Econstudentlog

Infectious Disease Surveillance (III)

I have added some more observations from the book below.

“Zoonotic diseases are infections transmitted between animals and humans […]. A recent survey identified more than 1,400 species of human disease–causing agents, over half (58%) of which were zoonotic [2]. Moreover, nearly three-quarters (73%) of infectious diseases considered to be emerging or reemerging were zoonotic [2]. […] In many countries there is minimal surveillance for live animal imports or imported wildlife products. Minimal surveillance prevents the identification of wildlife trade–related health risks to the public, agricultural industry, and native wildlife [36] and has led to outbreaks of zoonotic diseases […] Southeast Asia [is] a hotspot for emerging zoonotic diseases because of rapid population growth, high population density, and high biodiversity […] influenza virus in particular is of zoonotic importance as multiple human infections have resulted from animal exposure [77–79].”

“[R]abies is an important cause of death in many countries, particularly in Africa and Asia [85]. Rabies is still underreported throughout the developing world, and 100-fold underreporting of human rabies is estimated for most of Africa [44]. Reasons for underreporting include lack of public health personnel, difficulties in identifying suspect animals, and limited laboratory capacity for rabies testing. […] Brucellosis […] is transmissible to humans primarily through consumption of unpasteurized milk or dairy products […] Brucella is classified as a category B bioterrorism agent [90] because of its potential for aerosolization [I should perhaps here mention that the book coverage does overlaps a bit with that of Fong & Alibek’s book – which I covered here – but that I decided against covering those topics in much detail here – US] […] The key to preventing brucellosis in humans is to control or eliminate infections in animals [91–93]; therefore, veterinarians are crucial to the identification, prevention, and control of brucellosis [89]. […] Since 1954 [there has been] an ongoing eradication program involving surveillance testing of cattle at slaughter, testing at livestock markets, and whole-herd testing on the farm [in the US] […] Except for endemic brucellosis in wildlife in the Greater Yellowstone Area, all 50 states and territories in the United States are free of bovine brucellosis [94].”

“Because of its high mortality rate in humans in the absence of early treatment, Y. pestis is viewed as one of the most pathogenic human bacteria [101]. In the United States, plague is most often found in the Southwest where it is transmitted by fleas and maintained in rodent populations [102]. Deer mice and voles typically serve as maintenance hosts [and] these animals are often resistant to plague [102]. In contrast, in amplifying host species such as prairie dogs, ground squirrels, chipmunks, and wood rats, plague spreads rapidly and results in high mortality [103]. […] Human infections with Y. pestis can result in bubonic, pneumonic, or septicemic plague, depending on the route of exposure. Bubonic plague is most common; however, pneumonic plague poses a more serious public health risk since it can be easily transmitted person-to-person through inhalation of aerosolized bacteria […] Septicemic plague is characterized by bloodstream infection with Y. pestis and can occur secondary to pneumonic or bubonic forms of infection or as a primary infection [6,60].
Plague outbreaks are often correlated with animal die-offs in the area [104], and rodent control near human residences is important to prevent disease [103]. […] household pets can be an important route of plague transmission and flea control in dogs and cats is an important prevention measure [105]. Plague surveillance involves monitoring three populations for infection: vectors (e.g., fleas), humans, and rodents [106]. In the past 20 years, the numbers of human cases of plague reported in the United States have varied from 1 to 17 cases per year [90]. […]
Since rodent species are the main reservoirs of the bacteria, these animals can be used for sentinel surveillance to provide an early warning of the public health risk to humans [106]. […] Rodent die-offs can often be an early indicator of a plague outbreak”.

“Zoonotic disease surveillance is crucial for protection of human and animal health. An integrated, sustainable system that collects data on incidence of disease in both animals and humans is necessary to ensure prompt detection of zoonotic disease outbreaks and a timely and focused response [34]. Currently, surveillance systems for animals and humans [operate] largely independently [34]. This results in an inability to rapidly detect zoonotic diseases, particularly novel emerging diseases, that are detected in the human population only after an outbreak occurs [109]. While most industrialized countries have robust disease surveillance systems, many developing countries currently lack the resources to conduct both ongoing and real-time surveillance [34,43].”

“Acute hepatitis of any cause has similar, usually indistinguishable, signs and symptoms. Acute illness is associated with fever, fatigue, nausea, abdominal pain, followed by signs of liver dysfunction, including jaundice, light to clay-colored stool, dark urine, and easy bruising. The jaundice, dark urine, and abnormal stool are because of the diminished capacity of the inflamed liver to handle the metabolism of bilirubin, which is a breakdown product of hemoglobin released as red blood cells are normally replaced. In severe hepatitis that is associated with fulminant liver disease, the liver’s capacity to produce clotting factors and to clear potential toxic metabolic products is severely impaired, with resultant bleeding and hepatic encephalopathy. […] An effective vaccine to prevent hepatitis A has been available for more than 15 years, and incidence rates of hepatitis A are dropping wherever it is used in routine childhood immunization programs. […] Currently, hepatitis A vaccine is part of the U.S. childhood immunization schedule recommended by the Advisory Committee on Immunization Practices (ACIP) [31].”

Chronic hepatitis — persistent and ongoing inflammation that can result from chronic infection — usually has minimal to no signs or symptoms […] Hepatitis B and C viruses cause acute hepatitis as well as chronic hepatitis. The acute component is often not recognized as an episode of acute hepatitis, and the chronic infection may have little or no symptoms for many years. With hepatitis B, clearance of infection is age related, as is presentation with symptoms. Over 90% of infants exposed to HBV develop chronic infection, while <1% have symptoms; 5–10% of adults develop chronic infection, but 50% or more have symptoms associated with acute infection. Among those who acquire hepatitis C, 15–45% clear the infection; the remainder have lifelong infection unless treated specifically for hepatitis C.”

“[D]ata are only received on individuals accessing care. Asymptomatic acute infection and poor or unavailable measurements for high risk populations […] have resulted in questionable estimates of the prevalence and incidence of hepatitis B and C. Further, a lack of understanding of the different types of viral hepatitis by many medical providers [18] has led to many undiagnosed individuals living with chronic infection, who are not captured in disease surveillance systems. […] Evaluation of acute HBV and HCV surveillance has demonstrated a lack of sensitivity for identifying acute infection in injection drug users; it is likely that most cases in this population go undetected, even if they receive medical care [36]. […] Best practices for conducting surveillance for chronic hepatitis B and C are not well established. […] The role of health departments in responding to infectious diseases is typically responding to acute disease. Response to chronic HBV infection is targeted to prevention of transmission to contacts of those infected, especially in high risk situations. Because of the high risk of vertical transmission and likely development of chronic disease in exposed newborns, identification and case management of HBV-infected pregnant women and their infants is a high priority. […] For a number of reasons, states do not conduct uniform surveillance for chronic hepatitis C. There is not agreement as to the utility of surveillance for chronic HCV infection, as it is a measurement of prevalent rather than incident cases.”

“Among all nationally notifiable diseases, three STDs (chlamydia, gonorrhea, and syphilis) are consistently in the top five most commonly reported diseases annually. These three STDs made up more than 86% of all reported diseases in the United States in 2010 [2]. […] The true burden of STDs is likely to be higher, as most infections are asymptomatic [4] and are never diagnosed or reported. A synthesis of a variety of data sources estimated that in 2008 there were over 100 million prevalent STDs and nearly 20 million incident STDs in the United States [5]. […] Nationally, 72% of all reported STDs are among persons aged 15–24 years [3], and it is estimated that 1 in 4 females aged 14–19 has an STD [7]. […] In 2011, the rates of chlamydia, gonorrhea, and primary and secondary syphilis among African-­Americans were, respectively, 7.5, 16.9, and 6.7 times the rates among whites [3]. Additionally, men who have sex with men (MSM) are disproportionately infected with STDs. […] several analyses have shown risk ratios above 100 for the associations between being an MSM and having syphilis or HIV [9,10]. […] Many STDs can be transmitted congenitally during pregnancy or birth. In 2008, over 400,000 neonatal deaths and stillbirths were associated with syphilis worldwide […] untreated chlamydia and gonorrhea can cause ophthalmia neonatorum in newborns, which can result in blindness [13]. The medical and societal costs for STDs are high. […] One estimate in 2008 put national costs at $15.6 billion [15].”

“A significant challenge in STD surveillance is that the term “STD” encompasses a variety of infections. Currently, there are over 35 pathogens that can be transmitted sexually, including bacteria […] protozoa […] and ectoparasites […]. Some infections can cause clinical syndromes shortly after exposure, whereas others result in no symptoms or have a long latency period. Some STDs can be easily diagnosed using self-collected swabs, while others require a sample of blood or a physical examination by a clinician. Consequently, no one particular surveillance strategy works for all STDs. […] The asymptomatic nature of most STDs limits inferences from case­-based surveillance, since in order to be counted in this system an infection must be diagnosed and reported. Additionally, many infections never result in disease. For example, an estimated 90% of human papillomavirus (HPV) infections resolve on their own without sequelae [24]. As such, simply counting infections may not be appropriate, and sequelae must also be monitored. […] Strategies for STD surveillance include case reporting; sentinel surveillance; opportunistic surveillance, including use of administrative data and positivity in screened populations; and population-­based studies […] the choice of strategy depends on the type of STD and the population of interest.”

“Determining which diseases and conditions should be included in mandatory case reporting requires balancing the benefits to the public health system (e.g., utility of the data) with the costs and burdens of case reporting. While many epidemiologists and public health practitioners follow the mantra “the more data, the better,” the costs (in both dollars and human resources) of developing and maintaining a robust case­-based reporting system can be large. Case­-based surveillance has been mandated for chlamydia, gonorrhea, syphilis, and chancroid nationally; but expansion of state­-initiated mandatory reporting for other STDs is controversial.”

August 18, 2017 Posted by | Books, Epidemiology, Immunology, Infectious disease, Medicine | Leave a comment

Type 1 Diabetes Is Associated With an Increased Risk of Fracture Across the Life Span

Type 1 Diabetes Is Associated With an Increased Risk of Fracture Across the Life Span: A Population-Based Cohort Study Using The Health Improvement Network (THIN).

I originally intended to include this paper in a standard diabetes post like this one, but the post gradually got more and more unwieldy as I added more stuff and so in the end I decided – like in this case – that it might be a better idea to just devote an entire post to the paper and then postpone my coverage of some of the other papers included in the post.

I’ve talked about this stuff before, but I’m almost certain the results of this paper were not included in Czernik and Fowlkes’ book as this paper was published at almost exactly the same time as was the book. It provides further support of some of the observations included in C&F’s publication. This is a very large and important study in the context of the relationship between type 1 diabetes and skeletal health. I have quoted extensively from the paper below, and also added some observations of my own along the way in order to provide a little bit of context where it might be needed:

“There is an emerging awareness that diabetes adversely affects skeletal health and that type 1 diabetes affects the skeleton more severely than type 2 diabetes (5). Studies in humans and animal models have identified a number of skeletal abnormalities associated with type 1 diabetes, including deficits in bone mineral density (BMD) (6,7) and bone structure (8), decreased markers of bone formation (9,10), and variable alterations in markers of bone resorption (10,11).

Previous studies and two large meta-analyses reported that type 1 diabetes is associated with an increased risk of fracture (1219). However, most of these studies were conducted in older adults and focused on hip fractures. Importantly, most affected individuals develop type 1 diabetes in childhood, before the attainment of peak bone mass, and therefore may be at increased risk of fracture throughout their life span. Moreover, because hip fractures are rare in children and young adults, studies limited to this outcome may underestimate the overall fracture burden in type 1 diabetes.

