, Engineering, Geology, History, Medicine, Physics | Leave a comment

Earth System Science

I decided not to rate this book. Some parts are great, some parts I didn’t think were very good.

I’ve added some quotes and links below. First a few links (I’ve tried not to add links here which I’ve also included in the quotes below):

Carbon cycle.
Origin of water on Earth.
Gaia hypothesis.
Albedo (climate and weather).
Snowball Earth.
Carbonate–silicate cycle.
Carbonate compensation depth.
Isotope fractionation.
CLAW hypothesis.
Mass-independent fractionation.
δ13C.
Great Oxygenation Event.
Acritarch.
Grypania.
Neoproterozoic.
Rodinia.
Sturtian glaciation.
Marinoan glaciation.
Ediacaran biota.
Cambrian explosion.
Quarternary.
Medieval Warm Period.
Little Ice Age.
Eutrophication.
Methane emissions.
Keeling curve.
CO2 fertilization effect.
Acid rain.
Ocean acidification.
Earth systems models.
Clausius–Clapeyron relation.
Thermohaline circulation.
Cryosphere.
The limits to growth.
Exoplanet Biosignature Gases.
Transiting Exoplanet Survey Satellite (TESS).
James Webb Space Telescope.
Habitable zone.
Kepler-186f.

A few quotes from the book:

“The scope of Earth system science is broad. It spans 4.5 billion years of Earth history, how the system functions now, projections of its future state, and ultimate fate. […] Earth system science is […] a deeply interdisciplinary field, which synthesizes elements of geology, biology, chemistry, physics, and mathematics. It is a young, integrative science that is part of a wider 21st-century intellectual trend towards trying to understand complex systems, and predict their behaviour. […] A key part of Earth system science is identifying the feedback loops in the Earth system and understanding the behaviour they can create. […] In systems thinking, the first step is usually to identify your system and its boundaries. […] what is part of the Earth system depends on the timescale being considered. […] The longer the timescale we look over, the more we need to include in the Earth system. […] for many Earth system scientists, the planet Earth is really comprised of two systems — the surface Earth system that supports life, and the great bulk of the inner Earth underneath. It is the thin layer of a system at the surface of the Earth […] that is the subject of this book.”

“Energy is in plentiful supply from the Sun, which drives the water cycle and also fuels the biosphere, via photosynthesis. However, the surface Earth system is nearly closed to materials, with only small inputs to the surface from the inner Earth. Thus, to support a flourishing biosphere, all the elements needed by life must be efficiently recycled within the Earth system. This in turn requires energy, to transform materials chemically and to move them physically around the planet. The resulting cycles of matter between the biosphere, atmosphere, ocean, land, and crust are called global biogeochemical cycles — because they involve biological, geological, and chemical processes. […] The global biogeochemical cycling of materials, fuelled by solar energy, has transformed the Earth system. […] It has made the Earth fundamentally different from its state before life and from its planetary neighbours, Mars and Venus. Through cycling the materials it needs, the Earth’s biosphere has bootstrapped itself into a much more productive state.”

“Each major element important for life has its own global biogeochemical cycle. However, every biogeochemical cycle can be conceptualized as a series of reservoirs (or ‘boxes’) of material connected by fluxes (or flows) of material between them. […] When a biogeochemical cycle is in steady state, the fluxes in and out of each reservoir must be in balance. This allows us to define additional useful quantities. Notably, the amount of material in a reservoir divided by the exchange flux with another reservoir gives the average ‘residence time’ of material in that reservoir with respect to the chosen process of exchange. For example, there are around 7 × 1016 moles of carbon dioxide (CO2) in today’s atmosphere, and photosynthesis removes around 9 × 1015 moles of CO2 per year, giving each molecule of CO2 a residence time of roughly eight years in the atmosphere before it is taken up, somewhere in the world, by photosynthesis. […] There are 3.8 × 1019 moles of molecular oxygen (O2) in today’s atmosphere, and oxidative weathering removes around 1 × 1013 moles of O2 per year, giving oxygen a residence time of around four million years with respect to removal by oxidative weathering. This makes the oxygen cycle […] a geological timescale cycle.”

“The water cycle is the physical circulation of water around the planet, between the ocean (where 97 per cent is stored), atmosphere, ice sheets, glaciers, sea-ice, freshwaters, and groundwater. […] To change the phase of water from solid to liquid or liquid to gas requires energy, which in the climate system comes from the Sun. Equally, when water condenses from gas to liquid or freezes from liquid to solid, energy is released. Solar heating drives evaporation from the ocean. This is responsible for supplying about 90 per cent of the water vapour to the atmosphere, with the other 10 per cent coming from evaporation on the land and freshwater surfaces (and sublimation of ice and snow directly to vapour). […] The water cycle is intimately connected to other biogeochemical cycles […]. Many compounds are soluble in water, and some react with water. This makes the ocean a key reservoir for several essential elements. It also means that rainwater can scavenge soluble gases and aerosols out of the atmosphere. When rainwater hits the land, the resulting solution can chemically weather rocks. Silicate weathering in turn helps keep the climate in a state where water is liquid.”

“In modern terms, plants acquire their carbon from carbon dioxide in the atmosphere, add electrons derived from water molecules to the carbon, and emit oxygen to the atmosphere as a waste product. […] In energy terms, global photosynthesis today captures about 130 terrawatts (1 TW = 1012 W) of solar energy in chemical form — about half of it in the ocean and about half on land. […] All the breakdown pathways for organic carbon together produce a flux of carbon dioxide back to the atmosphere that nearly balances photosynthetic uptake […] The surface recycling system is almost perfect, but a tiny fraction (about 0.1 per cent) of the organic carbon manufactured in photosynthesis escapes recycling and is buried in new sedimentary rocks. This organic carbon burial flux leaves an equivalent amount of oxygen gas behind in the atmosphere. Hence the burial of organic carbon represents the long-term source of oxygen to the atmosphere. […] the Earth’s crust has much more oxygen trapped in rocks in the form of oxidized iron and sulphur, than it has organic carbon. This tells us that there has been a net source of oxygen to the crust over Earth history, which must have come from the loss of hydrogen to space.”

“The oxygen cycle is relatively simple, because the reservoir of oxygen in the atmosphere is so massive that it dwarfs the reservoirs of organic carbon in vegetation, soils, and the ocean. Hence oxygen cannot get used up by the respiration or combustion of organic matter. Even the combustion of all known fossil fuel reserves can only put a small dent in the much larger reservoir of atmospheric oxygen (there are roughly 4 × 1017 moles of fossil fuel carbon, which is only about 1 per cent of the O2 reservoir). […] Unlike oxygen, the atmosphere is not the major surface reservoir of carbon. The amount of carbon in global vegetation is comparable to that in the atmosphere and the amount of carbon in soils (including permafrost) is roughly four times that in the atmosphere. Even these reservoirs are dwarfed by the ocean, which stores forty-five times as much carbon as the atmosphere, thanks to the fact that CO2 reacts with seawater. […] The exchange of carbon between the atmosphere and the land is largely biological, involving photosynthetic uptake and release by aerobic respiration (and, to a lesser extent, fires). […] Remarkably, when we look over Earth history there are fluctuations in the isotopic composition of carbonates, but no net drift up or down. This suggests that there has always been roughly one-fifth of carbon being buried in organic form and the other four-fifths as carbonate rocks. Thus, even on the early Earth, the biosphere was productive enough to support a healthy organic carbon burial flux.”

“The two most important nutrients for life are phosphorus and nitrogen, and they have very different biogeochemical cycles […] The largest reservoir of nitrogen is in the atmosphere, whereas the heavier phosphorus has no significant gaseous form. Phosphorus thus presents a greater recycling challenge for the biosphere. All phosphorus enters the surface Earth system from the chemical weathering of rocks on land […]. Phosphorus is concentrated in rocks in grains or veins of the mineral apatite. Natural selection has made plants on land and their fungal partners […] very effective at acquiring phosphorus from rocks, by manufacturing and secreting a range of organic acids that dissolve apatite. […] The average terrestrial ecosystem recycles phosphorus roughly fifty times before it is lost into freshwaters. […] The loss of phosphorus from the land is the ocean’s gain, providing the key input of this essential nutrient. Phosphorus is stored in the ocean as phosphate dissolved in the water. […] removal of phosphorus into the rock cycle balances the weathering of phosphorus from rocks on land. […] Although there is a large reservoir of nitrogen in the atmosphere, the molecules of nitrogen gas (N2) are extremely strongly bonded together, making nitrogen unavailable to most organisms. To split N2 and make nitrogen biologically available requires a remarkable biochemical feat — nitrogen fixation — which uses a lot of energy. In the ocean the dominant nitrogen fixers are cyanobacteria with a direct source of energy from sunlight. On land, various plants form a symbiotic partnership with nitrogen fixing bacteria, making a home for them in root nodules and supplying them with food in return for nitrogen. […] Nitrogen fixation and denitrification form the major input and output fluxes of nitrogen to both the land and the ocean, but there is also recycling of nitrogen within ecosystems. […] There is an intimate link between nutrient regulation and atmospheric oxygen regulation, because nutrient levels and marine productivity determine the source of oxygen via organic carbon burial. However, ocean nutrients are regulated on a much shorter timescale than atmospheric oxygen because their residence times are much shorter—about 2,000 years for nitrogen and 20,000 years for phosphorus.”

“[F]orests […] are vulnerable to increases in oxygen that increase the frequency and ferocity of fires. […] Combustion experiments show that fires only become self-sustaining in natural fuels when oxygen reaches around 17 per cent of the atmosphere. Yet for the last 370 million years there is a nearly continuous record of fossil charcoal, indicating that oxygen has never dropped below this level. At the same time, oxygen has never risen too high for fires to have prevented the slow regeneration of forests. The ease of combustion increases non-linearly with oxygen concentration, such that above 25–30 per cent oxygen (depending on the wetness of fuel) it is hard to see how forests could have survived. Thus oxygen has remained within 17–30 per cent of the atmosphere for at least the last 370 million years.”

“[T]he rate of silicate weathering increases with increasing CO2 and temperature. Thus, if something tends to increase CO2 or temperature it is counteracted by increased CO2 removal by silicate weathering. […] Plants are sensitive to variations in CO2 and temperature, and together with their fungal partners they greatly amplify weathering rates […] the most pronounced change in atmospheric CO2 over Phanerozoic time was due to plants colonizing the land. This started around 470 million years ago and escalated with the first forests 370 million years ago. The resulting acceleration of silicate weathering is estimated to have lowered the concentration of atmospheric CO2 by an order of magnitude […], and cooled the planet into a series of ice ages in the Carboniferous and Permian Periods.”

“The first photosynthesis was not the kind we are familiar with, which splits water and spits out oxygen as a waste product. Instead, early photosynthesis was ‘anoxygenic’ — meaning it didn’t produce oxygen. […] It could have used a range of compounds, in place of water, as a source of electrons with which to fix carbon from carbon dioxide and reduce it to sugars. Potential electron donors include hydrogen (H2) and hydrogen sulphide (H2S) in the atmosphere, or ferrous iron (Fe2+) dissolved in the ancient oceans. All of these are easier to extract electrons from than water. Hence they require fewer photons of sunlight and simpler photosynthetic machinery. The phylogenetic tree of life confirms that several forms of anoxygenic photosynthesis evolved very early on, long before oxygenic photosynthesis. […] If the early biosphere was fuelled by anoxygenic photosynthesis, plausibly based on hydrogen gas, then a key recycling process would have been the biological regeneration of this gas. Calculations suggest that once such recycling had evolved, the early biosphere might have achieved a global productivity up to 1 per cent of the modern marine biosphere. If early anoxygenic photosynthesis used the supply of reduced iron upwelling in the ocean, then its productivity would have been controlled by ocean circulation and might have reached 10 per cent of the modern marine biosphere. […] The innovation that supercharged the early biosphere was the origin of oxygenic photosynthesis using abundant water as an electron donor. This was not an easy process to evolve. To split water requires more energy — i.e. more high-energy photons of sunlight — than any of the earlier anoxygenic forms of photosynthesis. Evolution’s solution was to wire together two existing ‘photosystems’ in one cell and bolt on the front of them a remarkable piece of biochemical machinery that can rip apart water molecules. The result was the first cyanobacterial cell — the ancestor of all organisms performing oxygenic photosynthesis on the planet today. […] Once oxygenic photosynthesis had evolved, the productivity of the biosphere would no longer have been restricted by the supply of substrates for photosynthesis, as water and carbon dioxide were abundant. Instead, the availability of nutrients, notably nitrogen and phosphorus, would have become the major limiting factors on the productivity of the biosphere — as they still are today.” [If you’re curious to know more about how that fascinating ‘biochemical machinery’ works, this is a great book on these and related topics – US].

“On Earth, anoxygenic photosynthesis requires one photon per electron, whereas oxygenic photosynthesis requires two photons per electron. On Earth it took up to a billion years to evolve oxygenic photosynthesis, based on two photosystems that had already evolved independently in different types of anoxygenic photosynthesis. Around a fainter K- or M-type star […] oxygenic photosynthesis is estimated to require three or more photons per electron — and a corresponding number of photosystems — making it harder to evolve. […] However, fainter stars spend longer on the main sequence, giving more time for evolution to occur.”

“There was a lot more energy to go around in the post-oxidation world, because respiration of organic matter with oxygen yields an order of magnitude more energy than breaking food down anaerobically. […] The revolution in biological complexity culminated in the ‘Cambrian Explosion’ of animal diversity 540 to 515 million years ago, in which modern food webs were established in the ocean. […] Since then the most fundamental change in the Earth system has been the rise of plants on land […], beginning around 470 million years ago and culminating in the first global forests by 370 million years ago. This doubled global photosynthesis, increasing flows of materials. Accelerated chemical weathering of the land surface lowered atmospheric carbon dioxide levels and increased atmospheric oxygen levels, fully oxygenating the deep ocean. […] Although grasslands now cover about a third of the Earth’s productive land surface they are a geologically recent arrival. Grasses evolved amidst a trend of declining atmospheric carbon dioxide, and climate cooling and drying, over the past forty million years, and they only became widespread in two phases during the Miocene Epoch around seventeen and six million years ago. […] Since the rise of complex life, there have been several mass extinction events. […] whilst these rolls of the extinction dice marked profound changes in evolutionary winners and losers, they did not fundamentally alter the operation of the Earth system.” [If you’re interested in this kind of stuff, the evolution of food webs and so on, Herrera et al.’s wonderful book is a great place to start – US]

“The Industrial Revolution marks the transition from societies fuelled largely by recent solar energy (via biomass, water, and wind) to ones fuelled by concentrated ‘ancient sunlight’. Although coal had been used in small amounts for millennia, for example for iron making in ancient China, fossil fuel use only took off with the invention and refinement of the steam engine. […] With the Industrial Revolution, food and biomass have ceased to be the main source of energy for human societies. Instead the energy contained in annual food production, which supports today’s population, is at fifty exajoules (1 EJ = 1018 joules), only about a tenth of the total energy input to human societies of 500 EJ/yr. This in turn is equivalent to about a tenth of the energy captured globally by photosynthesis. […] solar energy is not very efficiently converted by photosynthesis, which is 1–2 per cent efficient at best. […] The amount of sunlight reaching the Earth’s land surface (2.5 × 1016 W) dwarfs current total human power consumption (1.5 × 1013 W) by more than a factor of a thousand.”

“The Earth system’s primary energy source is sunlight, which the biosphere converts and stores as chemical energy. The energy-capture devices — photosynthesizing organisms — construct themselves out of carbon dioxide, nutrients, and a host of trace elements taken up from their surroundings. Inputs of these elements and compounds from the solid Earth system to the surface Earth system are modest. Some photosynthesizers have evolved to increase the inputs of the materials they need — for example, by fixing nitrogen from the atmosphere and selectively weathering phosphorus out of rocks. Even more importantly, other heterotrophic organisms have evolved that recycle the materials that the photosynthesizers need (often as a by-product of consuming some of the chemical energy originally captured in photosynthesis). This extraordinary recycling system is the primary mechanism by which the biosphere maintains a high level of energy capture (productivity).”

“[L]ike all stars on the ‘main sequence’ (which generate energy through the nuclear fusion of hydrogen into helium), the Sun is burning inexorably brighter with time — roughly 1 per cent brighter every 100 million years — and eventually this will overheat the planet. […] Over Earth history, the silicate weathering negative feedback mechanism has counteracted the steady brightening of the Sun by removing carbon dioxide from the atmosphere. However, this cooling mechanism is near the limits of its operation, because CO2 has fallen to limiting levels for the majority of plants, which are key amplifiers of silicate weathering. Although a subset of plants have evolved which can photosynthesize down to lower CO2 levels [the author does not go further into this topic, but here’s a relevant link – US], they cannot draw CO2 down lower than about 10 ppm. This means there is a second possible fate for life — running out of CO2. Early models projected either CO2 starvation or overheating […] occurring about a billion years in the future. […] Whilst this sounds comfortingly distant, it represents a much shorter future lifespan for the Earth’s biosphere than its past history. Earth’s biosphere is entering its old age.”

September 28, 2017 Posted by | Astronomy, Biology, Books, Botany, Chemistry, Geology, Paleontology, Physics | Leave a comment

Detecting Cosmic Neutrinos with IceCube at the Earth’s South Pole

I thought there were a bit too many questions/interruptions for my taste, mainly because you can’t really hear the questions posed by the members of the audience, but aside from that it’s a decent lecture. I’ve added a few links below which covers some of the topics discussed in the lecture.

Neutrino astronomy.
Antarctic Impulse Transient Antenna (ANITA).
Hydrophone.
Neutral pion decays.
IceCube Neutrino Observatory.
Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector (Science).
Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube.
Notes on isotropy.
Measuring the flavor ratio of astrophysical neutrinos.
Blazar.
Supernova 1987A neutrino emissions.

July 18, 2017 Posted by | Astronomy, Lectures, Physics, Studies | Leave a comment

Gravity

“The purpose of this book is to give the reader a very brief introduction to various different aspects of gravity. We start by looking at the way in which the theory of gravity developed historically, before moving on to an outline of how it is understood by scientists today. We will then consider the consequences of gravitational physics on the Earth, in the Solar System, and in the Universe as a whole. The final chapter describes some of the frontiers of current research in theoretical gravitational physics.”

I was not super impressed by this book, mainly because the level of coverage was not quite as high as has been the level of coverage of some of the other physics books in the OUP – A Brief Introduction series. But it’s definitely an okay book about this topic, I was much closer to a three star rating on goodreads than a one star rating, and I did learn some new things from it. I might still change my mind about my two-star rating of the book.

I’ll cover the book the same way I’ve covered some of the other books in the series; I’ll post some quotes with some observations of interest, and then I’ll add some supplementary links towards the end of the post. ‘As usual’ (see e.g. also the introductory remarks to this post) I’ll add links to topics even if I have previously, perhaps on multiple occasions, added the same links when covering other books – the idea behind the links is to remind me – and indicate to you – which kinds of topics are covered in the book.

“[O]ver large distances it is gravity that dominates. This is because gravity is only ever attractive and because it can never be screened. So while most large objects are electrically neutral, they can never be gravitationally neutral. The gravitational force between objects with mass always acts to pull those objects together, and always increases as they become more massive.”

“The challenges involved in testing Newton’s law of gravity in the laboratory arise principally due to the weakness of the gravitational force compared to the other forces of nature. This weakness means that even the smallest residual electric charges on a piece of experimental equipment can totally overwhelm the gravitational force, making it impossible to measure. All experimental equipment therefore needs to be prepared with the greatest of care, and the inevitable electric charges that sneak through have to be screened by introducing metal shields that reduce their influence. This makes the construction of laboratory experiments to test gravity extremely difficult, and explains why we have so far only probed gravity down to scales a little below 1mm (this can be compared to around a billionth of a billionth of a millimetre for the electric force).”

“There are a large number of effects that result from Einstein’s theory. […] [T]he anomalous orbit of the planet Mercury; the bending of starlight around the Sun; the time delay of radio signals as they pass by the Sun; and the behaviour of gyroscopes in orbit around the Earth […] are four of the most prominent relativistic gravitational effects that can be observed in the Solar System.” [As an aside, I only yesterday watched the first ~20 minutes of the first of Nima Arkani-Hamed’s lectures on the topic of ‘Robustness of GR. Attempts to Modify Gravity’, which was recently uploaded on the IAS youtube channel, before I concluded that I was probably not going to be able to follow the lecture – I would have been able to tell Hamed, on account of having read this book, that the name of the ‘American’ astronomer whose name eluded him early on in the lecture (5 minutes in or so) was John Couch Adams (who was in fact British, not American)].

“[T]he overall picture we are left with is very encouraging for Einstein’s theory of gravity. The foundational assumptions of this theory, such as the constancy of mass and the Universality of Free Fall, have been tested to extremely high accuracy. The inverse square law that formed the basis of Newton’s theory, and which is a good first approximation to Einstein’s theory, has been tested from the sub-millimetre scale all the way up to astrophysical scales. […] We […] have very good evidence that Newton’s inverse square law is a good approximation to gravity over a wide range of distance scales. These scales range from a fraction of a millimetre, to hundreds of millions of metres. […] We are also now in possession of a number of accurate experimental results that probe the tiny, subtle effects that result from Einstein’s theory specifically. This data allows us direct experimental insight into the relationship between matter and the curvature of space-time, and all of it is so far in good agreement with Einstein’s predictions.”

“[A]ll of the objects in the Solar System are, relatively speaking, rather slow moving and not very dense. […] If we set our sights a little further though, we can find objects that are much more extreme than anything we have available nearby. […] observations of them have allowed us to explore gravity in ways that are simply impossible in our own Solar System. The extreme nature of these objects amplifies the effects of Einstein’s theory […] Just as the orbit of Mercury precesses around the Sun so too the neutron stars in the Hulse–Taylor binary system precess around each other. To compare with similar effects in our Solar System, the orbit of the Hulse–Taylor pulsar precesses as much in a day as Mercury does in a century.”

“[I]n Einstein’s theory, gravity is due to the curvature of space-time. Massive objects like stars and planets deform the shape of the space-time in which they exist, so that other bodies that move through it appear to have their trajectories bent. It is the mistaken interpretation of the motion of these bodies as occurring in a flat space that leads us to infer that there is a force called gravity. In fact, it is just the curvature of space-time that is at work. […] The relevance of this for gravitational waves is that if a group of massive bodies are in relative motion […], then the curvature of the space-time in which they exist is not usually fixed in time. The curvature of the space-time is set by the massive bodies, so if the bodies are in motion, the curvature of space-time should be expected to be constantly changing. […] in Einstein’s theory, space-time is a dynamical entity. As an example of this, consider the supernovae […] Before their cores collapse, leading to catastrophic explosion, they are relatively stable objects […] After they explode they settle down to a neutron star or a black hole, and once again return to a relatively stable state, with a gravitational field that doesn’t change much with time. During the explosion, however, they eject huge amounts of mass and energy. Their gravitational field changes rapidly throughout this process, and therefore so does the curvature of the space-time around them.

Like any system that is pushed out of equilibrium and made to change rapidly, this causes disturbances in the form of waves. A more down-to-earth example of a wave is what happens when you throw a stone into a previously still pond. The water in the pond was initially in a steady state, but the stone causes a rapid change in the amount of water at one point. The water in the pond tries to return to its tranquil initial state, which results in the propagation of the disturbance, in the form of ripples that move away from the point where the stone landed. Likewise, a loud noise in a previously quiet room originates from a change in air pressure at a point (e.g. a stereo speaker). The disturbance in the air pressure propagates outwards as a pressure wave as the air tries to return to a stable state, and we perceive these pressure waves as sound. So it is with gravity. If the curvature of space-time is pushed out of equilibrium, by the motion of mass or energy, then this disturbance travels outwards as waves. This is exactly what occurs when a star collapses and its outer envelope is ejected by the subsequent explosion. […] The speed with which waves propagate usually depends on the medium through which they travel. […] The medium for gravitational waves is space-time itself, and according to Einstein’s theory, they propagate at exactly the same speed as light. […] [If a gravitational wave passes through a cloud of gas,] the gravitational wave is not a wave in the gas, but rather a propagating disturbance in the space-time in which the gas exists. […] although the atoms in the gas might be closer together (or further apart) than they were before the wave passed through them, it is not because the atoms have moved, but because the amount of space between them has been decreased (or increased) by the wave. The gravitational wave changes the distance between objects by altering how much space there is in between them, not by moving them within a fixed space.”

“If we look at the right galaxies, or collect enough data, […] we can use it to determine the gravitational fields that exist in space. […] we find that there is more gravity than we expected there to be, from the astrophysical bodies that we can see directly. There appears to be a lot of mass, which bends light via its gravitational field, but that does not interact with the light in any other way. […] Moving to even smaller scales, we can look at how individual galaxies behave. It has been known since the 1970s that the rate at which galaxies rotate is too high. What I mean is that if the only source of gravity in a galaxy was the visible matter within it (mostly stars and gas), then any galaxy that rotated as fast as those we see around us would tear itself apart. […] That they do not fly apart, despite their rapid rotation, strongly suggests that the gravitational fields within them are larger than we initially suspected. Again, the logical conclusion is that there appears to be matter in galaxies that we cannot see but which contributes to the gravitational field. […] Many of the different physical processes that occur in the Universe lead to the same surprising conclusion: the gravitational fields we infer, by looking at the Universe around us, require there to be more matter than we can see with our telescopes. Beyond this, in order for the largest structures in the Universe to have evolved into their current state, and in order for the seeds of these structures to look the way they do in the CMB, this new matter cannot be allowed to interact with light at all (or, at most, interact only very weakly). This means that not only do we not see this matter, but that it cannot be seen at all using light, because light is required to pass straight through it. […] The substance that gravitates in this way but cannot be seen is referred to as dark matter. […] There needs to be approximately five times as much dark matter as there is ordinary matter. […] the evidence for the existence of dark matter comes from so many different sources that it is hard to argue with it.”