We used The Health Improvement Network (THIN) database to conduct a population-based cohort study to determine whether type 1 diabetes is associated with increased fracture incidence, to delineate age and sex effects on fracture risk, and to determine whether fracture site distribution is altered in participants with type 1 diabetes compared with participants without diabetes. […] 30,394 participants aged 0–89 years with type 1 diabetes were compared with 303,872 randomly selected age-, sex-, and practice-matched participants without diabetes. Cox regression analysis was used to determine hazard ratios (HRs) for incident fracture in participants with type 1 diabetes. […] A total of 334,266 participants, median age 34 years, were monitored for 1.9 million person-years. HR were lowest in males and females age <20 years, with HR 1.14 (95% CI 1.01–1.29) and 1.35 (95% CI 1.12–1.63), respectively. Risk was highest in men 60–69 years (HR 2.18 [95% CI 1.79–2.65]), and in women 40–49 years (HR 2.03 [95% CI 1.73–2.39]). Lower extremity fractures comprised a higher proportion of incident fractures in participants with versus those without type 1 diabetes (31.1% vs. 25.1% in males, 39.3% vs. 32% in females; P < 0.001). Secondary analyses for incident hip fractures identified the highest HR of 5.64 (95% CI 3.55–8.97) in men 60–69 years and the highest HR of 5.63 (95% CI 2.25–14.11) in women 30–39 years.”

“Conditions identified by diagnosis codes as covariates of interest were hypothyroidism, hyperthyroidism, adrenal insufficiency, celiac disease, inflammatory bowel disease, vitamin D deficiency, fracture before the start of the follow-up period, diabetic retinopathy, and diabetic neuropathy. All variables, with the exception of prior fracture, were treated as time-varying covariates. […] Multivariable Cox regression analysis was used to assess confounding by covariates of interest. Final models were stratified by age category (<20, 20–29, 30–39, 40–49, 50–59, 60–69, and ≥70 years) after age was found to be a significant predictor of fracture and to violate the assumption of proportionality of hazards […] Within each age stratum, models were again assessed for proportionality of hazards and further stratified where appropriate.”

A brief note on a few of those covariates. Some of them are obvious, other perhaps less so. Retinopathy is probably included mainly due to the associated vision issues, rather than some sort of direct pathophysiological linkage between the conditions; vision problems may increase the risk of falls, particularly in the elderly, and falls increase the fracture risk (they note this later on in the paper). Neuropathy could in my opinion affect risk in multiple ways, not only through an increased fall risk, but either way it certainly makes a lot of sense to include that variable if it’s available. Thyroid disorders can cause bone problems, and the incidence of thyroid disorders is elevated in type 1 – to the extent that e.g. the Oxford Handbook of Clinical Medicine recommends screening people with diabetes mellitus for abnormalities in thyroid function on the annual review. Both Addison‘s (adrenal insufficiency) and thyroid disorders in type 1 diabetics may be specific components of a more systemic autoimmune disease (relevant link here, see the last paragraph), by some termed autoimmune polyendocrine syndromes. When you treat people with Addison’s you give them glucocorticoids, and this treatment can have deleterious effects on bone density especially in the long run – they note in the paper that exposure to corticosteroids is a significant fracture predictor in their models, which is not surprising. In one of the chapters included in Horowitz & Samson‘s book (again, I hope to cover it in more detail later…) the authors note that the combination of coeliac disease and diabetes may lead to protein malabsorption (among other things), which can obviously affect bone health, and they also observe e.g. that common lab abnormalities found in patients with coeliac include “low levels of haemoglobin, albumin, calcium, potassium, magnesium and iron” and furthermore that “extra-intestinal symptoms [include] muscle cramps, bone pain due to osteoporotic fractures or osteomalacia” – coeliac is obviously relevant here, especially as the condition is much more common in type 1 diabetics than in non-diabetics (“The prevalence of coeliac disease in type 1 diabetic children varies from 1.0% to 3.5%, which is at least 15 times higher than the prevalence among children without diabetes” – also an observation from H&S’s book, chapter 5).

Moving on…

“During the study period, incident fractures occurred in 2,615 participants (8.6%) with type 1 diabetes compared with 18,624 participants (6.1%) without diabetes. […] The incidence in males was greatest in the 10- to 20-year age bracket, at 297.2 and 261.3 fractures per 10,000 person-years in participants with and without type 1 diabetes, respectively. The fracture incidence in women was greatest in the 80- to 90-year age bracket, at 549.1 and 333.9 fractures per 10,000 person-years in participants with and without type 1 diabetes, respectively.”

It’s important to note that the first percentages reported above (8.6% vs 6.1%) may be slightly misleading as the follow-up periods for the two groups were dissimilar; type 1s in the study were on average followed for a shorter amount of time than were the controls (4.7 years vs 3.89 years), meaning that raw incident fracture risk estimates like these cannot be translated directly into person-year estimates. The risk differential is thus at least slightly higher than these percentages would suggest. A good view of how the person-year risk difference evolves as a function of age/time are displayed in the paper’s figure 2.

“Hip fractures alone comprised 5.5% and 11.6% of all fractures in males and females with type 1 diabetes, compared with 4.1% and 8.6% in males and females without diabetes (P = 0.04 for males and P = 0.001 for females). Participants with type 1 diabetes with a lower extremity fracture were more likely to have retinopathy (30% vs. 22.5%, P < 0.001) and neuropathy (5.4% vs. 2.9%, P = 0.001) compared with those with fractures at other sites. The median average HbA1c did not differ between the two groups.”

I’ll reiterate this because it’s important: They care about lower-extremity fractures because some of those kinds of fractures, especially hip fractures, have a really poor prognosis. It’s not that it’s annoying and you’ll need a cast; I’ve seen estimates suggesting that roughly one-third of diabetics who sustain a hip fracture die within a year; a prognosis like that is much worse than many cancers. A few relevant observations from Czernik and Fowlkes:

“Together, [studies conducted during the last 15 years on type 1 diabetics] demonstrate an unequivocally increased fracture risk at the hip [compared to non-diabetic controls], with most demonstrating a six to ninefold increase in relative risk. […] type I DM patients have hip fractures at a younger age on average, with a mean of 43 for women and 41 for men in one study. Almost 7 % of people with type I DM can be expected to have sustained a hip fracture by age 65 [7] […] Patients with DM and hip fracture are at a higher risk of mortality than patients without DM, with 1-year rates as high as 32 % vs. 13 % of nondiabetic patients”.

Back to the paper:

“Incident hip fracture risk was increased in all age categories for female participants with type 1 diabetes, and in age categories >30 years in men. […] Type 1 diabetes remained significantly associated with fracture after adjustment for covariates in all previously significant sex and age strata, with the exception of women aged 40–49. […] Each 1% (11 mmol/mol) greater average HbA1c level was associated with a 5% greater risk of incident fracture in males and an 11% greater risk of fracture in females. Diabetic neuropathy was a significant risk factor for incident fracture in males (HR 1.33; 95% CI 1.03–1.72) and females (HR 1.52; 95% CI 1.19–1.92); however, diabetic retinopathy was significant only in males (HR 1.13; 95% CI 1.01–1.28). […] The presence of celiac disease was associated with an increased risk of fractures in females, with an HR of 1.8 (95% CI 1.18–2.76), but not in males. A higher BMI was protective against fracture. Smoking was a risk factor for fracture in males in the 13,763 participants with type 1 diabetes with smoking and BMI data available for analysis.”

The Hba1c-link was interesting to me because the relationships between glycemic control and fracture risk has in other contexts been somewhat unclear; one problem is that Hba1c levels in the lower ranges increase the risk of hypoglycemic episodes, and such episodes may increase the risk of fractures, so even if chronic hyperglycemia is bad for bone health if you don’t have access e.g. to event-level/-rate data on hypoglycemic episodes confounding may be an issue causing a (very plausible) chronic hyperglycemia-fracture risk link to perhaps be harder to detect than it otherwise might have been. It’s of note that these guys did not have access to data on hypoglycemic episodes. They observe later in the paper that: “If hypoglycemia was a major contributing factor, we might have expected a negative effect of HbA1c on fracture risk; our data indicated the opposite.” I don’t think you can throw out hypoglycemia as a contributing factor that easily.

Anyway, a few final observations from the paper:

CONCLUSIONS Type 1 diabetes was associated with increased risk of incident fracture that began in childhood and extended across the life span. Participants with type 1 diabetes sustained a disproportionately greater number of lower extremity fractures. These findings have important public health implications, given the increasing prevalence of type 1 diabetes and the morbidity and mortality associated with hip fractures.”

“To our knowledge, this is the first study to show that the increased fracture risk in type 1 diabetes begins in childhood. This finding has important implications for researchers planning future studies and for clinicians caring for patients in this population. Although peak bone mass is attained by the end of the third decade of life, peak bone accrual occurs in adolescence in conjunction with the pubertal growth spurt (31). This critical time for bone accrual may represent a period of increased skeletal vulnerability and also a window of opportunity for the implementation of therapies to improve bone formation (32). This is an especially important consideration in the population with type 1 diabetes, because the incidence of this disease peaks in early adolescence. Three-quarters of individuals will develop the condition before 18 years of age, and therefore before attainment of peak bone mass (33). The development and evaluation of therapies aimed at increasing bone formation and strength in adolescence may lead to a lifelong reduction in fracture risk.”

“The underlying mechanism for the increased fracture risk in patients with type 1 diabetes is not fully understood. Current evidence suggests that bone quantity and quality may both be abnormal in this condition. Clinical studies using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography have identified mild to modest deficits in BMD and bone structure in both pediatric and adult participants with type 1 diabetes (6,8,34). Deficits in BMD are unlikely to be the only factor contributing to skeletal fragility in type 1 diabetes, however, as evidenced by a recent meta-analysis that found that the increased fracture risk seen in type 1 diabetes could not be explained by deficits in BMD alone (16). Recent cellular and animal models have shown that insulin signaling in osteoblasts and osteoblast progenitor cells promotes postnatal bone acquisition, suggesting that the insulin deficiency inherent in type 1 diabetes is a significant contributor to the pathogenesis of skeletal disease (35). Other proposed mechanisms contributing to skeletal fragility in type 1 diabetes include chronic hyperglycemia (36), impaired production of IGF-1 (37), and the accumulation of advanced glycation end products in bone (38). Our results showed that a higher average HbA1c was associated with an increased risk of fracture in participants with type 1 diabetes, supporting the hypothesis that chronic hyperglycemia and its sequelae contribute to skeletal fragility.”

“In summary, our study found that participants of all ages with type 1 diabetes were at increased risk of fracture. The adverse effect of type 1 diabetes on the skeleton is an underrecognized complication that is likely to grow into a significant public health burden given the increasing incidence and prevalence of this disease. […] Our novel finding that children with type 1 diabetes were already at increased risk of fracture suggests that therapeutic interventions aimed at children and adolescents may have an important effect on reducing lifelong fracture risk.”

August 15, 2017 Posted by | Diabetes, Epidemiology, Medicine, Studies | Leave a comment

Infectious Disease Surveillance (II)

Some more observation from the book below.

“There are three types of influenza viruses — A, B, and C — of which only types A and B cause widespread outbreaks in humans. Influenza A viruses are classified into subtypes based on antigenic differences between their two surface glycoproteins, hemagglutinin and neuraminidase. Seventeen hemagglutinin subtypes (H1–H17) and nine neuraminidase subtypes (N1–N9) have been identifed. […] The internationally accepted naming convention for influenza viruses contains the following elements: the type (e.g., A, B, C), geographical origin (e.g., Perth, Victoria), strain number (e.g., 361), year of isolation (e.g., 2011), for influenza A the hemagglutinin and neuraminidase antigen description (e.g., H1N1), and for nonhuman origin viruses the host of origin (e.g., swine) [4].”

“Only two antiviral drug classes are licensed for chemoprophylaxis and treatment of influenza—the adamantanes (amantadine and rimantadine) and the neuraminidase inhibitors (oseltamivir and zanamivir). […] Antiviral resistant strains arise through selection pressure in individual patients during treatment [which can lead to treatment failure]. […] they usually do not transmit further (because of impaired virus fitness) and have limited public health implications. On the other hand, primarily resistant viruses have emerged in the past decade and in some cases have completely replaced the susceptible strains. […] Surveillance of severe influenza illness is challenging because most cases remain undiagnosed. […] In addition, most of the influenza burden on the healthcare system is because of complications such as secondary bacterial infections and exacerbations of pre-existing chronic diseases, and often influenza is not suspected as an underlying cause. Even if suspected, the virus could have been already cleared from the respiratory secretions when the testing is performed, making diagnostic confirmation impossible. […] Only a small proportion of all deaths caused by influenza are classified as influenza-related on death certificates. […] mortality surveillance based only on death certificates is not useful for the rapid assessment of an influenza epidemic or pandemic severity. Detection of excess mortality in real time can be done by establishing specific monitoring systems that overcome these delays [such as sentinel surveillance systems, US].”