“[T]here seems to be a type of anti-gravity at work when we look at how the Universe expands. This anti-gravity is required in order to force matter apart, rather than pull it together, so that the expansion of the Universe can accelerate. […] The source of this repulsive gravity is referred to by scientists as dark energy […] our current overall picture of the Universe is as follows: only around 5 per cent of the energy in the Universe is in the form of normal matter; about 25 per cent is thought to be in the form of the gravitationally attractive dark matter; and the remaining 70 per cent is thought to be in the form of the gravitationally repulsive dark energy. These proportions, give or take a few percentage points here and there, seem sufficient to explain all astronomical observations that have been made to date. The total of all three of these types of energy, added together, also seems to be just the right amount to make space flat […] The flat Universe, filled with mostly dark energy and dark matter, is usually referred to as the Concordance Model of the Universe. Among astronomers, it is now the consensus view that this is the model of the Universe that best fits their data.”

 

The universality of free fall.
Galileo’s Leaning Tower of Pisa experiment.
Isaac Newton/Philosophiæ Naturalis Principia Mathematica/Newton’s law of universal gravitation.
Kepler’s laws of planetary motion.
Luminiferous aether.
Special relativity.
Spacetime.
General relativity.
Spacetime curvature.
Pound–Rebka experiment.
Gravitational time dilation.
Gravitational redshift space-probe experiment (Essot & Levine).
Michelson–Morley experiment.
Hughes–Drever experiment.
Tests of special relativity.
Eötvös experiment.
Torsion balance.
Cavendish experiment.
LAGEOS.
Interferometry.
Geodetic precession.
Frame-dragging.
Gravity Probe B.
White dwarf/neutron star/supernova/gravitational collapse/black hole.
Hulse–Taylor binary.
Arecibo Observatory.
PSR J1738+0333.
Gravitational wave.
Square Kilometre Array.
PSR J0337+1715.
LIGO.
Weber bar.
MiniGrail.
Laser Interferometer Space Antenna.
Edwin Hubble/Hubble’s Law.
Physical cosmology.
Alexander Friedmann/Friedmann equations.
Cosmological constant.
Georges Lemaître.
Ralph Asher Alpher/Robert Hermann/CMB/Arno Penzias/Robert Wilson.
Cosmic Background Explorer.
The BOOMERanG experiment.
Millimeter Anisotropy eXperiment IMaging Array.
Wilkinson Microwave Anisotropy Probe.
High-Z Supernova Search Team.
CfA Redshift Survey/CfA2 Great Wall/2dF Galaxy Redshift Survey/Sloan Digital Sky Survey/Sloan Great Wall.
Gravitational lensing.
Inflation (cosmology).
Lambda-CDM model.
BICEP2.
Large Synoptic Survey Telescope.
Grand Unified Theory.
Renormalization (quantum theory).
String theory.
Loop quantum gravity.
Unruh effect.
Hawking radiation.
Anthropic principle.

July 15, 2017 Posted by | Astronomy, Books, cosmology, Physics | Leave a comment

Probing the Early Universe through Observations of the Cosmic Microwave Background

This lecture/talk is a few years old, but it was only made public on the IAS channel last week (…along with a lot of other lectures – the IAS channel has added a lot of stuff recently, including more than 150 lectures within the last week or so; so if you’re interested you should go have a look).

Below the lecture I have added a few links with stuff (wiki-articles and a few papers) related to the topics covered in the lecture. I didn’t read those links, but I skimmed them (and a few others, which I subsequently decided not to include as their coverage did not overlap sufficiently with the stuff covered in the lecture) and decided to add them in order to remind myself what kind of stuff was included in the lecture/allow others to infer what kind of stuff might be included in the lecture. The links naturally go into a lot more detail than does the lecture, but these are the sort of topics discussed/included.

The lecture is long (90 minutes + a short Q&A), but it was interesting enough for me to watch all of it. The lecturer displays a very high level of speech disfluency throughout the lecture, in the sense that I might not be surprised if I were told that the most commonly word encountered during this lecture was ‘um’ or ‘uh’, rather than more commonly encountered mode words like ‘the’, but you get used to it (at least I managed to sort of ‘tune it out’ after a while). I should caution that there’s a short ‘jump’ very early on in the lecture (at the 2 minute mark or so) where a small amount of frames were apparently dropped, but that should not scare you away from watching the lecture; that frame drop is the only one of its kind during the lecture, aside from a similar brief ‘jump’ around the 1 hour 9 minute mark.

Some links:

Astronomical interferometer.
Polarimetry.
Bolometer.
Fourier transform.
Boomerang : A Balloon-borne Millimeter Wave Telescope and Total Power Receiver for Mapping Anisotropy in the Cosmic Microwave Background.
Observations of the Temperature and Polarization Anisotropies with Boomerang 2003.
THE COBE DIFFUSE INFRARED BACKGROUND EXPERIMENT SEARCH FOR THE COSMIC INFRARED BACKGROUND: I. LIMITS AND DETECTIONS.
Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope.
Secondary anisotropies of the CMB (review article).
Planck early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample.
Sunyaev–Zel’dovich effect.
A CMB Polarization Primer.
MEASUREMENT OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA FROM TWO YEARS OF BICEP DATA.
Spider: a balloon-borne CMB polarimeter for large angular scales.

July 13, 2017 Posted by | Astronomy, cosmology, Lectures, Physics | Leave a comment

Stars

“Every atom of our bodies has been part of a star, and every informed person should know something of how the stars evolve.”

I gave the book three stars on goodreads. At times it’s a bit too popular-science-y for me, and I think the level of coverage is a little bit lower than that of some of the other physics books in the ‘A Very Brief Introduction‘ series by Oxford University Press, but on the other hand it did teach me some new things and explained some other things I knew about but did not fully understand before and I’m well aware that it can be really hard to strike the right balance when writing books like these. I don’t like it when authors employ analogies instead of equations to explain stuff, but on the other hand I’ve seen some of the relevant equations before, e.g. in the context of IAS lectures, so I was okay with skipping some of the math because I know how the math here can really blow up in your face fast – and it’s not like this book has no math or equations, but I think it’s the kind of math most people should be able to deal with. It’s a decent introduction to the topic, and I must admit I have yet really to be significantly disappointed in a book from the physics part of this OUP series – they’re good books, readable and interesting.

Below I have added some quotes and observations from the book, as well as some relevant links to material or people covered in the book. Some of the links below I have also added previously when covering other books in the physics series, but I do not really care about that as I try to cover each book separately; the two main ideas behind adding links of this kind are: 1) to remind me which topics (…which I was unable to cover in detail in the post using quotes, because there’s too much stuff to cover in the book for that to make sense…) were covered in the book, and: 2) to give people who might be interested in reading the book an idea of which topics are covered therein; if I neglected to add relevant links simply because such topics were also covered in other books I’ve covered here, the link collection would not accomplish what I’d like it to accomplish. The link collection was gathered while I was reading the book (I was bookmarking relevant wiki articles along the way while reading the book), whereas the quotes included in the post were only added to the post after I had finished adding the links from the link collection; I am well aware that some topics covered in the quotes of the book are also covered in the link collection, but I didn’t care enough about this ‘double coverage of topics’ to remove those links that refer to material also covered in my quotes in this post from the link collection.

I think the part of the book coverage related to finding good quotes to include in this post was harder than it has been in the context of some of the other physics books I’ve covered recently, because the author goes into quite some detail explaining some specific dynamics of star evolution which are not easy to boil down to a short quote which is still meaningful to people who do not know the context. The fact that he does go into those details was of course part of the reason why I liked the book.

“[W]e cannot consider heat energy in isolation from the other large energy store that the Sun has – gravity. Clearly, gravity is an energy source, since if it were not for the resistance of gas pressure, it would make all the Sun’s gas move inwards at high speed. So heat and gravity are both potential sources of energy, and must be related by the need to keep the Sun in equilibrium. As the Sun tries to cool down, energy must be swapped between these two forms to keep the Sun in balance […] the heat energy inside the Sun is not enough to spread all of its contents out over space and destroy it as an identifiable object. The Sun is gravitationally bound – its heat energy is significant, but cannot supply enough energy to loosen gravity’s grip, and unbind the Sun. This means that when pressure balances gravity for any system (as in the Sun), the total heat energy T is always slightly less than that needed (V) to disperse it. In fact, it turns out to be exactly half of what would be needed for this dispersal, so that 2T + V = 0, or V = −2 T. The quantities T and V have opposite signs, because energy has to be supplied to overcome gravity, that is, you have to use T to try to cancel some of V. […] you need to supply energy to a star in order to overcome its gravity and disperse all of its gas to infinity. In line with this, the star’s total energy (thermal plus gravitational) is E = T + V = −T, that is, the total energy is minus its thermal energy, and so is itself negative. That is, a star is a gravitationally bound object. Whenever the system changes slowly enough that pressure always balances gravity, these two energies always have to be in this 1:2 ratio. […] This reasoning shows that cooling, shrinking, and heating up all go together, that is, as the Sun tries to cool down, its interior heats up. […] Because E = –T, when the star loses energy (by radiating), making its total energy E more negative, the thermal energy T gets more positive, that is, losing energy makes the star heat up. […] This result, that stars heat up when they try to cool, is central to understanding why stars evolve.”

“[T]he whole of chemistry is simply the science of electromagnetic interaction of atoms with each other. Specifically, chemistry is what happens when electrons stick atoms together to make molecules. The electrons doing the sticking are the outer ones, those furthest from the nucleus. The physical rules governing the arrangement of electrons around the nucleus mean that atoms divide into families characterized by their outer electron configurations. Since the outer electrons specify the chemical properties of the elements, these families have similar chemistry. This is the origin of the periodic table of the elements. In this sense, chemistry is just a specialized branch of physics. […] atoms can combine, or react, in many different ways. A chemical reaction means that the electrons sticking atoms together are rearranging themselves. When this happens, electromagnetic energy may be released, […] or an energy supply may be needed […] Just as we measured gravitational binding energy as the amount of energy needed to disperse a body against the force of its own gravity, molecules have electromagnetic binding energies measured by the energies of the orbiting electrons holding them together. […] changes of electronic binding only produce chemical energy yields, which are far too small to power stars. […] Converting hydrogen into helium is about 15 million times more effective than burning oil. This is because strong nuclear forces are so much more powerful than electromagnetic forces.”

“[T]here are two chains of reactions which can convert hydrogen to helium. The rate at which they occur is in both cases quite sensitive to the gas density, varying as its square, but extremely sensitive to the gas temperature […] If the temperature is below a certain threshold value, the total energy output from hydrogen burning is completely negligible. If the temperature rises only slightly above this threshold, the energy output becomes enormous. It becomes so enormous that the effect of all this energy hitting the gas in the star’s centre is life-threatening to it. […] energy is related to mass. So being hit by energy is like being hit by mass: luminous energy exerts a pressure. For a luminosity above a certain limiting value related to the star’s mass, the pressure will blow it apart. […] The central temperature of the Sun, and stars like it, must be almost precisely at the threshold value. It is this temperature sensitivity which fixes the Sun’s central temperature at the value of ten million degrees […] All stars burning hydrogen in their centres must have temperatures close to this value. […] central temperature [is] roughly proportional to the ratio of mass to radius [and this means that] the radius of a hydrogen-burning star is approximately proportional to its mass […] You might wonder how the star ‘knows’ that its radius is supposed to have this value. This is simple: if the radius is too large, the star’s central temperature is too low to produce any nuclear luminosity at all. […] the star will shrink in an attempt to provide the luminosity from its gravitational binding energy. But this shrinking is just what it needs to adjust the temperature in its centre to the right value to start hydrogen burning and produce exactly the right luminosity. Similarly, if the star’s radius is slightly too small, its nuclear luminosity will grow very rapidly. This increases the radiation pressure, and forces the star to expand, again back to the right radius and so the right luminosity. These simple arguments show that the star’s structure is self-adjusting, and therefore extremely stable […] The basis of this stability is the sensitivity of the nuclear luminosity to temperature and so radius, which controls it like a thermostat.”

“Hydrogen burning produces a dense and growing ball of helium at the star’s centre. […] the star has a weight problem to solve – the helium ball feels its own weight, and that of all the rest of the star as well. A similar effect led to the ignition of hydrogen in the first place […] we can see what happens as the core mass grows. Let’s imagine that the core mass has doubled. Then the core radius also doubles, and its volume grows by a factor 2 × 2 × 2 = 8. This is a bigger factor than the mass growth, so the density is 2/(2 × 2 × 2) = 1/4 of its original value. We end with the surprising result that as the helium core mass grows in time, its central number density drops. […] Because pressure is proportional to density, the central pressure of the core drops also […] Since the density of the hydrogen envelope does not change over time, […] the helium core becomes less and less able to cope with its weight problem as its mass increases. […] The end result is that once the helium core contains more than about 10% of the star’s mass, its pressure is too low to support the weight of the star, and things have to change drastically. […] massive stars have much shorter main-sequence lifetimes, decreasing like the inverse square of their masses […] A star near the minimum main-sequence mass of one-tenth of the Sun’s has an unimaginably long lifetime of almost 1013 years, nearly a thousand times the Sun’s. All low-mass stars are still in the first flush of youth. This is the fundamental fact of stellar life: massive stars have short lives, and low-mass stars live almost forever – certainly far longer than the current age of the Universe.”

“We have met all three […] timescales [see links below – US] for the Sun. The nuclear time is ten billion years, the thermal timescale is thirty million years, and the dynamical one […] just half an hour. […] Each timescale says how long the star takes to react to changes of the given type. The dynamical time tells us that if we mess up the hydrostatic balance between pressure and weight, the star will react by moving its mass around for a few dynamical times (in the Sun’s case, a few hours) and then settle down to a new state in which pressure and weight are in balance. And because this time is so short compared with the thermal time, the stellar material will not have lost or gained any significant amount of heat, but simply carried this around […] although the star quickly finds a new hydrostatic equilibrium, this will not correspond to thermal equilibrium, where heat moves smoothly outwards through the star at precisely the rate determined by the nuclear reactions deep in the centre. Instead, some bits of the star will be too cool to pass all this heat on outwards, and some will be too hot to absorb much of it. Over a thermal timescale (a few tens of millions of years in the Sun), the cool parts will absorb the extra heat they need from the stellar radiation field, and the hot parts rid themselves of the excess they have, until we again reach a new state of thermal equilibrium. Finally, the nuclear timescale tells us the time over which the star synthesizes new chemical elements, radiating the released energy into space.”

“[S]tars can end their lives in just one of three possible ways: white dwarf, neutron star, or black hole.”

“Stars live a long time, but must eventually die. Their stores of nuclear energy are finite, so they cannot shine forever. […] they are forced onwards through a succession of evolutionary states because the virial theorem connects gravity with thermodynamics and prevents them from cooling down. So main-sequence dwarfs inexorably become red giants, and then supergiants. What breaks this chain? Its crucial link is that the pressure supporting a star depends on how hot it is. This link would snap if the star was instead held up by a pressure which did not care about its heat content. Finally freed from the demand to stay hot to support itself, a star like this would slowly cool down and die. This would be an endpoint for stellar evolution. […] Electron degeneracy pressure does not depend on temperature, only density. […] one possible endpoint of stellar evolution arises when a star is so compressed that electron degeneracy is its main form of pressure. […] [Once] the star is a supergiant […] a lot of its mass is in a hugely extended envelope, several hundred times the Sun’s radius. Because of this vast size, the gravity tying the envelope to the core is very weak. […] Even quite small outward forces can easily overcome this feeble pull and liberate mass from the envelope, so a lot of the star’s mass is blown out into space. Eventually, almost the entire remaining envelope is ejected as a roughly spherical cloud of gas. The core quickly exhausts the thin shell of nuclear-burning material on its surface. Now gravity makes the core contract in on itself and become denser, increasing the electron degeneracy pressure further. The core ends as an extremely compact star, with a radius similar to the Earth’s, but a mass similar to the Sun, supported by this pressure. This is a white dwarf. […] Even though its surface is at least initially hot, its small surface means that it is faint. […] White dwarfs cannot start nuclear reactions, so eventually they must cool down and become dark, cold, dead objects. But before this happens, they still glow from the heat energy left over from their earlier evolution, slowly getting fainter. Astronomers observe many white dwarfs in the sky, suggesting that this is how a large fraction of all stars end their lives. […] Stars with an initial mass more than about seven times the Sun’s cannot end as white dwarfs.”

“In many ways, a neutron star is a vastly more compact version of a white dwarf, with the fundamental difference that its pressure arises from degenerate neutrons, not degenerate electrons. One can show that the ratio of the two stellar radii, with white dwarfs about one thousand times bigger than the 10 kilometres of a neutron star, is actually just the ratio of neutron to electron mass.”

“Most massive stars are not isolated, but part of a binary system […]. If one is a normal star, and the other a neutron star, and the binary is not very wide, there are ways for gas to fall from the normal star on to the neutron star. […] Accretion on to very compact objects like neutron stars almost always occurs through a disc, since the gas that falls in always has some rotation. […] a star’s luminosity cannot be bigger than the Eddington limit. At this limit, the pressure of the radiation balances the star’s gravity at its surface, so any more luminosity blows matter off the star. The same sort of limit must apply to accretion: if this tries to make too high a luminosity, radiation pressure will tend to blow away the rest of the gas that is trying to fall in, and so reduce the luminosity until it is below the limit. […] a neutron star is only 10 kilometres in radius, compared with the 700,000 kilometres of the Sun. This can only happen if this very small surface gets very hot. The surface of a healthily accreting neutron star reaches about 10 million degrees, compared with the 6,000 or so of the Sun. […] The radiation from such intensely hot surfaces comes out at much shorter wavelengths than the visible emission from the Sun – the surfaces of a neutron star and its accretion disc emit photons that are much more energetic than those of visible light. Accreting neutron stars and black holes make X-rays.”

“[S]tar formation […] is harder to understand than any other part of stellar evolution. So we use our knowledge of the later stages of stellar evolution to help us understand star formation. Working backwards in this way is a very common procedure in astronomy […] We know much less about how stars form than we do about any later part of their evolution. […] The cyclic nature of star formation, with stars being born from matter chemically enriched by earlier generations, and expelling still more processed material into space as they die, defines a cosmic epoch – the epoch of stars. The end of this epoch will arrive only when the stars have turned all the normal matter of the Universe into iron, and left it locked in dead remnants such as black holes.”

Stellar evolution.
Gustav Kirchhoff.
Robert Bunsen.
Joseph von Fraunhofer.
Spectrograph.
Absorption spectroscopy.
Emission spectrum.
Doppler effect.
Parallax.
Stellar luminosity.
Cecilia Payne-Gaposchkin.
Ejnar Hertzsprung/Henry Norris Russell/Hertzsprung–Russell diagram.
Red giant.
White dwarf (featured article).
Main sequence (featured article).
Gravity/Electrostatics/Strong nuclear force.
Pressure/Boyle’s law/Charles’s law.
Hermann von Helmholtz.
William Thomson (Kelvin).
Gravitational binding energy.
Thermal energy/Gravitational energy.
Virial theorem.
Kelvin-Helmholtz time scale.
Chemical energy/Bond-dissociation energy.
Nuclear binding energy.
Nuclear fusion.
Heisenberg’s uncertainty principle.
Quantum tunnelling.
Pauli exclusion principle.
Eddington limit.
Convection.
Electron degeneracy pressure.
Nuclear timescale.
Number density.
Dynamical timescale/free-fall time.
Hydrostatic equilibrium/Thermal equilibrium.
Core collapse.
Hertzsprung gap.
Supergiant star.
Chandrasekhar limit.
Core-collapse supernova (‘good article’).
Crab Nebula.
Stellar nucleosynthesis.
Neutron star.
Schwarzschild radius.
Black hole (‘good article’).
Roy Kerr.
Pulsar.
Jocelyn Bell.
Anthony Hewish.
Accretion/Accretion disk.
X-ray binary.
Binary star evolution.
SS 433.
Gamma ray burst.
Hubble’s law/Hubble time.
Cosmic distance ladder/Standard candle/Cepheid variable.
Star formation.
Pillars of Creation.
Jeans instability.
Initial mass function.

July 2, 2017 Posted by | Astronomy, Books, Chemistry, Physics | Leave a comment

Astrophysics

Here’s what I wrote about the book on goodreads:

“I think the author was trying to do too much with this book. He covers a very large number of topics, but unfortunately the book is not easy to read because he covers in a few pages topics which other authors write entire books about. If he’d covered fewer topics in greater detail I think the end result would have been better. Despite having watched a large number of lectures on related topics and read academic texts about some of the topics covered in the book, I found the book far from easy to read, certainly compared to other physics books in this series (the books about nuclear physics and particle physics are both significantly easier to read, in my opinion). The author sometimes seemed to me to have difficulties understanding how large the potential knowledge gap between him and the reader of the book might be.

Worth reading if you know some stuff already and you’re willing to put in a bit of work, but don’t expect too much from the coverage.”

I gave the book two stars on goodreads.

I decided early on while reading the book that the only way I was going to cover this book at all here would be by posting a link-heavy post. I have added some quotes as well, but most of what’s going on in this book I’ll only cover by adding some relevant links to wiki articles dealing with these topics – as the link collection below should illustrate, although the subtitle of the book is ‘A Very Short Introduction’ it actually covers a great deal of ground (…too much ground, that’s part of the problem, as indicated above…). There are a lot of links because it’s just that kind of book.

First, a few quotes from the book:

“In thinking about the structure of an accretion disc it is helpful to imagine that it comprises a large number of solid rings, each of which spins as if each of its particles were in orbit around the central mass […] The speed of a circular orbit of radius r around a compact mass such as the Sun or a black hole is proportional to 1/r, so the speed increases inwards. It follows that there is shear within an accretion disc: each rotating ring slides past the ring just outside it, and, in the presence of any friction or viscosity within the fluid, each ring twists or torques the ring just outside it in the direction of rotation, trying to get it to rotate faster.

Torque is to angular momentum what force is to linear momentum: the quantity that sets its rate of change. Just as Newton’s laws yield that force is equal to rate of change of momentum, the rate of change of a body’s angular momentum is equal to the torque on the body. Hence the existence of the torque from smaller rings to bigger rings implies an outward transport of angular momentum through the accretion disc. When the disc is in a steady state this outward transport of angular momentum by viscosity is balanced by an inward transport of angular momentum by gas as it spirals inwards through the disc, carrying its angular momentum with it.”

“The differential equations that govern the motion of the planets are easily written down, and astronomical observations furnish the initial conditions to great precision. But with this precision we can predict the configuration of the planets only up to ∼ 40 Myr into the future — if the initial conditions are varied within the observational uncertainties, the predictions for 50 or 60 Myr later differ quite significantly. If you want to obtain predictions for 60 Myr that are comparable in precision to those we have for 40 Myr in the future, you require initial conditions that are 100 times more precise: for example, you require the current positions of the planets to within an error of 15m. If you want comparable predictions 60.15Myr in the future, you have to know the current positions to within 15mm.”

“An important feature of the solutions to the differential equations of the solar system is that after some variable, say the eccentricity of Mercury’s orbit, has fluctuated in a narrow range for millions of years, it will suddenly shift to a completely different range. This behaviour reflects the importance of resonances for the dynamics of the system: at some moment a resonant condition becomes satisfied and the flow of energy within the system changes because a small disturbance can accumulate over thousands or millions of cycles into a large effect. If we start the integrations from a configuration that differs ever so little from the previous configuration, the resonant condition will fail to be satisfied, or be satisfied much earlier or later, and the solutions will look quite different.”

“In Chapter 4 we saw that the physics of accretion discs around stars and black holes is all about the outward transport of angular momentum, and that moving angular momentum outwards heats a disc. Outward transport of angular momentum is similarly important for galactic discs. […] in a gaseous accretion disc angular momentum is primarily transported by the magnetic field. In a stellar disc, this job has to be done by the gravitational field because stars only interact gravitationally. Spiral structure provides the gravitational field needed to transport angular momentum outwards.

In addition to carrying angular momentum out through the stellar disc, spiral arms regularly shock interstellar gas, causing it to become denser, and a fraction of it to collapse into new stars. For this reason, spiral structure is most easily traced in the distribution of young stars, especially massive, luminous stars, because all massive stars are young. […] Spiral arms are waves of enhanced star density that propagate through a stellar disc rather as sound waves propagate through air. Like sound waves they carry energy, and this energy is eventually converted from the ordered form it takes in the wave to the kinetic energy of randomly moving stars. That is, spiral arms heat the stellar disc.”

“[I]f you take any reasonably representative group of galaxies, from the group’s luminosity, you can deduce the quantity of ordinary matter it should contain. This quantity proves to be roughly ten times the amount of ordinary matter that’s in the galaxies. So most ordinary matter must lie between the galaxies rather than within them.”

“The nature of a galaxy is largely determined by three numbers: its luminosity, its bulge-to-disc ratio, and the ratio of its mass of cold gas to the mass in stars. Since stars form from cold gas, this last ratio determines how youthful the galaxy’s stellar population is.

A youthful stellar population contains massive stars, which are short-lived, luminous, and blue […] An old stellar population contains only low-mass, faint, and red stars. Moreover, the spatial distribution of young stars can be very lumpy because the stars have not had time to be spread around the system […] a galaxy with a young stellar population looks very different from one with an old population: it is more lumpy/streaky, bluer, and has a higher luminosity than a galaxy of similar stellar mass with an old stellar population.”