“Influenza vaccination programs are extremely complex and costly. More than half a billion doses of influenza vaccines are produced annually in two separate vaccine production cycles, one for the Northern Hemisphere and one for the Southern Hemisphere [54]. Because the influenza virus evolves constantly and vaccines are reformulated yearly, both vaccine effectiveness and safety need to be monitored routinely. Vaccination campaigns are also organized annually and require continuous public health efforts to maintain an acceptable level of vaccination coverage in the targeted population. […] huge efforts are made and resources spent to produce and distribute influenza vaccines annually. Despite these efforts, vaccination coverage among those at risk in many parts of the world remains low.”

“The Active Bacterial Core surveillance (ABCs) network and its predecessor have been examples of using surveillance as information for action for over 20 years. ABCs has been used to measure disease burden, to provide data for vaccine composition and recommended-use policies, and to monitor the impact of interventions. […] sites represent wide geographic diversity and approximately reflect the race and urban-to-rural mix of the U.S. population [37]. Currently, the population under surveillance is 19–42 million and varies by pathogen and project. […] ABCs has continuously evolved to address challenging questions posed by the six pathogens (H. influenzae; GAS [Group A Streptococcus], GBS [Group B Streptococcus], S.  pneumoniae, N. meningitidis, and MRSA) and other emerging infections. […] For the six core pathogens, the objectives are (1) to determine the incidence and epidemiologic characteristics of invasive disease in geographically diverse populations in the United States through active, laboratory, and population-based surveillance; (2) to determine molecular epidemiologic patterns and microbiologic characteristics of isolates collected as part of routine surveillance in order to track antimicrobial resistance; (3) to detect the emergence of new strains with new resistance patterns and/or virulence and contribute to development and evaluation of new vaccines; and (4) to provide an infrastructure for surveillance of other emerging pathogens and for conducting studies aimed at identifying risk factors for disease and evaluating prevention policies.”

“Food may become contaminated by over 250 bacterial, viral, and parasitic pathogens. Many of these agents cause diarrhea and vomiting, but there is no single clinical syndrome common to all foodborne diseases. Most of these agents can also be transmitted by nonfoodborne routes, including contact with animals or contaminated water. Therefore, for a given illness, it is often unclear whether the source of infection is foodborne or not. […] Surveillance systems for foodborne diseases provide extremely important information for prevention and control.”

“Since 1995, the Centers for Disease Control and Prevention (CDC) has routinely used an automated statistical outbreak detection algorithm that compares current reports of each Salmonella serotype with the preceding 5-year mean number of cases for the same geographic area and week of the year to look for unusual clusters of infection [5]. The sensitivity of Salmonella serotyping to detect outbreaks is greatest for rare serotypes, because a small increase is more noticeable against a rare background. The utility of serotyping has led to its widespread adoption in surveillance for food pathogens in many countries around the world [6]. […] Today, a new generation of subtyping methods […] is increasing the specificity of laboratory-based surveillance and its power to detect outbreaks […] Molecular subtyping allows comparison of the molecular “fingerprint” of bacterial strains. In the United States, the CDC coordinates a network called PulseNet that captures data from standardized molecular subtyping by PFGE [pulsed field gel electrophoresis]. By comparing new submissions and past data, public health officials can rapidly identify geographically dispersed clusters of disease that would otherwise not be apparent and evaluate them as possible foodborne-disease outbreaks [8]. The ability to identify geographically dispersed outbreaks has become increasingly important as more foods are mass-produced and widely distributed. […] Similar networks have been developed in Canada, Europe, the Asia Pacifc region, Latin America and the Caribbean region, the Middle Eastern region and, most recently, the African region”.

“Food consumption and practices have changed during the past 20 years in the United States, resulting in a shift from readily detectable, point-source outbreaks (e.g., attendance at a wedding dinner), to widespread outbreaks that occur over many communities with only a few illnesses in each community. One of the changes has been establishment of large food-producing facilities that disseminate products throughout the country. If a food product is contaminated with a low level of pathogen, contaminated food products are distributed across many states; and only a few illnesses may occur in each community. This type of outbreak is often difficult to detect. PulseNet has been critical for the detection of widely dispersed outbreaks in the United States [17]. […] The growth of the PulseNet database […] and the use of increasingly sophisticated epidemiological approaches have led to a dramatic increase in the number of multistate outbreaks detected and investigated.”

“Each year, approximately 35 million people are hospitalized in the United States, accounting for 170 million inpatient days [1,2]. There are no recent estimates of the numbers of healthcare-associated infections (HAI). However, two decades ago, HAI were estimated to affect more than 2 million hospital patients annually […] The mortality attributed to these HAI was estimated at about 100,000 deaths annually. […] Almost 85% of HAI in the United States are associated with bacterial pathogens, and 33% are thought to be preventable [4]. […] The primary purpose of surveillance [in the context of HAI] is to alert clinicians, epidemiologists, and laboratories of the need for targeted prevention activities required to reduce HAI rates. HAI surveillance data help to establish baseline rates that may be used to determine the potential need to change public health policy, to act and intervene in clinical settings, and to assess the effectiveness of microbiology methods, appropriateness of tests, and allocation of resources. […] As less than 10% of HAI in the United States occur as recognized epidemics [18], HAI surveillance should not be embarked on merely for the detection of outbreaks.”

“There are two types of rate comparisons — intrahospital and interhospital. The primary goals of intrahospital comparison are to identify areas within the hospital where HAI are more likely to occur and to measure the efficacy of interventional efforts. […] Without external comparisons, hospital infection control departments may [however] not know if the endemic rates in their respective facilities are relatively high or where to focus the limited fnancial and human resources of the infection control program. […] The CDC has been the central aggregating institution for active HAI surveillance in the United States since the 1960s.”

“Low sensitivity (i.e., missed infections) in a surveillance system is usually more common than low specificity (i.e., patients reported to have infections who did not actually have infections).”

“Among the numerous analyses of CDC hospital data carried out over the years, characteristics consistently found to be associated with higher HAI rates include affiliation with a medical school (i.e., teaching vs. nonteaching), size of the hospital and ICU categorized by the number of beds (large hospitals and larger ICUs generally had higher infection rates), type of control or ownership of the hospital (municipal, nonprofit, investor owned), and region of the country [43,44]. […] Various analyses of SENIC and NNIS/NHSN data have shown that differences in patient risk factors are largely responsible for interhospital differences in HAI rates. After controlling for patients’ risk factors, average lengths of stay, and measures of the completeness of diagnostic workups for infection (e.g., culturing rates), the differences in the average HAI rates of the various hospital groups virtually disappeared. […] For all of these reasons, an overall HAI rate, per se, gives little insight into whether the facility’s infection control efforts are effective.”

“Although a hospital’s surveillance system might aggregate accurate data and generate appropriate risk-adjusted HAI rates for both internal and external comparison, comparison may be misleading for several reasons. First, the rates may not adjust for patients’ unmeasured intrinsic risks for infection, which vary from hospital to hospital. […] Second, if surveillance techniques are not uniform among hospitals or are used inconsistently over time, variations will occur in sensitivity and specificity for HAI case finding. Third, the sample size […] must be sufficient. This issue is of concern for hospitals with fewer than 200 beds, which represent about 10% of hospital admissions in the United States. In most CDC analyses, rates from hospitals with very small denominators tend to be excluded [37,46,49]. […] Although many healthcare facilities around the country aggregate HAI surveillance data for baseline establishment and interhospital comparison, the comparison of HAI rates is complex, and the value of the aggregated data must be balanced against the burden of their collection. […] If a hospital does not devote sufficient resources to data collection, the data will be of limited value, because they will be replete with inaccuracies. No national database has successfully dealt with all the problems in collecting HAI data and each varies in its ability to address these problems. […] While comparative data can be useful as a tool for the prevention of HAI, in some instances no data might be better than bad data.”

August 10, 2017 Posted by | Books, Data, Epidemiology, Infectious disease, Medicine, Statistics | Leave a comment

A few diabetes papers of interest

i. Long-term Glycemic Variability and Risk of Adverse Outcomes: A Systematic Review and Meta-analysis.

“This systematic review and meta-analysis evaluates the association between HbA1c variability and micro- and macrovascular complications and mortality in type 1 and type 2 diabetes. […] Seven studies evaluated HbA1c variability among patients with type 1 diabetes and showed an association of HbA1c variability with renal disease (risk ratio 1.56 [95% CI 1.08–2.25], two studies), cardiovascular events (1.98 [1.39–2.82]), and retinopathy (2.11 [1.54–2.89]). Thirteen studies evaluated HbA1c variability among patients with type 2 diabetes. Higher HbA1c variability was associated with higher risk of renal disease (1.34 [1.15–1.57], two studies), macrovascular events (1.21 [1.06–1.38]), ulceration/gangrene (1.50 [1.06–2.12]), cardiovascular disease (1.27 [1.15–1.40]), and mortality (1.34 [1.18–1.53]). Most studies were retrospective with lack of adjustment for potential confounders, and inconsistency existed in the definition of HbA1c variability.

CONCLUSIONS HbA1c variability was positively associated with micro- and macrovascular complications and mortality independently of the HbA1c level and might play a future role in clinical risk assessment.”

Two observations related to the paper: One, although only a relatively small number of studies were included in the review, the number of patients included in some of those included studies was rather large – the 7 type 1 studies thus included 44,021 participants, and the 13 type 2 studies included in total 43,620 participants. Two, it’s noteworthy that some of the associations already look at least reasonably strong, despite interest in HbA1c variability being a relatively recent phenomenon. Confounding might be an issue, but then again it almost always might be, and to give an example, out of 11 studies analyzing the association between renal disease and HbA1c variability included in the review, ten of them support a link and the only one which does not was a small study on pediatric patients which was almost certainly underpowered to investigate such a link in the first place (the base rate of renal complications is, as mentioned before here on this blog quite recently (link 3), quite low in pediatric samples).

ii. Risk of Severe Hypoglycemia in Type 1 Diabetes Over 30 Years of Follow-up in the DCCT/EDIC Study.

(I should perhaps note here that I’m already quite familiar with the context of the DCCT/EDIC study/studies, and although readers may not be, and although background details are included in the paper, I decided not to cover such details here although they would make my coverage of the paper easier to understand. I instead decided to limit my coverage of the paper to a few observations which I myself found to be of interest.)

“During the DCCT, the rates of SH [Severe Hypoglycemia, US], including episodes with seizure or coma, were approximately threefold greater in the intensive treatment group than in the conventional treatment group […] During EDIC, the frequency of SH increased in the former conventional group and decreased in the former intensive group so that the difference in SH event rates between the two groups was no longer significant (36.6 vs. 40.8 episodes per 100 patient-years, respectively […] By the end of DCCT, with an average of 6.5 years of follow-up, 65% of the intensive group versus 35% of the conventional group experienced at least one episode of SH. In contrast, ∼50% of participants within each group reported an episode of SH during the 20 years of EDIC.”

“Of [the] participants reporting episodes of SH, during the DCCT, 54% of the intensive group and 30% of the conventional group experienced four or more episodes, whereas in EDIC, 37% of the intensive group and 33% of the conventional group experienced four or more events […]. Moreover, a subset of participants (14% [99 of 714]) experienced nearly one-half of all SH episodes (1,765 of 3,788) in DCCT, and a subset of 7% (52 of 709) in EDIC experienced almost one-third of all SH episodes (888 of 2,813) […] Fifty-one major accidents occurred during the 6.5 years of DCCT and 143 during the 20 years of EDIC […] The most frequent type of major accident was that involving a motor vehicle […] Hypoglycemia played a role as a possible, probable, or principal cause in 18 of 28 operator-caused motor vehicle accidents (MVAs) during DCCT […] and in 23 of 54 operator-caused MVAs during EDIC”.