Links:

Accretion disk.
Supermassive black hole.
Quasar.
Magnetorotational instability.
Astrophysical jet.
Herbig–Haro object.
SS 433.
Cygnus A.
Collimated light.
Light curve.
Lyman-alpha line.
Balmer series.
Star formation.
Stellar evolution.
Black-body radiation.
Helium flash.
White dwarf (featured article).
Planetary nebula.
Photosphere.
Corona.
Solar transition region.
Photodissociation.
Carbon detonation.
X-ray binary.
Inverse Compton scattering.
Microquasar.
Quasi-periodic oscillation.
Urbain Le Verrier.
Perturbation theory.
Elliptic orbit.
Precession.
Axial precession.
Libration.
Orbital resonance.
Jupiter trojan (featured article).
Late Heavy Bombardment.
Exoplanet.
Lorentz factor.
Radio galaxy.
Gamma-ray burst (featured article).
Cosmic ray.
Hulse–Taylor binary.
Special relativity.
Lorentz covariance.
Lorentz transformation.
Muon.
Relativistic Doppler effect.
Superluminal motion.
Fermi acceleration.
Shock waves in astrophysics.
Ram pressure.
Synchrotron radiation.
General relativity (featured article).
Gravitational redshift.
Gravitational lens.
Fermat’s principle.
SBS 0957+561.
Strong gravitational lensing/Weak gravitational lensing.
Gravitational microlensing.
Shapiro delay.
Gravitational wave.
Dark matter.
Dwarf spheroidal galaxy.
Luminosity function.
Lenticular galaxy.
Spiral galaxy.
Disc galaxy.
Elliptical galaxy.
Stellar dynamics.
Constant of motion.
Bulge (astronomy).
Interacting galaxy.
Coma cluster.
Galaxy cluster.
Anemic galaxy.
Decoupling (cosmology).

June 20, 2017 Posted by | Astronomy, Books, Physics | Leave a comment

Cosmology: Recent Results and Future Prospects

This is another old lecture from my bookmarks. I’m reasonably certain the main reason why I did not blog this earlier is that it’s a rather general and not very detailed overview lecture, so it doesn’t actually contain a lot of new stuff. Hubble’s work, the discovery of the cosmic microwave background, properties of the early universe and how it evolved, discussion of the cosmological constant, dark matter and dark energy, some recent observational results – most of the stuff he talks about should be familiar territory to people interested in the field. Before I watched the lecture I had expected it to include a lot more ‘recent results’ and ‘future prospects’ than were actually included; a big part of the lecture is just an overview of what we’ve learned since the 1930es.

June 7, 2017 Posted by | Astronomy, Lectures, Physics | Leave a comment

Extraordinary Physics with Millisecond Pulsars

A few related links:
Nanograv.org.
Millisecond pulsar.
PSR J0348+0432.
Pulsar timing array.
Detection of Gravitational Waves using Pulsar Timing (paper).
The strong equivalence principle.
European Pulsar Timing Array.
Parkes Observatory.
Gravitational wave.
Gravitational waves from binary supermassive black holes missing in pulsar observations (paper – it’s been a long time since I watched the lecture, but in my bookmarks I noted that some of the stuff included in this publication was covered in the lecture).

May 24, 2017 Posted by | Astronomy, Lectures, Papers, Physics | Leave a comment

Out of this World: A history of Structure in the Universe

This lecture is much less technical than were the last couple of lectures I posted, and if I remember correctly it’s aimed at a general audience (…the sort of ‘general audience’ that attends IAS lectures, but even so…). The lecture itself is quite short, only roughly 35 minutes long, but there’s a long Q&A session afterwards.

May 21, 2017 Posted by | Astronomy, Lectures, Physics | Leave a comment

Hydrodynamical Simulations of Galaxy Formation: Progress, Pitfalls, and Promises

“This calculation was relatively expensive, about 19 million CPU hours were spent on it.”

….

Posts including only one lecture is a recent innovation here on the blog as I have in the past bundled lectures so that a lecture post would include at least 2 or 3 lectures, but I am starting to come around to the idea that these new types of posts are a good idea. I have been going over some old lectures I’ve watched in the past recently, and it turns out that there are quite a few lectures I never got around to blogging; I have mentioned before how the 3 lectures per post format was likely suboptimal, in the sense that they tended to lead to lectures never being covered e.g. because of the long time lag between watching a lecture and blogging it (in the case of book blogging I tend to be much more likely to spend my time covering books I read recently, rather than books I read a while ago, and the same dynamic goes for lectures), and I think this impression is now confirmed.

As some of the lectures I’ll be covering in posts like these in the future are lectures I watched a long time ago my coverage will probably be limited to the actual lectures and the comments I wrote down when I first watched the lecture in question. I don’t want to add a few big lecture posts to just get rid of the backlog, mostly because this blog is obviously not nearly as active as it used to be, and adding single-lecture posts dropwise is an easy (…low-effort) and convenient way for me to keep the blog at least somewhat active. What I wrote down in my comments about the lecture above when I watched it, aside from the quote above, is that considering the very high-level physics included it was sort of surprising to me that the lecture was not so technical as to not be worth watching – but it wasn’t. You’ll certainly not understand all of it, but it’s interesting stuff.

May 18, 2017 Posted by | Astronomy, Lectures, Physics | Leave a comment

Random stuff

It’s been a long time since I last posted one of these posts, so a great number of links of interest has accumulated in my bookmarks. I intended to include a large number of these in this post and this of course means that I surely won’t cover each specific link included in this post in anywhere near the amount of detail it deserves, but that can’t be helped.

i. Autism Spectrum Disorder Grown Up: A Chart Review of Adult Functioning.

“For those diagnosed with ASD in childhood, most will become adults with a significant degree of disability […] Seltzer et al […] concluded that, despite considerable heterogeneity in social outcomes, “few adults with autism live independently, marry, go to college, work in competitive jobs or develop a large network of friends”. However, the trend within individuals is for some functional improvement over time, as well as a decrease in autistic symptoms […]. Some authors suggest that a sub-group of 15–30% of adults with autism will show more positive outcomes […]. Howlin et al. (2004), and Cederlund et al. (2008) assigned global ratings of social functioning based on achieving independence, friendships/a steady relationship, and education and/or a job. These two papers described respectively 22% and 27% of groups of higher functioning (IQ above 70) ASD adults as attaining “Very Good” or “Good” outcomes.”

“[W]e evaluated the adult outcomes for 45 individuals diagnosed with ASD prior to age 18, and compared this with the functioning of 35 patients whose ASD was identified after 18 years. Concurrent mental illnesses were noted for both groups. […] Comparison of adult outcome within the group of subjects diagnosed with ASD prior to 18 years of age showed significantly poorer functioning for those with co-morbid Intellectual Disability, except in the domain of establishing intimate relationships [my emphasis. To make this point completely clear, one way to look at these results is that apparently in the domain of partner-search autistics diagnosed during childhood are doing so badly in general that being intellectually disabled on top of being autistic is apparently conferring no additional disadvantage]. Even in the normal IQ group, the mean total score, i.e. the sum of the 5 domains, was relatively low at 12.1 out of a possible 25. […] Those diagnosed as adults had achieved significantly more in the domains of education and independence […] Some authors have described a subgroup of 15–27% of adult ASD patients who attained more positive outcomes […]. Defining an arbitrary adaptive score of 20/25 as “Good” for our normal IQ patients, 8 of thirty four (25%) of those diagnosed as adults achieved this level. Only 5 of the thirty three (15%) diagnosed in childhood made the cutoff. (The cut off was consistent with a well, but not superlatively, functioning member of society […]). None of the Intellectually Disabled ASD subjects scored above 10. […] All three groups had a high rate of co-morbid psychiatric illnesses. Depression was particularly frequent in those diagnosed as adults, consistent with other reports […]. Anxiety disorders were also prevalent in the higher functioning participants, 25–27%. […] Most of the higher functioning ASD individuals, whether diagnosed before or after 18 years of age, were functioning well below the potential implied by their normal range intellect.”

Related papers: Social Outcomes in Mid- to Later Adulthood Among Individuals Diagnosed With Autism and Average Nonverbal IQ as Children, Adults With Autism Spectrum Disorders.

ii. Premature mortality in autism spectrum disorder. This is a Swedish matched case cohort study. Some observations from the paper:

“The aim of the current study was to analyse all-cause and cause-specific mortality in ASD using nationwide Swedish population-based registers. A further aim was to address the role of intellectual disability and gender as possible moderators of mortality and causes of death in ASD. […] Odds ratios (ORs) were calculated for a population-based cohort of ASD probands (n = 27 122, diagnosed between 1987 and 2009) compared with gender-, age- and county of residence-matched controls (n = 2 672 185). […] During the observed period, 24 358 (0.91%) individuals in the general population died, whereas the corresponding figure for individuals with ASD was 706 (2.60%; OR = 2.56; 95% CI 2.38–2.76). Cause-specific analyses showed elevated mortality in ASD for almost all analysed diagnostic categories. Mortality and patterns for cause-specific mortality were partly moderated by gender and general intellectual ability. […] Premature mortality was markedly increased in ASD owing to a multitude of medical conditions. […] Mortality was significantly elevated in both genders relative to the general population (males: OR = 2.87; females OR = 2.24)”.

“Individuals in the control group died at a mean age of 70.20 years (s.d. = 24.16, median = 80), whereas the corresponding figure for the entire ASD group was 53.87 years (s.d. = 24.78, median = 55), for low-functioning ASD 39.50 years (s.d. = 21.55, median = 40) and high-functioning ASD 58.39 years (s.d. = 24.01, median = 63) respectively. […] Significantly elevated mortality was noted among individuals with ASD in all analysed categories of specific causes of death except for infections […] ORs were highest in cases of mortality because of diseases of the nervous system (OR = 7.49) and because of suicide (OR = 7.55), in comparison with matched general population controls.”

iii. Adhesive capsulitis of shoulder. This one is related to a health scare I had a few months ago. A few quotes:

Adhesive capsulitis (also known as frozen shoulder) is a painful and disabling disorder of unclear cause in which the shoulder capsule, the connective tissue surrounding the glenohumeral joint of the shoulder, becomes inflamed and stiff, greatly restricting motion and causing chronic pain. Pain is usually constant, worse at night, and with cold weather. Certain movements or bumps can provoke episodes of tremendous pain and cramping. […] People who suffer from adhesive capsulitis usually experience severe pain and sleep deprivation for prolonged periods due to pain that gets worse when lying still and restricted movement/positions. The condition can lead to depression, problems in the neck and back, and severe weight loss due to long-term lack of deep sleep. People who suffer from adhesive capsulitis may have extreme difficulty concentrating, working, or performing daily life activities for extended periods of time.”

Some other related links below:

The prevalence of a diabetic condition and adhesive capsulitis of the shoulder.
“Adhesive capsulitis is characterized by a progressive and painful loss of shoulder motion of unknown etiology. Previous studies have found the prevalence of adhesive capsulitis to be slightly greater than 2% in the general population. However, the relationship between adhesive capsulitis and diabetes mellitus (DM) is well documented, with the incidence of adhesive capsulitis being two to four times higher in diabetics than in the general population. It affects about 20% of people with diabetes and has been described as the most disabling of the common musculoskeletal manifestations of diabetes.”

Adhesive Capsulitis (review article).
“Patients with type I diabetes have a 40% chance of developing a frozen shoulder in their lifetimes […] Dominant arm involvement has been shown to have a good prognosis; associated intrinsic pathology or insulin-dependent diabetes of more than 10 years are poor prognostic indicators.15 Three stages of adhesive capsulitis have been described, with each phase lasting for about 6 months. The first stage is the freezing stage in which there is an insidious onset of pain. At the end of this period, shoulder ROM [range of motion] becomes limited. The second stage is the frozen stage, in which there might be a reduction in pain; however, there is still restricted ROM. The third stage is the thawing stage, in which ROM improves, but can take between 12 and 42 months to do so. Most patients regain a full ROM; however, 10% to 15% of patients suffer from continued pain and limited ROM.”

Musculoskeletal Complications in Type 1 Diabetes.
“The development of periarticular thickening of skin on the hands and limited joint mobility (cheiroarthropathy) is associated with diabetes and can lead to significant disability. The objective of this study was to describe the prevalence of cheiroarthropathy in the well-characterized Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort and examine associated risk factors […] This cross-sectional analysis was performed in 1,217 participants (95% of the active cohort) in EDIC years 18/19 after an average of 24 years of follow-up. Cheiroarthropathy — defined as the presence of any one of the following: adhesive capsulitis, carpal tunnel syndrome, flexor tenosynovitis, Dupuytren’s contracture, or a positive prayer sign [related link] — was assessed using a targeted medical history and standardized physical examination. […] Cheiroarthropathy was present in 66% of subjects […] Cheiroarthropathy is common in people with type 1 diabetes of long duration (∼30 years) and is related to longer duration and higher levels of glycemia. Clinicians should include cheiroarthropathy in their routine history and physical examination of patients with type 1 diabetes because it causes clinically significant functional disability.”

Musculoskeletal disorders in diabetes mellitus: an update.
“Diabetes mellitus (DM) is associated with several musculoskeletal disorders. […] The exact pathophysiology of most of these musculoskeletal disorders remains obscure. Connective tissue disorders, neuropathy, vasculopathy or combinations of these problems, may underlie the increased incidence of musculoskeletal disorders in DM. The development of musculoskeletal disorders is dependent on age and on the duration of DM; however, it has been difficult to show a direct correlation with the metabolic control of DM.”