“The T1D Exchange Clinic Registry recently reported that 8% of 4,831 adults with T1D living in the U.S. had a seizure or coma event during the 3 months before their most recent annual visit (11). During EDIC, we observed that 27% of the cohort experienced a coma or seizure event over the 20 years of 3-month reporting intervals (∼1.4% per year), a much lower annual risk than in the T1D Exchange Clinic Registry. In part, the open enrollment of patients into the T1D Exchange may be reflected without the exclusion of participants with a history of SH as in the DCCT and other clinical trials. The current data support the clinical perception that a small subset of individuals is more susceptible to SH (7% of patients with 11 or more SH episodes during EDIC, which represents 32% of all SH episodes in EDIC) […] a history of SH during DCCT and lower current HbA1c levels were the two major factors associated with an increased risk of SH during EDIC. Safety concerns were the reason why a history of frequent SH events was an exclusion criterion for enrollment in DCCT. […] Of note, we found that participants who entered the DCCT as adolescents were more likely to experience SH during EDIC.”

“In summary, although event rates in the DCCT/EDIC cohort seem to have fallen and stabilized over time, SH remains an ever-present threat for patients with T1D who use current technology, occurring at a rate of ∼36–41 episodes per 100 patient-years, even among those with longer diabetes duration. Having experienced one or more such prior events is the strongest predictor of a future SH episode.”

I didn’t actually like that summary. If a history of severe hypoglycemia was an exclusion criterion in the DCCT trial, which it was, then the event rate you’d get from this data set is highly likely to provide a biased estimator of the true event rate, as the Exchange Clinic Registry data illustrate. The true population event rate in unselected samples is higher.

Another note which may also be important to add is that many diabetics who do not have a ‘severe event’ during a specific time period might still experience a substantial number of hypoglycemic episodes; ‘severe events’ (which require the assistance of another individual) is a somewhat blunt instrument in particular for assessing quality-of-life aspects of hypoglycemia.

iii. The Presence and Consequence of Nonalbuminuric Chronic Kidney Disease in Patients With Type 1 Diabetes.

“This study investigated the prevalence of nonalbuminuric chronic kidney disease in type 1 diabetes to assess whether it increases the risk of cardiovascular and renal outcomes as well as all-cause mortality. […] This was an observational follow-up of 3,809 patients with type 1 diabetes from the Finnish Diabetic Nephropathy Study. […] mean age was 37.6 ± 11.8 years and duration of diabetes 21.2 ± 12.1 years. […] During 13 years of median follow-up, 378 developed end-stage renal disease, 415 suffered an incident cardiovascular event, and 406 died. […] At baseline, 78 (2.0%) had nonalbuminuric chronic kidney disease. […] Nonalbuminuric chronic kidney disease did not increase the risk of albuminuria (hazard ratio [HR] 2.0 [95% CI 0.9–4.4]) or end-stage renal disease (HR 6.4 [0.8–53.0]) but did increase the risk of cardiovascular events (HR 2.0 [1.4–3.5]) and all-cause mortality (HR 2.4 [1.4–3.9]). […] ESRD [End-Stage Renal Disease] developed during follow-up in 0.3% of patients with nonalbuminuric non-CKD [CKD: Chronic Kidney Disease], in 1.3% of patients with nonalbuminuric CKD, in 13.9% of patients with albuminuric non-CKD, and in 63.0% of patients with albuminuric CKD (P < 0.001).”

CONCLUSIONS Nonalbuminuric chronic kidney disease is not a frequent finding in patients with type 1 diabetes, but when present, it is associated with an increased risk of cardiovascular morbidity and all-cause mortality but not with renal outcomes.”

iv. Use of an α-Glucosidase Inhibitor and the Risk of Colorectal Cancer in Patients With Diabetes: A Nationwide, Population-Based Cohort Study.

This one relates closely to stuff covered in Horowitz & Samsom’s book about Gastrointestinal Function in Diabetes Mellitus which I just finished (and which I liked very much). Here’s a relevant quote from chapter 7 of that book (which is about ‘Hepato-biliary and Pancreatic Function’):

“Several studies have provided evidence that the risk of pancreatic cancer is increased in patients with type 1 and type 2 diabetes mellitus [136,137]. In fact, diabetes has been associated with an increased risk of several cancers, including those of the pancreas, liver, endometrium and kidney [136]. The pooled relative risk of pancreatic cancer for diabetics vs. non-diabetics in a meta-analysis was 2.1 (95% confidence interval 1.6–2.8). Patients presenting with diabetes mellitus within a period of 12 months of the diagnosis of pancreatic cancer were excluded because in these cases diabetes may be an early presenting sign of pancreatic cancer rather than a risk factor [137]”.

They don’t mention colon cancer there, but it’s obvious from the research which has been done – and which is covered extensively in that book – that diabetes has the potential to cause functional changes in a large number of components of the digestive system (and I hope to cover this kind of stuff in a lot more detail later on) so the fact that some of these changes may lead to neoplastic changes should hardly be surprising. However evaluating causal pathways is more complicated here than it might have been, because e.g. pancreatic diseases may also themselves cause secondary diabetes in some patients. Liver pathologies like hepatitis B and C also display positive associations with diabetes, although again causal pathways here are not completely clear; treatments used may be a contributing factor (interferon-treatment may induce diabetes), but there are also suggestions that diabetes should be considered one of the extrahepatic manifestations of hepatitis. This stuff is complicated.

The drug mentioned in the paper, acarbose, is incidentally a drug also discussed in some detail in the book. It belongs to a group of drugs called alpha glucosidase inhibitors, and it is ‘the first antidiabetic medication designed to act through an influence on intestinal functions.’ Anyway, some quotes from the paper:

“We conducted a nationwide, population-based study using a large cohort with diabetes in the Taiwan National Health Insurance Research Database. Patients with newly diagnosed diabetes (n = 1,343,484) were enrolled between 1998 and 2010. One control subject not using acarbose was randomly selected for each subject using acarbose after matching for age, sex, diabetes onset, and comorbidities. […] There were 1,332 incident cases of colorectal cancer in the cohort with diabetes during the follow-up period of 1,487,136 person-years. The overall incidence rate was 89.6 cases per 100,000 person-years. Patients treated with acarbose had a 27% reduction in the risk of colorectal cancer compared with control subjects. The adjusted HRs were 0.73 (95% CI 0.63–0.83), 0.69 (0.59–0.82), and 0.46 (0.37–0.58) for patients using >0 to <90, 90 to 364, and ≥365 cumulative defined daily doses of acarbose, respectively, compared with subjects who did not use acarbose (P for trend < 0.001).

CONCLUSIONS Acarbose use reduced the risk of incident colorectal cancer in patients with diabetes in a dose-dependent manner.”

It’s perhaps worth mentioning that the prevalence of type 1 is relatively low in East Asian populations and that most of the patients included were type 2 (this is also clearly indicated by this observation from the paper: “The median age at the time of the initial diabetes diagnosis was 54.1 years, and the median diabetes duration was 8.9 years.”). Another thing worth mentioning is that colon cancer is a very common type of cancer, and so even moderate risk reductions here at the individual level may translate into a substantial risk reduction at the population level. A third thing, noted in Horowitz & Samsom’s coverage, is that the side effects of acarbose are quite mild, so widespread use of the drug is not out of the question, at least poor tolerance is not likely to be an obstacle; the drug may cause e.g. excessive flatulence and something like 10% of patients may have to stop treatment because of gastrointestinal side effects, but although the side effects are annoying and may be unacceptable to some patients, they are not dangerous; it’s a safe drug which can be used even in patients with renal failure (a context where some of the other oral antidiabetic treatments available are contraindicated).

v. Diabetes, Lower-Extremity Amputation, and Death.

“Worldwide, every 30 s, a limb is lost to diabetes (1,2). Nearly 2 million people living in the U.S. are living with limb loss (1). According to the World Health Organization, lower-extremity amputations (LEAs) are 10 times more common in people with diabetes than in persons who do not have diabetes. In the U.S. Medicare population, the incidence of diabetic foot ulcers is ∼6 per 100 individuals with diabetes per year and the incidence of LEA is 4 per 1,000 persons with diabetes per year (3). LEA in those with diabetes generally carries yearly costs between $30,000 and $60,000 and lifetime costs of half a million dollars (4). In 2012, it was estimated that those with diabetes and lower-extremity wounds in the U.S. Medicare program accounted for $41 billion in cost, which is ∼1.6% of all Medicare health care spending (47). In 2012, in the U.K., it was estimated that the National Health Service spent between £639 and 662 million on foot ulcers and LEA, which was approximately £1 in every £150 spent by the National Health Service (8).”

“LEA does not represent a traditional medical complication of diabetes like myocardial infarction (MI), renal failure, or retinopathy in which organ failure is directly associated with diabetes (2). An LEA occurs because of a disease complication, usually a foot ulcer that is not healing (e.g., organ failure of the skin, failure of the biomechanics of the foot as a unit, nerve sensory loss, and/or impaired arterial vascular supply), but it also occurs at least in part as a consequence of a medical plan to amputate based on a decision between health care providers and patients (9,10). […] 30-day postoperative mortality can approach 10% […]. Previous reports have estimated that the 1-year post-LEA mortality rate in people with diabetes is between 10 and 50%, and the 5-year mortality rate post-LEA is between 30 and 80% (4,1315). More specifically, in the U.S. Medicare population mortality within a year after an incident LEA was 23.1% in 2006, 21.8% in 2007, and 20.6% in 2008 (4). In the U.K., up to 80% will die within 5 years of an LEA (8). In general, those with diabetes with an LEA are two to three times more likely to die at any given time point than those with diabetes who have not had an LEA (5). For perspective, the 5-year death rate after diagnosis of malignancy in the U.S. was 32% in 2010 (16).”

“Evidence on why individuals with diabetes and an LEA die is based on a few mainly small (e.g., <300 subjects) and often single center–based (13,1720) studies or <1 year duration of evaluation (11). In these studies, death is primarily associated with a previous history of cardiovascular disease and renal insufficiency, which are also major complications of diabetes; these complications are also associated with an increased risk of LEA. The goal of our study was to determine whether complications of diabetes well-known to be associated with death in those with diabetes such as cardiovascular disease and renal failure fully explain the higher rate of death in those who have undergone an LEA.”

“This is the largest and longest evaluation of the risk of death among those with diabetes and LEA […] Between 2003 and 2012, 416,434 individuals met the entrance criteria for the study. This cohort accrued an average of 9.0 years of follow-up and a total of 3.7 million diabetes person-years of follow-up. During this period of time, 6,566 (1.6%) patients had an LEA and 77,215 patients died (18.5%). […] The percentage of individuals who died within 30 days, 1 year, and by year 5 of their initial code for an LEA was 1.0%, 9.9%, and 27.2%, respectively. For those >65 years of age, the rates were 12.2% and 31.7%, respectively. For the full cohort of those with diabetes, the rate of death was 2.0% after 1 year of follow up and 7.3% after 5 years of follow up. In general, those with an LEA were more than three times more likely to die during a year of follow-up than an individual with diabetes who had not had an LEA. […] In any given year, >5% of those with diabetes and an LEA will die.”

“From 2003 to 2012, the HR [hazard rate, US] for death after an LEA was 3.02 (95% CI 2.90, 3.14). […] our a priori assumption was that the HR associating LEA with death would be fully diminished (i.e., it would become 1) when adjusted for the other risk factor variables. However, the fully adjusted LEA HR was diminished only ∼22% to 2.37 (95% CI 2.27, 2.48). With the exception of age >65 years, individual risk factors, in general, had minimal effect (<10%) on the HR of the association between LEA and death […] We conducted sensitivity analyses to determine the general statistical parameters of an unmeasured risk factor that could remove the association of LEA with death. We found that even if there existed a very strong risk factor with an HR of death of three, a prevalence of 10% in the general diabetes population, and a prevalence of 60% in those who had an LEA, LEA would still be associated with a statistically significant and clinically important risk of 1.30. These findings are describing a variable that would seem to be so common and so highly associated with death that it should already be clinically apparent. […] In summary, individuals with diabetes and an LEA are more likely to die at any given point in time than those who have diabetes but no LEA. While some of this variation can be explained by other known complications of diabetes, the amount that can be explained is small. Based on the results of this study, including a sensitivity analysis, it is highly unlikely that a “new” major risk factor for death exists. […] LEA is often performed because of an end-stage disease process like chronic nonhealing foot ulcer. By the time a patient has a foot ulcer and an LEA is offered, they are likely suffering from the end-stage consequence of diabetes. […] We would […] suggest that patients who have had an LEA require […] vigilant follow-up and evaluation to assure that their medical care is optimized. It is also important that GPs communicate to their patients about the risk of death to assure that patients have proper expectations about the severity of their disease.”

vi. Trends in Health Care Expenditure in U.S. Adults With Diabetes: 2002–2011.

Before quoting from the paper, I’ll remind people reading along here that ‘total medical expenditures’ != ‘total medical costs’. Lots of relevant medical costs are not included when you focus only on direct medical expenditures (sick days, early retirement, premature mortality and productivity losses associated therewith, etc., etc.). With that out of the way…

“This study examines trends in health care expenditures by expenditure category in U.S. adults with diabetes between 2002 and 2011. […] We analyzed 10 years of data representing a weighted population of 189,013,514 U.S. adults aged ≥18 years from the Medical Expenditure Panel Survey. […] Relative to individuals without diabetes ($5,058 [95% CI 4,949–5,166]), individuals with diabetes ($12,180 [11,775–12,586]) had more than double the unadjusted mean direct expenditures over the 10-year period. After adjustment for confounders, individuals with diabetes had $2,558 (2,266–2,849) significantly higher direct incremental expenditures compared with those without diabetes. For individuals with diabetes, inpatient expenditures rose initially from $4,014 in 2002/2003 to $4,183 in 2004/2005 and then decreased continuously to $3,443 in 2010/2011, while rising steadily for individuals without diabetes. The estimated unadjusted total direct expenditures for individuals with diabetes were $218.6 billion/year and adjusted total incremental expenditures were approximately $46 billion/year. […] in the U.S., direct medical costs associated with diabetes were $176 billion in 2012 (1,3). This is almost double to eight times the direct medical cost of other chronic diseases: $32 billion for COPD in 2010 (10), $93 billion for all cancers in 2008 (11), $21 billion for heart failure in 2012 (12), and $43 billion for hypertension in 2010 (13). In the U.S., total economic cost of diabetes rose by 41% from 2007 to 2012 (2). […] Our findings show that compared with individuals without diabetes, individuals with diabetes had significantly higher health expenditures from 2002 to 2011 and the bulk of the expenditures came from hospital inpatient and prescription expenditures.”

 

August 10, 2017 Posted by | Books, Cancer/oncology, Cardiology, Diabetes, Economics, Epidemiology, Gastroenterology, Medicine, Nephrology, Pharmacology | Leave a comment

Infectious Disease Surveillance (I)

Concepts and Methods in Infectious Disease Surveillance […] familiarizes the reader with basic surveillance concepts; the legal basis for surveillance in the United States and abroad; and the purposes, structures, and intended uses of surveillance at the local, state, national, and international level. […] A desire for a readily accessible, concise resource that detailed current methods and challenges in disease surveillance inspired the collaborations that resulted in this volume. […] The book covers major topics at an introductory-to-intermediate level and was designed to serve as a resource or class text for instructors. It can be used in graduate level courses in public health, human and veterinary medicine, as well as in undergraduate programs in public health–oriented disciplines. We hope that the book will be a useful primer for frontline public health practitioners, hospital epidemiologists, infection-control practitioners, laboratorians in public health settings, infectious disease researchers, and medical informatics specialists interested in a concise overview of infectious disease surveillance.”

I thought the book was sort of okay, but not really all that great. I assume part of the reason I didn’t like it as much as I might have is that someone like me don’t really need to know all the details about, say, the issues encountered in Florida while they were trying to implement electronic patient records, or whether or not the mandated reporting requirements for brucellosis in, say, Texas are different from those of, say, Florida – but the book has a lot of that kind of information. Useful knowledge if you work with this stuff, but if you don’t and you’re just curious about the topic ‘in a general way’ those kinds of details can subtract a bit from the experience. A lot of chapters cover similar topics and don’t seem all that well coordinated, in the sense that details which could easily have been left out of specific chapters without any significant information loss (because those details were covered elsewhere in the publication) are included anyway; we are probably told at least ten times what is the difference between active and passive surveillance. It probably means that the various chapters can be read more or less independently (you don’t need to read chapter 5 to understand the coverage in chapter 11), but if you’re reading the book from cover to cover the way I was that sort of approach is not ideal. However in terms of the coverage included in the individual chapters and the content in general, I feel reasonably confident that if you’re actually working in public health or related fields and so a lot of this stuff might be ‘work-relevant’ (especially if you’re from the US), it’s probably a very useful book to keep around/know about. I didn’t need to know how many ‘NBS-states’ there are, and whether or not South Carolina is such a state, but some people might.

As I’ve pointed out before, a two star goodreads rating on my part (which is the rating I gave this publication) is not an indication that I think a book is terrible, it’s an indication that the book is ‘okay’.

Below I’ve added some quotes and observations from the book. The book is an academic publication but it is not a ‘classic textbook’ with key items in bold etc.; I decided to use bold to highlight key concepts and observations below, to make the post easier to navigate later on (none of the bolded words below were in bold in the original text), but aside from that I have made no changes to the quotes included in this post. I would note that given that many of the chapters included in the book are not covered by copyright (many chapters include this observation: “Materials appearing in this chapter are prepared by individuals as part of their official duties as United States government employees and are not covered by the copyright of the book, and any views expressed herein do not necessarily represent the views of the United States government.”) I may decide to cover the book in a bit more detail than I otherwise would have.

“The methods used for infectious disease surveillance depend on the type of disease. Part of the rationale for this is that there are fundamental differences in etiology, mode of transmission, and control measures between different types of infections. […] Despite the fact that much of surveillance is practiced on a disease-specific basis, it is worth remembering that surveillance is a general tool used across all types of infectious and, noninfectious conditions, and, as such, all surveillance methods share certain core elements. We advocate the view that surveillance should not be regarded as a public health “specialty,” but rather that all public health practitioners should understand the general principles underlying surveillance.”

“Control of disease spread is achieved through public health actions. Public health actions resulting from information gained during the investigation usually go beyond what an individual physician can provide to his or her patients presenting in a clinical setting. Examples of public health actions include identifying the source of infection […] identifying persons who were in contact with the index case or any infected person who may need vaccines or antiinfectives to prevent them from developing the infection; closure of facilities implicated in disease spread; or isolation of sick individuals or, in rare circumstances, quarantining those exposed to an infected person. […] Monitoring surveillance data enables public health authorities to detect sudden changes in disease occurrence and distribution, identify changes in agents or host factors, and detect changes in healthcare practices […] The primary use of surveillance data at the local and state public health level is to identify cases or outbreaks in order to implement immediate disease control and prevention activities. […] Surveillance data are also used by states and CDC to monitor disease trends, demonstrate the need for public health interventions such as vaccines and vaccine policy, evaluate public health activities, and identify future research priorities. […] The final and most-important link in the surveillance chain is the application of […] data to disease prevention and control. A surveillance system includes a functional capacity for data collection, analysis, and dissemination linked to public health programs [6].

“The majority of reportable disease surveillance is conducted through passive surveillance methods. Passive surveillance means that public health agencies inform healthcare providers and other entities of their reporting requirements, but they do not usually conduct intensive efforts to solicit all cases; instead, the public health agency waits for the healthcare entities to submit case reports. Because passive surveillance is often incomplete, public health agencies may use hospital discharge data, laboratory testing records, mortality data, or other sources of information as checks on completeness of reporting and to identify additional cases. This is called active surveillance. Active surveillance usually includes intensive activities on the part of the public health agency to identify all cases of a specific reportable disease or group of diseases. […] Because it can be very labor intensive, active surveillance is usually conducted for a subset of reportable conditions, in a defined geographic locale and for a defined period of time.”

“Active surveillance may be conducted on a routine basis or in response to an outbreak […]. When an outbreak is suspected or identified, another type of surveillance known as enhanced passive surveillance may also be initiated. In enhanced passive surveillance methods, public health may improve communication with the healthcare community, schools, daycare centers, and other facilities and request that all suspected cases be reported to public health. […] Case-based surveillance is supplemented through laboratory-based surveillance activities. As opposed to case-based surveillance, the focus is on laboratory results themselves, independent of whether or not an individual’s result is associated with a “case” of illness meeting the surveillance case definition. Laboratory-based surveillance is conducted by state public health laboratories as well as the healthcare community (e.g., hospital, private medical office, and commercial laboratories). […] State and local public health entities participate in sentinel surveillance activities. With sentinel methods, surveillance is conducted in a sample of reporting entities, such as healthcare providers or hospitals, or in a specific population known to be an early indicator of disease activity (e.g., pediatric). However, because the goal of sentinel surveillance is not to identify every case, it is not necessarily representative of the underlying population of interest; and results should be interpreted accordingly.”

Syndromic surveillance identifies unexpected changes in prediagnostic information from a variety of sources to detect potential outbreaks [56]. Sources include work- or school-absenteeism records, pharmacy sales for over-the-counter pharmaceuticals, or emergency room admission data [51]. During the 2009 H1N1 pandemic, syndromic surveillance of emergency room visits for influenza-like illness correlated well with laboratory diagnosed cases of influenza [57]. […] According to a 2008 survey of U.S. health departments, 88% of respondents reported that they employ syndromic-based approaches as part of routine surveillance [21].

“Public health operated for many decades (and still does to some extent) using stand-alone, case-based information systems for collection of surveillance data that do not allow information sharing between systems and do not permit the ability to track the occurrences of different diseases in a specific person over time. One of the primary objectives of NEDSS [National Electronic Disease Surveillance System] is to promote person-based surveillance and integrated and interoperable surveillance systems. In an integrated person-based system, information is collected to create a public health record for a given person for different diseases over time. This enables public health to track public health conditions associated with a person over time, allowing analyses of public health events and comorbidities, as well as more robust public health interventions. An interoperable system can exchange information with other systems. For example, data are shared between surveillance systems or between other public health or clinical systems, such as an electronic health record or outbreak management system. Achieving the goal of establishing a public health record for an individual over time does not require one monolithic system that supports all needs; this can, instead, be achieved through integration and/or interoperability of systems.

“For over a decade, public health has focused on automation of reporting of laboratory results to public health from clinical laboratories and healthcare providers. Paper-based submission of laboratory results to public health for reportable conditions results in delays in receipt of information, incomplete ascertainment of possible cases, and missing information on individual reports. All of these aspects are improved through automation of the process [39–43].”

“During the pre-vaccine era, rotavirus infected nearly every unvaccinated child before their fifth birthday. In the absence of vaccine, multiple rotavirus infections may occur during infancy and childhood. Rotavirus causes severe diarrhea and vomiting (acute gastroenteritis [AGE]), which can lead to dehydration, electrolyte depletion, complications of viremia, shock, and death. Nearly one-half million children around the world die of rotavirus infections each year […] [In the US] this virus was responsible for 40–50% of hospitalizations because of acute gastroenteritis during the winter months in the era before vaccines were introduced. […] Because first infections have been shown to induce strong immunity against severe rotavirus reinfections [3] and because vaccination mimics such first infections without causing illness, vaccination was identified as the optimal strategy for decreasing the burden associated with severe and fatal rotavirus diarrhea. Any changes that may be later attributed to vaccination effects require knowledge of the pre-licensure (i.e., baseline) rates and trends in the target disease as a reference […] Efforts to obtain baseline data are necessary before a vaccine is licensed and introduced [13]. […] After the first year of widespread rotavirus vaccination coverage in 2008, very large and consistent decreases in rotavirus hospitalizations were noted around the country. Many of the decreases in childhood hospitalizations resulting from rotavirus were 90% or more, compared with the pre-licensure, baseline period.”