Rheumatic Manifestations of Diabetes Mellitus.

Prevalence of symptoms and signs of shoulder problems in people with diabetes mellitus.

Musculoskeletal Disorders of the Hand and Shoulder in Patients with Diabetes.
“In addition to micro- and macroangiopathic complications, diabetes mellitus is also associated with several musculoskeletal disorders of the hand and shoulder that can be debilitating (1,2). Limited joint mobility, also termed diabetic hand syndrome or cheiropathy (3), is characterized by skin thickening over the dorsum of the hands and restricted mobility of multiple joints. While this syndrome is painless and usually not disabling (2,4), other musculoskeletal problems occur with increased frequency in diabetic patients, including Dupuytren’s disease [“Dupuytren’s disease […] may be observed in up to 42% of adults with diabetes mellitus, typically in patients with long-standing T1D” – link], carpal tunnel syndrome [“The prevalence of [carpal tunnel syndrome, CTS] in patients with diabetes has been estimated at 11–30 % […], and is dependent on the duration of diabetes. […] Type I DM patients have a high prevalence of CTS with increasing duration of disease, up to 85 % after 54 years of DM” – link], palmar flexor tenosynovitis or trigger finger [“The incidence of trigger finger [/stenosing tenosynovitis] is 7–20 % of patients with diabetes comparing to only about 1–2 % in nondiabetic patients” – link], and adhesive capsulitis of the shoulder (5–10). The association of adhesive capsulitis with pain, swelling, dystrophic skin, and vasomotor instability of the hand constitutes the “shoulder-hand syndrome,” a rare but potentially disabling manifestation of diabetes (1,2).”

“The prevalence of musculoskeletal disorders was greater in diabetic patients than in control patients (36% vs. 9%, P < 0.01). Adhesive capsulitis was present in 12% of the diabetic patients and none of the control patients (P < 0.01), Dupuytren’s disease in 16% of diabetic and 3% of control patients (P < 0.01), and flexor tenosynovitis in 12% of diabetic and 2% of control patients (P < 0.04), while carpal tunnel syndrome occurred in 12% of diabetic patients and 8% of control patients (P = 0.29). Musculoskeletal disorders were more common in patients with type 1 diabetes than in those with type 2 diabetes […]. Forty-three patients [out of 100] with type 1 diabetes had either hand or shoulder disorders (37 with hand disorders, 6 with adhesive capsulitis of the shoulder, and 10 with both syndromes), compared with 28 patients [again out of 100] with type 2 diabetes (24 with hand disorders, 4 with adhesive capsulitis of the shoulder, and 3 with both syndromes, P = 0.03).”

Association of Diabetes Mellitus With the Risk of Developing Adhesive Capsulitis of the Shoulder: A Longitudinal Population-Based Followup Study.
“A total of 78,827 subjects with at least 2 ambulatory care visits with a principal diagnosis of DM in 2001 were recruited for the DM group. The non-DM group comprised 236,481 age- and sex-matched randomly sampled subjects without DM. […] During a 3-year followup period, 946 subjects (1.20%) in the DM group and 2,254 subjects (0.95%) in the non-DM group developed ACS. The crude HR of developing ACS for the DM group compared to the non-DM group was 1.333 […] the association between DM and ACS may be explained at least in part by a DM-related chronic inflammatory process with increased growth factor expression, which in turn leads to joint synovitis and subsequent capsular fibrosis.”

It is important to note when interpreting the results of the above paper that these results are based on Taiwanese population-level data, and type 1 diabetes – which is obviously the high-risk diabetes subgroup in this particular context – is rare in East Asian populations (as observed in Sperling et al., “A child in Helsinki, Finland is almost 400 times more likely to develop diabetes than a child in Sichuan, China”. Taiwanese incidence of type 1 DM in children is estimated at ~5 in 100.000).

iv. Parents who let diabetic son starve to death found guilty of first-degree murder. It’s been a while since I last saw one of these ‘boost-your-faith-in-humanity’-cases, but they in my impression do pop up every now and then. I should probably keep at hand one of these articles in case my parents ever express worry to me that they weren’t good parents; they could have done a lot worse…

v. Freedom of medicine. One quote from the conclusion of Cochran’s post:

“[I]t is surely possible to materially improve the efficacy of drug development, of medical research as a whole. We’re doing better than we did 500 years ago – although probably worse than we did 50 years ago. But I would approach it by learning as much as possible about medical history, demographics, epidemiology, evolutionary medicine, theory of senescence, genetics, etc. Read Koch, not Hayek. There is no royal road to medical progress.”

I agree, and I was considering including some related comments and observations about health economics in this post – however I ultimately decided against doing that in part because the post was growing unwieldy; I might include those observations in another post later on. Here’s another somewhat older Westhunt post I at some point decided to bookmark – I in particular like the following neat quote from the comments, which expresses a view I have of course expressed myself in the past here on this blog:

“When you think about it, falsehoods, stupid crap, make the best group identifiers, because anyone might agree with you when you’re obviously right. Signing up to clear nonsense is a better test of group loyalty. A true friend is with you when you’re wrong. Ideally, not just wrong, but barking mad, rolling around in your own vomit wrong.”

vi. Economic Costs of Diabetes in the U.S. in 2012.

“Approximately 59% of all health care expenditures attributed to diabetes are for health resources used by the population aged 65 years and older, much of which is borne by the Medicare program […]. The population 45–64 years of age incurs 33% of diabetes-attributed costs, with the remaining 8% incurred by the population under 45 years of age. The annual attributed health care cost per person with diabetes […] increases with age, primarily as a result of increased use of hospital inpatient and nursing facility resources, physician office visits, and prescription medications. Dividing the total attributed health care expenditures by the number of people with diabetes, we estimate the average annual excess expenditures for the population aged under 45 years, 45–64 years, and 65 years and above, respectively, at $4,394, $5,611, and $11,825.”

“Our logistic regression analysis with NHIS data suggests that diabetes is associated with a 2.4 percentage point increase in the likelihood of leaving the workforce for disability. This equates to approximately 541,000 working-age adults leaving the workforce prematurely and 130 million lost workdays in 2012. For the population that leaves the workforce early because of diabetes-associated disability, we estimate that their average daily earnings would have been $166 per person (with the amount varying by demographic). Presenteeism accounted for 30% of the indirect cost of diabetes. The estimate of a 6.6% annual decline in productivity attributed to diabetes (in excess of the estimated decline in the absence of diabetes) equates to 113 million lost workdays per year.”

vii. Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: a systemically searched meta-analysis of randomized controlled trials.

viii. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. Did I blog this paper at some point in the past? I could not find any coverage of it on the blog when I searched for it so I decided to include it here, even if I have a nagging suspicion I may have talked about these findings before. What did they find? The short version is this:

“A modest reduction in salt intake for four or more weeks causes significant and, from a population viewpoint, important falls in blood pressure in both hypertensive and normotensive individuals, irrespective of sex and ethnic group. Salt reduction is associated with a small physiological increase in plasma renin activity, aldosterone, and noradrenaline and no significant change in lipid concentrations. These results support a reduction in population salt intake, which will lower population blood pressure and thereby reduce cardiovascular disease.”

ix. Some wikipedia links:

Heroic Age of Antarctic Exploration (featured).

Wien’s displacement law.

Kuiper belt (featured).

Treason (one quote worth including here: “Currently, the consensus among major Islamic schools is that apostasy (leaving Islam) is considered treason and that the penalty is death; this is supported not in the Quran but in the Hadith.[42][43][44][45][46][47]“).

Lymphatic filariasis.

File:World map of countries by number of cigarettes smoked per adult per year.

Australian gold rushes.

Savant syndrome (“It is estimated that 10% of those with autism have some form of savant abilities”). A small sidenote of interest to Danish readers: The Danish Broadcasting Corporation recently featured a series about autistics with ‘special abilities’ – the show was called ‘The hidden talents’ (De skjulte talenter), and after multiple people had nagged me to watch it I ended up deciding to do so. Most of the people in that show presumably had some degree of ‘savantism’ combined with autism at the milder end of the spectrum, i.e. Asperger’s. I was somewhat conflicted about what to think about the show and did consider blogging it in detail (in Danish?), but I decided against it. However I do want to add here to Danish readers reading along who’ve seen the show that they would do well to repeatedly keep in mind that a) the great majority of autistics do not have abilities like these, b) many autistics with abilities like these presumably do quite poorly, and c) that many autistics have even greater social impairments than do people like e.g. (the very likeable, I have to add…) Louise Wille from the show).

Quark–gluon plasma.

Simo Häyhä.

Chernobyl liquidators.

Black Death (“Over 60% of Norway’s population died in 1348–1350”).

Renault FT (“among the most revolutionary and influential tank designs in history”).

Weierstrass function (“an example of a pathological real-valued function on the real line. The function has the property of being continuous everywhere but differentiable nowhere”).

W Ursae Majoris variable.

Void coefficient. (“a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor moderator or coolant. […] Reactivity is directly related to the tendency of the reactor core to change power level: if reactivity is positive, the core power tends to increase; if it is negative, the core power tends to decrease; if it is zero, the core power tends to remain stable. […] A positive void coefficient means that the reactivity increases as the void content inside the reactor increases due to increased boiling or loss of coolant; for example, if the coolant acts as a neutron absorber. If the void coefficient is large enough and control systems do not respond quickly enough, this can form a positive feedback loop which can quickly boil all the coolant in the reactor. This happened in the RBMK reactor that was destroyed in the Chernobyl disaster.”).

Gregor MacGregor (featured) (“a Scottish soldier, adventurer, and confidence trickster […] MacGregor’s Poyais scheme has been called one of the most brazen confidence tricks in history.”).

Stimming.

Irish Civil War.

March 10, 2017 Posted by | Astronomy, autism, Cardiology, Diabetes, Economics, Epidemiology, Health Economics, History, Infectious disease, Mathematics, Medicine, Papers, Physics, Psychology, Random stuff, Wikipedia | Leave a comment

Galaxies

I have added some observations from the book below, as well as some links covering people/ideas/stuff discussed/mentioned in the book.

“On average, out of every 100 newly born star systems, 60 are binaries and 40 are triples. Solitary stars like the Sun are later ejected from triple systems formed in this way.”

“…any object will become a black hole if it is sufficiently compressed. For any mass, there is a critical radius, called the Schwarzschild radius, for which this occurs. For the Sun, the Schwarzschild radius is just under 3 km; for the Earth, it is just under 1 cm. In either case, if the entire mass of the object were squeezed within the appropriate Schwarzschild radius it would become a black hole.”

“It only became possible to study the centre of our Galaxy when radio telescopes and other instruments that do not rely on visible light became available. There is a great deal of dust in the plane of the Milky Way […] This blocks out visible light. But longer wavelengths penetrate the dust more easily. That is why sunsets are red – short wavelength (blue) light is scattered out of the line of sight by dust in the atmosphere, while the longer wavelength red light gets through to your eyes. So our understanding of the galactic centre is largely based on infrared and radio observations.”

“there is strong evidence that the Milky Way Galaxy is a completely ordinary disc galaxy, a typical representative of its class. Since that is the case, it means that we can confidently use our inside knowledge of the structure and evolution of our own Galaxy, based on close-up observations, to help our understanding of the origin and nature of disc galaxies in general. We do not occupy a special place in the Universe; but this was only finally established at the end of the 20th century. […] in the decades following Hubble’s first measurements of the cosmological distance scale, the Milky Way still seemed like a special place. Hubble’s calculation of the distance scale implied that other galaxies are relatively close to our Galaxy, and so they would not have to be very big to appear as large as they do on the sky; the Milky Way seemed to be by far the largest galaxy in the Universe. We now know that Hubble was wrong. […] the value he initially found for the Hubble Constant was about seven times bigger than the value accepted today. In other words, all the extragalactic distances Hubble inferred were seven times too small. But this was not realized overnight. The cosmological distance scale was only revised slowly, over many decades, as observations improved and one error after another was corrected. […] The importance of determining the cosmological distance scale accurately, more than half a century after Hubble’s pioneering work, was still so great that it was a primary justification for the existence of the Hubble Space Telescope (HST).”

“The key point to grasp […] is that the expansion described by [Einstein’s] equations is an expansion of space as time passes. The cosmological redshift is not a Doppler effect caused by galaxies moving outward through space, as if fleeing from the site of some great explosion, but occurs because the space between the galaxies is stretching. So the spaces between galaxies increase while light is on its way from one galaxy to another. This stretches the light waves to longer wavelengths, which means shifting them towards the red end of the spectrum. […] The second key point about the universal expansion is that it does not have a centre. There is nothing special about the fact that we observe galaxies receding with redshifts proportional to their distances from the Milky Way. […] whichever galaxy you happen to be sitting in, you will see the same thing – redshift proportional to distance.”

“The age of the Universe is determined by studying some of the largest things in the Universe, clusters of galaxies, and analysing their behaviour using the general theory of relativity. Our understanding of how stars work, from which we calculate their ages, comes from studying some of the smallest things in the Universe, the nuclei of atoms, and using the other great theory of 20th-century physics, quantum mechanics, to calculate how nuclei fuse with one another to release the energy that keeps stars shining. The fact that the two ages agree with one another, and that the ages of the oldest stars are just a little bit less than the age of the Universe, is one of the most compelling reasons to think that the whole of 20th-century physics works and provides a good description of the world around us, from the very small scale to the very large scale.”