There is no single perfect data source for assessing any VPD [Vaccine-Preventable Disease, US]. Meaningful surveillance is achieved by the much broader approach of employing diverse datasets. The true impact of a vaccine or the accurate assessment of disease trends in a population is more likely the result of evaluating many datasets having different strengths and weaknesses. Only by understanding these strengths and weaknesses can a public health practitioner give the appropriate consideration to the findings derived from these data. […] In a Phase III clinical trial, the vaccine is typically administered to large numbers of people who have met certain inclusionary and exclusionary criteria and are then randomly selected to receive either the vaccine or a placebo. […] Phase III trials represent the “best case scenario” of vaccine protection […] Once the Phase III trials show adequate protection and safety, the vaccine may be licensed by the FDA […] When the vaccine is used in routine clinical practice, Phase IV trials (called post-licensure studies or post-marketing studies) are initiated. These are the evaluations conducted during the course of VPD surveillance that delineate additional performance information in settings where strict controls on who receives the vaccine are not present. […] Often, measuring vaccine performance in the broader population yields slightly lower protective results compared to Phase III clinical trials […] During these post-licensure Phase IV studies, it is not the vaccine’s efficacy but its effectiveness that is assessed. […] Administrative datasets may be created by research institutions, managed-care organizations, or national healthcare utilization repositories. They are not specifically created for VPD surveillance and may contain coded data […] on health events. They often do not provide laboratory confirmation of specific diseases, unlike passive and active VPD surveillance. […] administrative datasets offer huge sample sizes, which allow for powerful inferences within the confines of any data limitations.”

August 6, 2017 Posted by | Books, Epidemiology, Infectious disease, Medicine, Pharmacology | Leave a comment

Beyond Significance Testing (IV)

Below I have added some quotes from chapters 5, 6, and 7 of the book.

“There are two broad classes of standardized effect sizes for analysis at the group or variable level, the d family, also known as group difference indexes, and the r family, or relationship indexes […] Both families are metric- (unit-) free effect sizes that can compare results across studies or variables measured in different original metrics. Effect sizes in the d family are standardized mean differences that describe mean contrasts in standard deviation units, which can exceed 1.0 in absolute value. Standardized mean differences are signed effect sizes, where the sign of the statistic indicates the direction of the corresponding contrast. Effect sizes in the r family are scaled in correlation units that generally range from 1.0 to +1.0, where the sign indicates the direction of the relation […] Measures of association are unsigned effect sizes and thus do not indicate directionality.”

“The correlation rpb is for designs with two unrelated samples. […] rpb […] is affected by base rate, or the proportion of cases in one group versus the other, p and q. It tends to be highest in balanced designs. As the design becomes more unbalanced holding all else constant, rpb approaches zero. […] rpb is not directly comparable across studies with dissimilar relative group sizes […]. The correlation rpb is also affected by the total variability (i.e., ST). If this variation is not constant over samples, values of rpb may not be directly comparable.”

“Too many researchers neglect to report reliability coefficients for scores analyzed. This is regrettable because effect sizes cannot be properly interpreted without knowing whether the scores are precise. The general effect of measurement error in comparative studies is to attenuate absolute standardized effect sizes and reduce the power of statistical tests. Measurement error also contributes to variation in observed results over studies. Of special concern is when both score reliabilities and sample sizes vary from study to study. If so, effects of sampling error are confounded with those due to measurement error. […] There are ways to correct some effect sizes for measurement error (e.g., Baguley, 2009), but corrected effect sizes are rarely reported. It is more surprising that measurement error is ignored in most meta-analyses, too. F. L. Schmidt (2010) found that corrected effect sizes were analyzed in only about 10% of the 199 meta-analytic articles published in Psychological Bulletin from 1978 to 2006. This implies that (a) estimates of mean effect sizes may be too low and (b) the wrong statistical model may be selected when attempting to explain between-studies variation in results. If a fixed
effects model is mistakenly chosen over a random effects model, confidence intervals based on average effect sizes tend to be too narrow, which can make those results look more precise than they really are. Underestimating mean effect sizes while simultaneously overstating their precision is a potentially serious error.”

“[D]emonstration of an effect’s significance — whether theoretical, practical, or clinical — calls for more discipline-specific expertise than the estimation of its magnitude”.

“Some outcomes are categorical instead of continuous. The levels of a categorical outcome are mutually exclusive, and each case is classified into just one level. […] The risk difference (RD) is defined as pCpT, and it estimates the parameter πC πT. [Those ‘n-resembling letters’ is how wordpress displays pi; this is one of an almost infinite number of reasons why I detest blogging equations on this blog and usually do not do this – US] […] The risk ratio (RR) is the ratio of the risk rates […] which rate appears in the numerator versus the denominator is arbitrary, so one should always explain how RR is computed. […] The odds ratio (OR) is the ratio of the within-groups odds for the undesirable event. […] A convenient property of OR is that it can be converted to a kind of standardized mean difference known as logit d (Chinn, 2000). […] Reporting logit d may be of interest when the hypothetical variable that underlies the observed dichotomy is continuous.”

“The risk difference RD is easy to interpret but has a drawback: Its range depends on the values of the population proportions πC and πT. That is, the range of RD is greater when both πC and πT are closer to .50 than when they are closer to either 0 or 1.00. The implication is that RD values may not be comparable across different studies when the corresponding parameters πC and πT are quite different. The risk ratio RR is also easy to interpret. It has the shortcoming that only the finite interval from 0 to < 1.0 indicates lower risk in the group represented in the numerator, but the interval from > 1.00 to infinity is theoretically available for describing higher risk in the same group. The range of RR varies according to its denominator. This property limits the value of RR for comparing results across different studies. […] The odds ratio or shares the limitation that the finite interval from 0 to < 1.0 indicates lower risk in the group represented in the numerator, but the interval from > 1.0 to infinity describes higher risk for the same group. Analyzing natural log transformations of OR and then taking antilogs of the results deals with this problem, just as for RR. The odds ratio may be the least intuitive of the comparative risk effect sizes, but it probably has the best overall statistical properties. This is because OR can be estimated in prospective studies, in studies that randomly sample from exposed and unexposed populations, and in retrospective studies where groups are first formed based on the presence or absence of a disease before their exposure to a putative risk factor is determined […]. Other effect sizes may not be valid in retrospective studies (RR) or in studies without random sampling ([Pearson correlations between dichotomous variables, US]).”

“Sensitivity and specificity are determined by the threshold on a screening test. This means that different thresholds on the same test will generate different sets of sensitivity and specificity values in the same sample. But both sensitivity and specificity are independent of population base rate and sample size. […] Sensitivity and specificity affect predictive value, the proportion of test results that are correct […] In general, predictive values increase as sensitivity and specificity increase. […] Predictive value is also influenced by the base rate (BR), the proportion of all cases with the disorder […] In general, PPV [positive predictive value] decreases and NPV [negative…] increases as BR approaches zero. This means that screening tests tend to be more useful for ruling out rare disorders than correctly predicting their presence. It also means that most positive results may be false positives under low base rate conditions. This is why it is difficult for researchers or social policy makers to screen large populations for rare conditions without many false positives. […] The effect of BR on predictive values is striking but often overlooked, even by professionals […]. One misunderstanding involves confusing sensitivity and specificity, which are invariant to BR, with PPV and NPV, which are not. This means that diagnosticians fail to adjust their estimates of test accuracy for changes in base rates, which exemplifies the base rate fallacy. […] In general, test results have greater impact on changing the pretest odds when the base rate is moderate, neither extremely low (close to 0) nor extremely high (close to 1.0). But if the target disorder is either very rare or very common, only a result from a highly accurate screening test will change things much.”

“The technique of ANCOVA [ANalysis of COVAriance, US] has two more assumptions than ANOVA does. One is homogeneity of regression, which requires equal within-populations unstandardized regression coefficients for predicting outcome from the covariate. In nonexperimental designs where groups differ systematically on the covariate […] the homogeneity of regression assumption is rather likely to be violated. The second assumption is that the covariate is measured without error […] Violation of either assumption may lead to inaccurate results. For example, an unreliable covariate in experimental designs causes loss of statistical power and in nonexperimental designs may also cause inaccurate adjustment of the means […]. In nonexperimental designs where groups differ systematically, these two extra assumptions are especially likely to be violated. An alternative to ANCOVA is propensity score analysis (PSA). It involves the use of logistic regression to estimate the probability for each case of belonging to different groups, such as treatment versus control, in designs without randomization, given the covariate(s). These probabilities are the propensities, and they can be used to match cases from nonequivalent groups.”

August 5, 2017 Posted by | Books, Epidemiology, Papers, Statistics | Leave a comment

A few diabetes papers of interest

i. Clinically Relevant Cognitive Impairment in Middle-Aged Adults With Childhood-Onset Type 1 Diabetes.

“Modest cognitive dysfunction is consistently reported in children and young adults with type 1 diabetes (T1D) (1). Mental efficiency, psychomotor speed, executive functioning, and intelligence quotient appear to be most affected (2); studies report effect sizes between 0.2 and 0.5 (small to modest) in children and adolescents (3) and between 0.4 and 0.8 (modest to large) in adults (2). Whether effect sizes continue to increase as those with T1D age, however, remains unknown.

A key issue not yet addressed is whether aging individuals with T1D have an increased risk of manifesting “clinically relevant cognitive impairment,” defined by comparing individual cognitive test scores to demographically appropriate normative means, as opposed to the more commonly investigated “cognitive dysfunction,” or between-group differences in cognitive test scores. Unlike the extensive literature examining cognitive impairment in type 2 diabetes, we know of only one prior study examining cognitive impairment in T1D (4). This early study reported a higher rate of clinically relevant cognitive impairment among children (10–18 years of age) diagnosed before compared with after age 6 years (24% vs. 6%, respectively) or a non-T1D cohort (6%).”

“This study tests the hypothesis that childhood-onset T1D is associated with an increased risk of developing clinically relevant cognitive impairment detectable by middle age. We compared cognitive test results between adults with and without T1D and used demographically appropriate published norms (1012) to determine whether participants met criteria for impairment for each test; aging and dementia studies have selected a score ≥1.5 SD worse than the norm on that test, corresponding to performance at or below the seventh percentile (13).”

“During 2010–2013, 97 adults diagnosed with T1D and aged <18 years (age and duration 49 ± 7 and 41 ± 6 years, respectively; 51% female) and 138 similarly aged adults without T1D (age 49 ± 7 years; 55% female) completed extensive neuropsychological testing. Biomedical data on participants with T1D were collected periodically since 1986–1988.  […] The prevalence of clinically relevant cognitive impairment was five times higher among participants with than without T1D (28% vs. 5%; P < 0.0001), independent of education, age, or blood pressure. Effect sizes were large (Cohen d 0.6–0.9; P < 0.0001) for psychomotor speed and visuoconstruction tasks and were modest (d 0.3–0.6; P < 0.05) for measures of executive function. Among participants with T1D, prevalent cognitive impairment was related to 14-year average A1c >7.5% (58 mmol/mol) (odds ratio [OR] 3.0; P = 0.009), proliferative retinopathy (OR 2.8; P = 0.01), and distal symmetric polyneuropathy (OR 2.6; P = 0.03) measured 5 years earlier; higher BMI (OR 1.1; P = 0.03); and ankle-brachial index ≥1.3 (OR 4.2; P = 0.01) measured 20 years earlier, independent of education.”

“Having T1D was the only factor significantly associated with the between-group difference in clinically relevant cognitive impairment in our sample. Traditional risk factors for age-related cognitive impairment, in particular older age and high blood pressure (24), were not related to the between-group difference we observed. […] Similar to previous studies of younger adults with T1D (14,26), we found no relationship between the number of severe hypoglycemic episodes and cognitive impairment. Rather, we found that chronic hyperglycemia, via its associated vascular and metabolic changes, may have triggered structural changes in the brain that disrupt normal cognitive function.”

Just to be absolutely clear about these results: The type 1 diabetics they recruited in this study were on average not yet fifty years old, yet more than one in four of them were cognitively impaired to a clinically relevant degree. This is a huge effect. As they note later in the paper:

“Unlike previous reports of mild/modest cognitive dysfunction in young adults with T1D (1,2), we detected clinically relevant cognitive impairment in 28% of our middle-aged participants with T1D. This prevalence rate in our T1D cohort is comparable to the prevalence of mild cognitive impairment typically reported among community-dwelling adults aged 85 years and older (29%) (20).”

The type 1 diabetics included in the study had had diabetes for roughly a decade more than I have. And the number of cognitively impaired individuals in that sample corresponds roughly to what you find when you test random 85+ year-olds. Having type 1 diabetes is not good for your brain.

ii. Comment on Nunley et al. Clinically Relevant Cognitive Impairment in Middle-Aged Adults With Childhood-Onset Type 1 Diabetes.

This one is a short comment to the above paper, below I’ve quoted ‘the meat’ of the comment:

“While the […] study provides us with important insights regarding cognitive impairment in adults with type 1 diabetes, we regret that depression has not been taken into account. A systematic review and meta-analysis published in 2014 identified significant objective cognitive impairment in adults and adolescents with depression regarding executive functioning, memory, and attention relative to control subjects (2). Moreover, depression is two times more common in adults with diabetes compared with those without this condition, regardless of type of diabetes (3). There is even evidence that the co-occurrence of diabetes and depression leads to additional health risks such as increased mortality and dementia (3,4); this might well apply to cognitive impairment as well. Furthermore, in people with diabetes, the presence of depression has been associated with the development of diabetes complications, such as retinopathy, and higher HbA1c values (3). These are exactly the diabetes-specific correlates that Nunley et al. (1) found.”

“We believe it is a missed opportunity that Nunley et al. (1) mainly focused on biological variables, such as hyperglycemia and microvascular disease, and did not take into account an emotional disorder widely represented among people with diabetes and closely linked to cognitive impairment. Even though severe or chronic cases of depression are likely to have been excluded in the group without type 1 diabetes based on exclusion criteria (1), data on the presence of depression (either measured through a diagnostic interview or by using a validated screening questionnaire) could have helped to interpret the present findings. […] Determining the role of depression in the relationship between cognitive impairment and type 1 diabetes is of significant importance. Treatment of depression might improve cognitive impairment both directly by alleviating cognitive depression symptoms and indirectly by improving treatment nonadherence and glycemic control, consequently lowering the risk of developing complications.”

iii. Prevalence of Diabetes and Diabetic Nephropathy in a Large U.S. Commercially Insured Pediatric Population, 2002–2013.

“[W]e identified 96,171 pediatric patients with diabetes and 3,161 pediatric patients with diabetic nephropathy during 2002–2013. We estimated prevalence of pediatric diabetes overall, by diabetes type, age, and sex, and prevalence of pediatric diabetic nephropathy overall, by age, sex, and diabetes type.”

“Although type 1 diabetes accounts for a majority of childhood and adolescent diabetes, type 2 diabetes is becoming more common with the increasing rate of childhood obesity and it is estimated that up to 45% of all new patients with diabetes in this age-group have type 2 diabetes (1,2). With the rising prevalence of diabetes in children, a rise in diabetes-related complications, such as nephropathy, is anticipated. Moreover, data suggest that the development of clinical macrovascular complications, neuropathy, and nephropathy may be especially rapid among patients with young-onset type 2 diabetes (age of onset <40 years) (36). However, the natural history of young patients with type 2 diabetes and resulting complications has not been well studied.”

I’m always interested in the identification mechanisms applied in papers like this one, and I’m a little confused about the high number of patients without prescriptions (almost one-third of patients); I sort of assume these patients do take (/are given) prescription drugs, but get them from sources not available to the researchers (parents get prescriptions for the antidiabetic drugs, and the researchers don’t have access to these data? Something like this..) but this is a bit unclear. The mechanism they employ in the paper is not perfect (no mechanism is), but it probably works:

“Patients who had one or more prescription(s) for insulin and no prescriptions for another antidiabetes medication were classified as having type 1 diabetes, while those who filled prescriptions for noninsulin antidiabetes medications were considered to have type 2 diabetes.”

When covering limitations of the paper, they observe incidentally in this context that:

“Klingensmith et al. (31) recently reported that in the initial month after diagnosis of type 2 diabetes around 30% of patients were treated with insulin only. Thus, we may have misclassified a small proportion of type 2 cases as type 1 diabetes or vice versa. Despite this, we found that 9% of patients had onset of type 2 diabetes at age <10 years, consistent with the findings of Klingensmith et al. (8%), but higher than reported by the SEARCH for Diabetes in Youth study (<3%) (31,32).”

Some more observations from the paper:

“There were 149,223 patients aged <18 years at first diagnosis of diabetes in the CCE database from 2002 through 2013. […] Type 1 diabetes accounted for a majority of the pediatric patients with diabetes (79%). Among these, 53% were male and 53% were aged 12 to <18 years at onset, while among patients with type 2 diabetes, 60% were female and 79% were aged 12 to <18 years at onset.”

“The overall annual prevalence of all diabetes increased from 1.86 to 2.82 per 1,000 during years 2002–2013; it increased on average by 9.5% per year from 2002 to 2006 and slowly increased by 0.6% after that […] The prevalence of type 1 diabetes increased from 1.48 to 2.32 per 1,000 during the study period (average increase of 8.5% per year from 2002 to 2006 and 1.4% after that; both P values <0.05). The prevalence of type 2 diabetes increased from 0.38 to 0.67 per 1,000 during 2002 through 2006 (average increase of 13.3% per year; P < 0.05) and then dropped from 0.56 to 0.49 per 1,000 during 2007 through 2013 (average decrease of 2.7% per year; P < 0.05). […] Prevalence of any diabetes increased by age, with the highest prevalence in patients aged 12 to <18 years (ranging from 3.47 to 5.71 per 1,000 from 2002 through 2013).” […] The annual prevalence of diabetes increased over the study period mainly because of increases in type 1 diabetes.”

“Dabelea et al. (8) reported, based on data from the SEARCH for Diabetes in Youth study, that the annual prevalence of type 1 diabetes increased from 1.48 to 1.93 per 1,000 and from 0.34 to 0.46 per 1,000 for type 2 diabetes from 2001 to 2009 in U.S. youth. In our study, the annual prevalence of type 1 diabetes was 1.48 per 1,000 in 2002 and 2.10 per 1,000 in 2009, which is close to their reported prevalence.”

“We identified 3,161 diabetic nephropathy cases. Among these, 1,509 cases (47.7%) were of specific diabetic nephropathy and 2,253 (71.3%) were classified as probable cases. […] The annual prevalence of diabetic nephropathy in pediatric patients with diabetes increased from 1.16 to 3.44% between 2002 and 2013; it increased by on average 25.7% per year from 2002 to 2005 and slowly increased by 4.6% after that (both P values <0.05).”

Do note that the relationship between nephropathy prevalence and diabetes prevalence is complicated and that you cannot just explain an increase in the prevalence of nephropathy over time easily by simply referring to an increased prevalence of diabetes during the same time period. This would in fact be a very wrong thing to do, in part but not only on account of the data structure employed in this study. One problem which is probably easy to understand is that if more children got diabetes but the same proportion of those new diabetics got nephropathy, the diabetes prevalence would go up but the diabetic nephropathy prevalence would remain fixed; when you calculate the diabetic nephropathy prevalence you implicitly condition on diabetes status. But this just scratches the surface of the issues you encounter when you try to link these variables, because the relationship between the two variables is complicated; there’s an age pattern to diabetes risk, with risk (incidence) increasing with age (up to a point, after which it falls – in most samples I’ve seen in the past peak incidence in pediatric populations is well below the age of 18). However diabetes prevalence increases monotonously with age as long as the age-specific death rate of diabetics is lower than the age-specific incidence, because diabetes is chronic, and then on top of that you have nephropathy-related variables, which display diabetes-related duration-dependence (meaning that although nephropathy risk is also increasing with age when you look at that variable in isolation, that age-risk relationship is confounded by diabetes duration – a type 1 diabetic at the age of 12 who’s had diabetes for 10 years has a higher risk of nephropathy than a 16-year old who developed diabetes the year before). When a newly diagnosed pediatric patient is included in the diabetes sample here this will actually decrease the nephropathy prevalence in the short run, but not in the long run, assuming no changes in diabetes treatment outcomes over time. This is because the probability that that individual has diabetes-related kidney problems as a newly diagnosed child is zero, so he or she will unquestionably only contribute to the denominator during the first years of illness (the situation in the middle-aged type 2 context is different; here you do sometimes have newly-diagnosed patients who have developed complications already). This is one reason why it would be quite wrong to say that increased diabetes prevalence in this sample is the reason why diabetic nephropathy is increasing as well. Unless the time period you look at is very long (e.g. you have a setting where you follow all individuals with a diagnosis until the age of 18), the impact of increasing prevalence of one condition may well be expected to have a negative impact on the estimated risk of associated conditions, if those associated conditions display duration-dependence (which all major diabetes complications do). A second factor supporting a default assumption of increasing incidence of diabetes leading to an expected decreasing rate of diabetes-related complications is of course the fact that treatment options have tended to increase over time, and especially if you take a long view (look back 30-40 years) the increase in treatment options and improved medical technology have lead to improved metabolic control and better outcomes.

That both variables grew over time might be taken to indicate that both more children got diabetes and that a larger proportion of this increased number of children with diabetes developed kidney problems, but this stuff is a lot more complicated than it might look and it’s in particular important to keep in mind that, say, the 2005 sample and the 2010 sample do not include the same individuals, although there’ll of course be some overlap; in age-stratified samples like this you always have some level of implicit continuous replacement, with newly diagnosed patients entering and replacing the 18-year olds who leave the sample. As long as prevalence is constant over time, associated outcome variables may be reasonably easy to interpret, but when you have dynamic samples as well as increasing prevalence over time it gets difficult to say much with any degree of certainty unless you crunch the numbers in a lot of detail (and it might be difficult even if you do that). A factor I didn’t mention above but which is of course also relevant is that you need to be careful about how to interpret prevalence rates when you look at complications with high mortality rates (and late-stage diabetic nephropathy is indeed a complication with high mortality); in such a situation improvements in treatment outcomes may have large effects on prevalence rates but no effect on incidence. Increased prevalence is not always bad news, sometimes it is good news indeed. Gleevec substantially increased the prevalence of CML.

In terms of the prevalence-outcomes (/complication risk) connection, there are also in my opinion reasons to assume that there may be multiple causal pathways between prevalence and outcomes. For example a very low prevalence of a condition in a given area may mean that fewer specialists are educated to take care of these patients than would be the case for an area with a higher prevalence, and this may translate into a more poorly developed care infrastructure. Greatly increasing prevalence may on the other hand lead to a lower level of care for all patients with the illness, not just the newly diagnosed ones, due to binding budget constraints and care rationing. And why might you have changes in prevalence; might they not sometimes rather be related to changes in diagnostic practices, rather than changes in the True* prevalence? If that’s the case, you might not be comparing apples to apples when you’re comparing the evolving complication rates. There are in my opinion many reasons to believe that the relationship between chronic conditions and the complication rates of these conditions is far from simple to model.

All this said, kidney problems in children with diabetes is still rare, compared to the numbers you see when you look at adult samples with longer diabetes duration. It’s also worth distinguishing between microalbuminuria and overt nephropathy; children rarely proceed to develop diabetes-related kidney failure, although poor metabolic control may mean that they do develop this complication later, in early adulthood. As they note in the paper:

“It has been reported that overt diabetic nephropathy and kidney failure caused by either type 1 or type 2 diabetes are uncommon during childhood or adolescence (24). In this study, the annual prevalence of diabetic nephropathy for all cases ranged from 1.16 to 3.44% in pediatric patients with diabetes and was extremely low in the whole pediatric population (range 2.15 to 9.70 per 100,000), confirming that diabetic nephropathy is a very uncommon condition in youth aged <18 years. We observed that the prevalence of diabetic nephropathy increased in both specific and unspecific cases before 2006, with a leveling off of the specific nephropathy cases after 2005, while the unspecific cases continued to increase.”

iv. Adherence to Oral Glucose-Lowering Therapies and Associations With 1-Year HbA1c: A Retrospective Cohort Analysis in a Large Primary Care Database.

“Between a third and a half of medicines prescribed for type 2 diabetes (T2DM), a condition in which multiple medications are used to control cardiovascular risk factors and blood glucose (1,2), are not taken as prescribed (36). However, estimates vary widely depending on the population being studied and the way in which adherence to recommended treatment is defined.”