“Planets are small objects orbiting a large central mass, and the gravity of the Sun dominates their motion. Because of this, the speed with which a planet moves […] is inversely proportional to the square of its distance from the centre of the Solar System. Jupiter is farther from the Sun than we are, so it moves more slowly in its orbit than the Earth, as well as having a larger orbit. But all the stars in the disc of a galaxy move at the same speed. Stars farther out from the centre still have bigger orbits, so they still take longer to complete one circuit of the galaxy. But they are all travelling at essentially the same orbital speed through space.”

“The importance of studying objects at great distances across the Universe is that when we look at an object that is, say, 10 billion light years away, we see it by light which left it 10 billion years ago. This is the ‘look back time’, and it means that telescopes are in a sense time machines, showing us what the Universe was like when it was younger. The light from a distant galaxy is old, in the sense that it has been a long time on its journey; but the galaxy we see using that light is a young galaxy. […] For distant objects, because light has taken a long time on its journey to us, the Universe has expanded significantly while the light was on its way. […] This raises problems defining exactly what you mean by the ‘present distance’ to a remote galaxy”

“Among the many advantages that photographic and electronic recording methods have over the human eye, the most fundamental is that the longer they look, the more they see. Human eyes essentially give us a real-time view of our surroundings, and allow us to see things – such as stars – that are brighter than a certain limit. If an object is too faint to see, once your eyes have adapted to the dark no amount of staring in its direction will make it visible. But the detectors attached to modern telescopes keep on adding up the light from faint sources as long as they are pointing at them. A longer exposure will reveal fainter objects than a short exposure does, as the photons (particles of light) from the source fall on the detector one by one and the total gradually grows.”

“Nobody can be quite sure where the supermassive black holes at the hearts of galaxies today came from, but it seems at least possible that […] merging of black holes left over from the first generation of stars [in the universe] began the process by which supermassive black holes, feeding off the matter surrounding them, formed. […] It seems very unlikely that supermassive black holes formed first and then galaxies grew around them; they must have formed together, in a process sometimes referred to as co-evolution, from the seeds provided by the original black holes of a few hundred solar masses and the raw materials of the dense clouds of baryons in the knots in the filamentary structure. […] About one in a hundred of the galaxies seen at low redshifts are actively involved in the late stages of mergers, but these processes take so little time, compared with the age of the Universe, that the statistics imply that about half of all the galaxies visible nearby are the result of mergers between similarly sized galaxies in the past seven or eight billion years. Disc galaxies like the Milky Way seem themselves to have been built up from smaller sub-units, starting out with the spheroid and adding bits and pieces as time passed. […] there were many more small galaxies when the Universe was young than we see around us today. This is exactly what we would expect if many of the small galaxies have either grown larger through mergers or been swallowed up by larger galaxies.”

Links of interest:

Galaxy (‘featured article’).
Leonard Digges.
Thomas Wright.
William Herschel.
William Parsons.
The Great Debate.
Parallax.
Extinction (astronomy).
Henrietta Swan Leavitt (‘good article’).
Cepheid variable.
Ejnar Hertzsprung. (Before reading this book, I had no idea one of the people behind the famous Hertzsprung–Russell diagram was a Dane. I blame my physics teachers. I was probably told this by one of them, but if the guy in question had been a better teacher, I’d have listened, and I’d have known this.).
Globular cluster (‘featured article’).
Vesto Slipher.
Redshift (‘featured article’).
Refracting telescope/Reflecting telescope.
Disc galaxy.
Edwin Hubble.
Milton Humason.
Doppler effect.
Milky Way.
Orion Arm.
Stellar population.
Sagittarius A*.
Minkowski space.
General relativity (featured).
The Big Bang theory (featured).
Age of the universe.
Malmquist bias.
Type Ia supernova.
Dark energy.
Baryons/leptons.
Cosmic microwave background.
Cold dark matter.
Lambda-CDM model.
Lenticular galaxy.
Active galactic nucleus.
Quasar.
Hubble Ultra-Deep Field.
Stellar evolution.
Velocity dispersion.
Hawking radiation.
Ultimate fate of the universe.

 

February 5, 2017 Posted by | Astronomy, Books, cosmology, Physics | Leave a comment

Random Stuff

i. On the youtube channel of the Institute for Advanced Studies there has been a lot of activity over the last week or two (far more than 100 new lectures have been uploaded, and it seems new uploads are still being added at this point), and I’ve been watching a few of the recently uploaded astrophysics lectures. They’re quite technical, but you can watch them and follow enough of the content to have an enjoyable time despite not understanding everything:


This is a good lecture, very interesting. One major point made early on: “the take-away message is that the most common planet in the galaxy, at least at shorter periods, are planets for which there is no analogue in the solar system. The most common kind of planet in the galaxy is a planet with a radius of two Earth radii.” Another big take-away message is that small planets seem to be quite common (as noted in the conclusions, “16% of Sun-like stars have an Earth-sized planet”).


Of the lectures included in this post this was the one I liked the least; there are too many (‘obstructive’) questions/interactions between lecturer and attendants along the way, and the interactions/questions are difficult to hear/understand. If you consider watching both this lecture and the lecture below, I would say that it would probably be wise to watch the lecture below this one before you watch this one; I concluded that in retrospect some of the observations made early on in the lecture below would have been useful to know about before watching this lecture. (The first half of the lecture below was incidentally to me somewhat easier to follow than was the second half, but especially the first half hour of it is really quite good, despite the bad start (which one can always blame on Microsoft…)).

ii. Words I’ve encountered recently (…or ‘recently’ – it’s been a while since I last posted one of these lists): Divagationsperiphrasis, reedy, architravesettpedipalp, tout, togs, edentulous, moue, tatty, tearaway, prorogue, piscine, fillip, sop, panniers, auxology, roister, prepossessing, cantle, catamite, couth, ordure, biddy, recrudescence, parvenu, scupper, husting, hackle, expatiate, affray, tatterdemalion, eructation, coppice, dekko, scull, fulmination, pollarding, grotty, secateurs, bumf (I must admit that I like this word – it seems fitting, somehow, to use that word for this concept…), durophagy, randy, (brief note to self: Advise people having children who ask me about suggestions for how to name them against using this name (or variants such as Randi), it does not seem like a great idea), effete, apricity, sororal, bint, coition, abaft, eaves, gadabout, lugubriously, retroussé, landlubber, deliquescence, antimacassar, inanition.

iii. “The point of rigour is not to destroy all intuition; instead, it should be used to destroy bad intuition while clarifying and elevating good intuition. It is only with a combination of both rigorous formalism and good intuition that one can tackle complex mathematical problems; one needs the former to correctly deal with the fine details, and the latter to correctly deal with the big picture. Without one or the other, you will spend a lot of time blundering around in the dark (which can be instructive, but is highly inefficient). So once you are fully comfortable with rigorous mathematical thinking, you should revisit your intuitions on the subject and use your new thinking skills to test and refine these intuitions rather than discard them. One way to do this is to ask yourself dumb questions; another is to relearn your field.” (Terry Tao, There’s more to mathematics than rigour and proofs)

iv. A century of trends in adult human height. A figure from the paper (Figure 3 – Change in adult height between the 1896 and 1996 birth cohorts):

elife-13410-fig3-v1

(Click to view full size. WordPress seems to have changed the way you add images to a blog post – if this one is even so annoyingly large, I apologize, I have tried to minimize it while still retaining detail, but the original file is huge). An observation from the paper:

“Men were taller than women in every country, on average by ~11 cm in the 1896 birth cohort and ~12 cm in the 1996 birth cohort […]. In the 1896 birth cohort, the male-female height gap in countries where average height was low was slightly larger than in taller nations. In other words, at the turn of the 20th century, men seem to have had a relative advantage over women in undernourished compared to better-nourished populations.”

I haven’t studied the paper in any detail but intend to do so at a later point in time.

v. I found this paper, on Exercise and Glucose Metabolism in Persons with Diabetes Mellitus, interesting in part because I’ve been very surprised a few times by offhand online statements made by diabetic athletes, who had observed that their blood glucose really didn’t drop all that fast during exercise. Rapid and annoyingly large drops in blood glucose during exercise have been a really consistent feature of my own life with diabetes during adulthood. It seems that there may be big inter-individual differences in terms of the effects of exercise on glucose in diabetics. From the paper:

“Typically, prolonged moderate-intensity aerobic exercise (i.e., 30–70% of one’s VO2max) causes a reduction in glucose concentrations because of a failure in circulating insulin levels to decrease at the onset of exercise.12 During this type of physical activity, glucose utilization may be as high as 1.5 g/min in adolescents with type 1 diabetes13 and exceed 2.0 g/min in adults with type 1 diabetes,14 an amount that quickly lowers circulating glucose levels. Persons with type 1 diabetes have large interindividual differences in blood glucose responses to exercise, although some intraindividual reproducibility exists.15 The wide ranging glycemic responses among individuals appears to be related to differences in pre-exercise blood glucose concentrations, the level of circulating counterregulatory hormones and the type/duration of the activity.2

August 13, 2016 Posted by | Astronomy, Demographics, Diabetes, Language, Lectures, Mathematics, Physics, Random stuff | Leave a comment

Random stuff

I find it difficult to find the motivation to finish the half-finished drafts I have lying around, so this will have to do. Some random stuff below.

i.

(15.000 views… In some sense that seems really ‘unfair’ to me, but on the other hand I doubt neither Beethoven nor Gilels care; they’re both long dead, after all…)

ii. New/newish words I’ve encountered in books, on vocabulary.com or elsewhere:

Agleyperipeteia, disseverhalidom, replevinsocage, organdie, pouffe, dyarchy, tauricide, temerarious, acharnement, cadger, gravamen, aspersion, marronage, adumbrate, succotash, deuteragonist, declivity, marquetry, machicolation, recusal.

iii. A lecture:

It’s been a long time since I watched it so I don’t have anything intelligent to say about it now, but I figured it might be of interest to one or two of the people who still subscribe to the blog despite the infrequent updates.

iv. A few wikipedia articles (I won’t comment much on the contents or quote extensively from the articles the way I’ve done in previous wikipedia posts – the links shall have to suffice for now):

Duverger’s law.

Far side of the moon.

Preference falsification.

Russian political jokes. Some of those made me laugh (e.g. this one: “A judge walks out of his chambers laughing his head off. A colleague approaches him and asks why he is laughing. “I just heard the funniest joke in the world!” “Well, go ahead, tell me!” says the other judge. “I can’t – I just gave someone ten years for it!”).

Political mutilation in Byzantine culture.

v. World War 2, if you think of it as a movie, has a highly unrealistic and implausible plot, according to this amusing post by Scott Alexander. Having recently read a rather long book about these topics, one aspect I’d have added had I written the piece myself would be that an additional factor making the setting seem even more implausible is how so many presumably quite smart people were so – what at least in retrospect seems – unbelievably stupid when it came to Hitler’s ideas and intentions before the war. Going back to Churchill’s own life I’d also add that if you were to make a movie about Churchill’s life during the war, which you could probably relatively easily do if you were to just base it upon his own copious and widely shared notes, then it could probably be made into a quite decent movie. His own comments, remarks, and observations certainly made for a great book.

May 15, 2016 Posted by | Astronomy, Computer science, History, Language, Lectures, Mathematics, Music, Random stuff, Russia, Wikipedia | Leave a comment

Physically Speaking: A Dictionary of Quotations on Physics and Astronomy

Here’s my goodreads review of the book. As mentioned in the review, the book was overall a slightly disappointing read – but there were some decent quotes included in the book, and I decided that I ought to post a post with some sample quotes here as it would be a relatively easy post to write. Do note while reading this post that the book had a lot of bad quotes, so you should not take the sample quotes I’ve posted below to be representative of the book’s coverage in general.

i. “The aim of science is to seek the simplest explanation of complex facts. We are apt to fall into the error of thinking that the facts are simple because simplicity is the goal of our quest. The guiding motto in the life of every natural philosopher should be “Seek simplicity and distrust it.”” (Alfred North Whitehead)

ii. “Poor data and good reasoning give poor results. Good data and poor reasoning give poor results. Poor data and poor reasoning give rotten results.” (Edmund C. Berkeley)

iii. “By no process of sound reasoning can a conclusion drawn from limited data have more than a limited application.” (J.W. Mellor)

iv. “The energy produced by the breaking down of the atom is a very poor kind of thing. Anyone who expects a source of power from the transformation of these atoms is talking moonshine.” (Ernest Rutherford, 1933).

v. “An experiment is a question which science poses to Nature, and a measurement is the recording of Nature’s answer.” (Max Planck)

vi. “A fact doesn’t have to be understood to be true.” (Heinlein)

vii. “God was invented to explain mystery. God is always invented to explain those things that you do not understand. Now, when you finally discover how something works, you get some laws which you’re taking away from God; you don’t need him anymore. But you need him for the other mysteries. So therefore you leave him to create the universe because we haven’t figured that out yet; you need him for understanding those things which you don’t believe the laws will explain, such as consciousness, or why you only live to a certain length of time – life and death – stuff like that. God is always associated with those things that you do not understand.” (Feynman)

viii. “Hypotheses are the scaffolds which are erected in front of a building and removed when the building is completed. They are indispensable to the worker; but he must not mistake the scaffolding for the building.” (Goethe)

ix. “We are to admit no more cause of natural things than such as are both true and sufficient to explain their appearances.” (Newton)

x. “It is the province of knowledge to speak and it is the privilege of wisdom to listen.” (Oliver Wendell Holmes)

xi. “Light crosses space with the prodigious velocity of 6,000 leagues per second.

La Science Populaire
April 28, 1881″

“A typographical error slipped into our last issue that is important to correct. The speed of light is 76,000 leagues per hour – and not 6,000.

La Science Populaire

May 19, 1881″

“A note correcting a first error appeared in our issue number 68, indicating that the speed of light is 76,000 leagues per hour. Our readers have corrected this new error. The speed of light is approximately 76,000 leagues per second.

La Science Populaire
June 16,1881″

xii. “All models are wrong but some are useful.” (G. E. P. Box)

xiii. “the downward movement of a mass of gold or lead, or of any other body endowed with weight, is quicker in proportion to its size.” (Aristotle)

xiv. “those whom devotion to abstract discussions has rendered unobservant of the facts are too ready to dogmatize on the basis of a few observations” (-ll-).

xv. “it may properly be asked whether science can be undertaken without taking the risk of skating on the possibly thin ice of supposition. The important thing to know is when one is on the more solid ground of observation and when one is on the ice.” (W. M. O’Neil)

xvi. “If I could remember the names of all these particles, I’d be a botanist.” (Enrico Fermi)

xvii. “Theoretical physicists are accustomed to living in a world which is removed from tangible objects by two levels of abstraction. From tangible atoms we move by one level of abstraction to invisible fields and particles. A second level of abstraction takes us from fields and particles to the symmetry-groups by which fields and particles are related. The superstring theory takes us beyond symmetry-groups to two further levels of abstraction. The third level of abstraction is the interpretation of symmetry-groups in terms of states in ten-dimensional space-time. The fourth level is the world of the superstrings by whose dynamical behavior the states are defined.” (Freeman Dyson)

xviii. “Space tells matter how to move . . . and matter tells space how to curve.” (John Wheeler)

xix. “the universe is not a rigid and inimitable edifice where independent matter is housed in independent space and time; it is an amorphous continuum, without any fixed architecture, plastic and variable, constantly subject to change and distortion. Wherever there is matter and motion, the continuum is disturbed. Just as a fish swimming in the sea agitates the water around it, so a star, a comet, or a galaxy distorts the geometry of the space-time through which it moves.” (Lincoln Barnett)

xx. “most physicists today place the probability of the existence of tachyons only slightly higher than the existence of unicorns” (Nick Herbert).

December 19, 2015 Posted by | Astronomy, Books, Physics, Quotes/aphorisms, Religion | Leave a comment

A few lectures

I was debating whether to post this, but considering how long it’s been since my last post I decided to do it. A large number of lectures have recently been uploaded by the Institute for Advanced Studies, and despite the fact that most of my ‘blogging-related activities’ these days relate to book reading I have watched a few of those lectures, and so I decided to post a couple of the lectures here:

I liked this lecture. Part II of the lecture in particular, starting around the 38 minute mark, dealt with stuff reasonably closely related to things I’d read about before (‘relatively’…) recently, back when I read Lammer’s text (blog coverage here); so although I didn’t remember the stuff covered in Lammer’s text in too much detail, it was definitely helpful to have worked with this stuff before. However I do believe you can watch the lecture and sort of understand what she’s talking about without knowing a great deal about these topics, at least if you don’t care too much about understanding all the details (I’d note that there are a lot of things going on ‘behind the scenes’ here, and that you can say a lot of stuff about topics closely related to this talk, like outgassing processes and how they relate to things like volcanism as well as e.g. the dynamic interactions between atmospheric molecules and the solar wind taking place in the early stages of stellar evolution). As is always the case for IAS lectures it’s really hard to hear the questions being asked and that’s annoying, but actually I think miss Schilchting is reasonably good at repeating the question or sort of answer them in a way that enables you to gather what’s ‘going on’; at least the fact that you can’t hear the questions is in my opinion a somewhat bigger problem in the lecture below (relatedly you can actually also see where the laser pointer is pointing in this lecture, at least some of the time – you can’t in the lecture below).

As mentioned this one was harder to follow, at least for me.

I hope to find time to blog a bit more in the days to come. One of several reasons why I’ve not blogged more than I have during the last weeks is that I recently realized that if I put in a bit of effort I’d be able to reach 150 books this year (I’m currently at 143 books, but very close to 144), with 50 non-fiction books (I think going for 52 would be a bit too much, but I’m not ruling it out yet – I’m currently at 47 non-fiction books (…but very close to 48)). I should note that I update the book post to which I link above much more often than I update ‘the blog’ in general with new posts. The reason why the ‘read 150 books this year goal’ is relevant is of course that every time I blog a book here on the blog, this takes away a substantial amount of time which I can’t spend actually reading books. Goodreads incidentally have recently made a nice ‘book of the year’ profile where you can see more details about the books I’ve read etc. From that profile I realized that my implicit working goal of reading 100 pages/day over the year has already been met (I’m currently at ~42.000 pages).

December 18, 2015 Posted by | Astronomy, Books, Lectures, Physics | Leave a comment

A couple of lectures and a little bit of random stuff

i. Two lectures from the Institute for Advanced Studies:

The IAS has recently uploaded a large number of lectures on youtube, and the ones I blog here are a few of those where you can actually tell from the title what the lecture is about; I find it outright weird that these people don’t include the topic covered in the lecture in their lecture titles.

As for the video above, as usual for the IAS videos it’s annoying that you can’t hear the questions asked by the audience, but the sound quality of this video is at least quite a bit better than the sound quality of the video below (which has a couple of really annoying sequences, in particular around the 15-16 minutes mark (it gets better), where the image is also causing problems, and in the last couple of minutes of the Q&A things are also not exactly optimal as the lecturer leaves the area covered by the camera in order to write something on the blackboard – but you don’t know what he’s writing and you can’t see the lecturer, because the camera isn’t following him). I found most of the above lecture easier to follow than I did the lecture posted below, though in either case you’ll probably not understand all of it unless you’re an astrophysicist – you definitely won’t in case of the latter lecture. I found it helpful to look up a few topics along the way, e.g. the wiki articles about the virial theorem (/also dealing with virial mass/radius), active galactic nucleus (this is the ‘AGN’ she refers to repeatedly), and the Tully–Fisher relation.

Given how many questions are asked along the way it’s really annoying that you in most cases can’t hear what people are asking about – this is definitely an area where there’s room for improvement in the context of the IAS videos. The lecture was not easy to follow but I figured along the way that I understood enough of it to make it worth watching the lecture to the end (though I’d say you’ll not miss much if you stop after the lecture – around the 1.05 hours mark – and skip the subsequent Q&A). I’ve relatively recently read about related topics, e.g. pulsar formation and wave- and fluid dynamics, and if I had not I probably would not have watched this lecture to the end.

ii. A vocabulary.com update. I’m slowly working my way up to the ‘Running Dictionary’ rank (I’m only a walking dictionary at this point); here’s some stuff from my progress page:

Vocab
I recently learned from a note added to a list that I’ve actually learned a very large proportion of all words available on vocabulary.com, which probably also means that I may have been too harsh on the word selection algorithm in past posts here on the blog; if there aren’t (/m)any new words left to learn it should not be surprising that the algorithm presents me with words I’ve already mastered, and it’s not the algorithm’s fault that there aren’t more words available for me to learn (well, it is to the extent that you’re of the opinion that questions should be automatically created by the algorithm as well, but I don’t think we’re quite there yet at this point). The aforementioned note was added in June, and here’s the important part: “there are words on your list that Vocabulary.com can’t teach yet. Vocabulary.com can teach over 12,000 words, but sadly, these aren’t among them”. ‘Over 12.000’ – and I’ve mastered 11.300. When the proportion of mastered words is this high, not only will the default random word algorithm mostly present you with questions related to words you’ve already mastered; but it actually also starts to get hard to find lists with many words you’ve not already mastered – I’ll often load lists with one hundred words and then realize that I’ve mastered every word on the list. This is annoying if you have a desire to continually be presented with both new words as well as old ones. Unless vocabulary.com increases the rate with which they add new words I’ll run out of new words to learn, and if that happens I’m sure it’ll be much more difficult for me to find motivation to use the site.

With all that stuff out of the way, if you’re not a regular user of the site I should note – again – that it’s an excellent resource if you desire to increase your vocabulary. Below is a list of words I’ve encountered on the site in recent weeks(/months?):

Copaceticfrumpyelisiontermagantharridanquondam, funambulist, phantasmagoriaeyelet, cachinnate, wilt, quidnunc, flocculent, galoot, frangible, prevaricate, clarion, trivet, noisome, revenant, myrmidon (I have included this word once before in a post of this type, but it is in my opinion a very nice word with which more people should be familiar…), debenture, teeter, tart, satiny, romp, auricular, terpsichorean, poultice, ululation, fusty, tangy, honorarium, eyas, bumptious, muckraker, bayou, hobble, omphaloskepsis, extemporize, virago, rarefaction, flibbertigibbet, finagle, emollient.

iii. I don’t think I’d do things exactly the way she’s suggesting here, but the general idea/approach seems to me appealing enough for it to be worth at least keeping in mind if I ever decide to start dating/looking for a partner.

iv. Some wikipedia links:

Tarrare (featured). A man with odd eating habits and an interesting employment history (“Dr. Courville was keen to continue his investigations into Tarrare’s eating habits and digestive system, and approached General Alexandre de Beauharnais with a suggestion that Tarrare’s unusual abilities and behaviour could be put to military use.[9] A document was placed inside a wooden box which was in turn fed to Tarrare. Two days later, the box was retrieved from his excrement, with the document still in legible condition.[9][17] Courville proposed to de Beauharnais that Tarrare could thus serve as a military courier, carrying documents securely through enemy territory with no risk of their being found if he were searched.” Yeah…).

Cauda equina syndromeCastleman’s disease, Astereognosis, Familial dysautonomia, Homonymous hemianopsia, Amaurosis fugax. All of these are of course related to content covered in the Handbook.

1740 Batavia massacre (featured).

v. I am also fun.

October 30, 2015 Posted by | Astronomy, History, Immunology, Language, Lectures, Medicine, Neurology, Personal, Physics, Random stuff, Wikipedia | Leave a comment

A few lectures

The Institute for Advanced Studies recently released a number of new lectures on youtube and I’ve watched a few of them.

Both this lecture and the one below start abruptly with no introduction, but I don’t think much stuff was covered before the beginning of this recording. The stuff in both lectures is ‘reasonably’ closely related to content covered in the book on pulsars/supernovae/neutron stars by McNamara which I recently finished (goodreads link) (…for some definitions of ‘reasonably’ I should perhaps add – it’s not that closely related, and for example Ramirez’ comment around the 50 minute mark that they’re disregarding magnetic fields seemed weird to me in the context of McNamara’s coverage). The first lecture was definitely much easier for me to follow than was the last one. The fact that you can’t hear the questions being asked I found annoying, but there aren’t that many questions being asked along the way. I was surprised to learn via google that Ramirez seems to be affiliated with the Niels Bohr Institute of Copenhagen (link).

Here’s a third lecture from the IAS:

I really didn’t think much of this lecture, but some of you might like it. It’s very non-technical compared to the first two lectures above, and unlike them the video recording did not start abruptly in the ‘middle’ of the lecture – which in this case on the other hand also means that you can actually easily skip the first 6-7 minutes without missing out on anything. Given the stuff he talks about in roughly the last 10 minutes of the lecture (aside from the concluding remarks) this is probably a reasonable place to remind you that Feynman’s lectures on the character of physical law are available on youtube and uploaded on this blog (see the link). If you have not watched those lectures, I actually think you should probably do that before watching a lecture like the one above – it’s in all likelihood a better use of your time. If you’re curious about things like cosmological scales and haven’t watched any of videos in the Khan Academy cosmology and astronomy lecture series, this is incidentally a good place to go have a look; the first few videos in the lecture series are really nice. Tegmark talks in his lecture about how we’ve underestimated how large the universe is, but I don’t really think the lecture adequately conveys just how mindbogglingly large the universe is, and I think Salman Khan’s lectures are much better if you want to get ‘a proper perspective’ of these things, to the extent that obtaining a ‘proper perspective’ is even possible given the limitations of the human mind.

Lastly, a couple more lectures from khanacademymedicine:

This is a neat little overview, especially if you’re unfamiliar with the topic.

July 24, 2015 Posted by | Astronomy, Lectures, Medicine, Pharmacology, Physics, Psychology | Leave a comment