“A number of previous studies have used retrospective databases of electronic health records to examine factors that might predict adherence. A recent large cohort database examined overall adherence to oral therapy for T2DM, taking into account changes of therapy. It concluded that overall adherence was 69%, with individuals newly started on treatment being significantly less likely to adhere (19).”

“The impact of continuing to take glucose-lowering medicines intermittently, but not as recommended, is unknown. Medication possession (expressed as a ratio of actual possession to expected possession), derived from prescribing records, has been identified as a valid adherence measure for people with diabetes (7). Previous studies have been limited to small populations in managed-care systems in the U.S. and focused on metformin and sulfonylurea oral glucose-lowering treatments (8,9). Further studies need to be carried out in larger groups of people that are more representative of the general population.

The Clinical Practice Research Database (CPRD) is a long established repository of routine clinical data from more than 13 million patients registered with primary care services in England. […] The Genetics of Diabetes and Audit Research Tayside Study (GoDARTS) database is derived from integrated health records in Scotland with primary care, pharmacy, and hospital data on 9,400 patients with diabetes. […] We conducted a retrospective cohort study using [these databases] to examine the prevalence of nonadherence to treatment for type 2 diabetes and investigate its potential impact on HbA1c reduction stratified by type of glucose-lowering medication.”

“In CPRD and GoDARTS, 13% and 15% of patients, respectively, were nonadherent. Proportions of nonadherent patients varied by the oral glucose-lowering treatment prescribed (range 8.6% [thiazolidinedione] to 18.8% [metformin]). Nonadherent, compared with adherent, patients had a smaller HbA1c reduction (0.4% [4.4 mmol/mol] and 0.46% [5.0 mmol/mol] for CPRD and GoDARTs, respectively). Difference in HbA1c response for adherent compared with nonadherent patients varied by drug (range 0.38% [4.1 mmol/mol] to 0.75% [8.2 mmol/mol] lower in adherent group). Decreasing levels of adherence were consistently associated with a smaller reduction in HbA1c.”

“These findings show an association between adherence to oral glucose-lowering treatment, measured by the proportion of medication obtained on prescription over 1 year, and the corresponding decrement in HbA1c, in a population of patients newly starting treatment and continuing to collect prescriptions. The association is consistent across all commonly used oral glucose-lowering therapies, and the findings are consistent between the two data sets examined, CPRD and GoDARTS. Nonadherent patients, taking on average <80% of the intended medication, had about half the expected reduction in HbA1c. […] Reduced medication adherence for commonly used glucose-lowering therapies among patients persisting with treatment is associated with smaller HbA1c reductions compared with those taking treatment as recommended. Differences observed in HbA1c responses to glucose-lowering treatments may be explained in part by their intermittent use.”

“Low medication adherence is related to increased mortality (20). The mean difference in HbA1c between patients with MPR <80% and ≥80% is between 0.37% and 0.55% (4 mmol/mol and 6 mmol/mol), equivalent to up to a 10% reduction in death or an 18% reduction in diabetes complications (21).”

v. Health Care Transition in Young Adults With Type 1 Diabetes: Perspectives of Adult Endocrinologists in the U.S.

“Empiric data are limited on best practices in transition care, especially in the U.S. (10,1316). Prior research, largely from the patient perspective, has highlighted challenges in the transition process, including gaps in care (13,1719); suboptimal pediatric transition preparation (13,20); increased post-transition hospitalizations (21); and patient dissatisfaction with the transition experience (13,1719). […] Young adults with type 1 diabetes transitioning from pediatric to adult care are at risk for adverse outcomes. Our objective was to describe experiences, resources, and barriers reported by a national sample of adult endocrinologists receiving and caring for young adults with type 1 diabetes.”

“We received responses from 536 of 4,214 endocrinologists (response rate 13%); 418 surveys met the eligibility criteria. Respondents (57% male, 79% Caucasian) represented 47 states; 64% had been practicing >10 years and 42% worked at an academic center. Only 36% of respondents reported often/always reviewing pediatric records and 11% reported receiving summaries for transitioning young adults with type 1 diabetes, although >70% felt that these activities were important for patient care.”

“A number of studies document deficiencies in provider hand-offs across other chronic conditions and point to the broader relevance of our findings. For example, in two studies of inflammatory bowel disease, adult gastroenterologists reported inadequacies in young adult transition preparation (31) and infrequent receipt of medical histories from pediatric providers (32). In a study of adult specialists caring for young adults with a variety of chronic diseases (33), more than half reported that they had no contact with the pediatric specialists.

Importantly, more than half of the endocrinologists in our study reported a need for increased access to mental health referrals for young adult patients with type 1 diabetes, particularly in nonacademic settings. Report of barriers to care was highest for patient scenarios involving mental health issues, and endocrinologists without easy access to mental health referrals were significantly more likely to report barriers to diabetes management for young adults with psychiatric comorbidities such as depression, substance abuse, and eating disorders.”

“Prior research (34,35) has uncovered the lack of mental health resources in diabetes care. In the large cross-national Diabetes Attitudes, Wishes and Needs (DAWN) study (36) […] diabetes providers often reported not having the resources to manage mental health problems; half of specialist diabetes physicians felt unable to provide psychiatric support for patients and one-third did not have ready access to outside expertise in emotional or psychiatric matters. Our results, which resonate with the DAWN findings, are particularly concerning in light of the vulnerability of young adults with type 1 diabetes for adverse medical and mental health outcomes (4,34,37,38). […] In a recent report from the Mental Health Issues of Diabetes conference (35), which focused on type 1 diabetes, a major observation included the lack of trained mental health professionals, both in academic centers and the community, who are knowledgeable about the mental health issues germane to diabetes.”

August 3, 2017 Posted by | Diabetes, Epidemiology, Medicine, Nephrology, Neurology, Pharmacology, Psychiatry, Psychology, Statistics, Studies | Leave a comment

A few SSC comments

I recently left a few comments in an open thread on SSC, and I figured it might make sense to crosspost some of the comments made there here on the blog. I haven’t posted all my contributions to the debate here, rather I’ve just quoted some specific comments and observations which might be of interest. I’ve also added some additional remarks and comments which relate to the topics discussed. Here’s the main link (scroll down to get to my comments).

“One thing worth keeping in mind when evaluating pre-modern medicine characterizations of diabetes and the natural history of diabetes is incidentally that especially to the extent that one is interested in type 1 survivorship bias is a major problem lurking in the background. Prognostic estimates of untreated type 1 based on historical accounts of how long people could live with the disease before insulin are not in my opinion likely to be all that reliable, because the type of patients that would be recognized as (type 1) diabetics back then would tend to mainly be people who had the milder forms, because they were the only ones who lived long enough to reach a ‘doctor’; and the longer they lived, and the milder the sub-type, the more likely they were to be studied/’diagnosed’. I was a 2-year old boy who got unwell on a Tueday and was hospitalized three days later. Avicenna would have been unlikely to have encountered me, I’d have died before he saw me. (Similar lines of reasoning might lead to an argument that the incidence of diseases like type 1 diabetes may also today be underdiagnosed in developing countries with poorly developed health care systems.)”

Douglas Knight mentioned during our exchange that medical men of the far past might have been more likely to attend to patients with acute illnesses than patients with chronic conditions, making them more likely to attend to such cases than would otherwise be the case, a point I didn’t discuss in any detail during the exchange. I did however think it important to note here that information exchange was significantly slower, and transportation costs were much higher, in the past than they are today. This should make such a bias less relevant, all else equal. Avicenna and his colleagues couldn’t take a taxi, or learn by phone that X is sick. He might have preferentially attended to the acute cases he learned about, but given high transportation costs and inefficient communication channels he might often never arrive in time, or at all. A particular problem here is that there are no good data on the unobserved cases, because the only cases we know about today are the ones people like him have told us about.

Some more comments:

“One thing I was considering adding to my remarks about survivorship bias is that it is not in my opinion unlikely that what you might term the nature of the disease has changed over the centuries; indeed it might still be changing today. Globally the incidence of type 1 has been increasing for decades and nobody seems to know why, though there’s consensus about an environmental trigger playing a major role. Maybe incidence is not the only thing that’s changed, maybe e.g. the time course of the ‘average case’ has also changed? Maybe due to secondary factors; better nutritional status now equals slower progression of beta cell failure than was the case in the past? Or perhaps the other way around: Less exposure to bacterial agents the immune system throughout evolutionary time has been used to having to deal with today means that the autoimmune process is accelerated today, compared to in the far past where standards of hygiene were different. Who knows? […] Maybe survivorship bias wasn’t that big of a deal, but I think one should be very cautious about which assumptions one might implicitly be making along the way when addressing questions of this sort of nature. Some relevant questions will definitely be unknowable due to lack of good data which we will never be able to obtain.”

I should perhaps interpose here that even if survivorship bias ‘wasn’t that big of a deal’, it’s still sort of a big problem in the analytical setting because it seems perfectly plausible to me to be making the assumption that it might even so have been a big deal. These kinds of problems magnify our error bars and reduce confidence in our conclusions, regardless of the extent to which they actually played a role. When you know the exact sign and magnitude of a given moderating effect you can try to correct for it, but this is very difficult to do when a large range of moderator effect sizes might be considered plausible. It might also here be worth mentioning explicitly that biases such as the survivorship bias mentioned can of course impact a lot of things besides just the prognostic estimates; for example if a lot of cases never come to the attention of the medical people because these people were unavailable (due to distance, cost, lack of information, etc.) to the people who were sick, incidence and prevalence will also implicitly be underestimated. And so on. Back to the comments:

“Once you had me thinking that it might have been harder [for people in the past] to distinguish [between type 1 and type 2 diabetes] than […] it is today, I started wondering about this, and the comments below relate to this topic. An idea that came to mind in relation to the type 1/type 2 distinction and the ability of people in the past to make this distinction: I’ve worked on various identification problems present in the diabetes context before, and I know that people even today make misdiagnoses and e.g. categorize type 1 diabetics as type 2. I asked a diabetes nurse working in the local endocrinology unit about this at one point, and she told me they had actually had a patient not long before then who had been admitted a short while after having been diagnosed with type 2. Turned out he was type 1, so the treatment failed. Misdiagnoses happen for multiple reasons, one is that obese people also sometimes develop type 1, and if it’s an acute onset setting the weight loss is not likely to be very significant. Patient history should in such a case provide the doctor with the necessary clues, but if the guy making the diagnosis is a stressed out GP who’s currently treating a lot of obese patients for type 2, mistakes happen. ‘Pre-scientific method’ this sort of individual would have been inconvenient to encounter, because a ‘counter-example’ like that supposedly demonstrating that the obese/thin(/young/old, acute/protracted…) distinction was ‘invalid’ might have held a lot more weight than it hopefully would today in the age of statistical analysis. A similar problem would be some of the end-stage individuals: A type 1 pre-insulin would be unlikely to live long enough to develop long term complications of the disease, but would instead die of DKA. The problem is that some untreated type 2 patients also die of DKA, though the degree of ketosis varies in type 2 patients. DKA in type 2 could e.g. be triggered by a superimposed cardiovascular event or an infection, increasing metabolic demands to an extent that can no longer be met by the organism, and so might well present just as acutely as it would in a classic acute-onset type 1 case. Assume the opposite bias you mention is playing a role; the ‘doctor’ in the past is more likely to see the patients in such a life-threatening setting than in the earlier stages. He observes a 55 year old fat guy dying in a very similar manner to the way a 12 year old girl died a few months back – very characteristic symptoms, breath smells fruity, Kussmaul respiration, polyuria and polydipsia…). What does he conclude? Are these different diseases?”

Making the doctor’s decision problem even harder is of course the fact that type 2 diabetes even today often goes undiagnosed until complications arise. Some type 2 patients get their diagnosis only after they had their first heart attack as a result of their illness. So the hypothetical obese middle-aged guy presenting with DKA might not have been known by anyone to be ‘a potentially different kind of diabetic’.

‘The Nybbler’ asked this question in the thread: “Wouldn’t reduced selection pressure be a major reason for increase of Type I diabetes? Used to be if you had it, chance of surviving to reproduce was close to nil.”

I’ll mention here that I’ve encountered this kind of theorizing before, but that I’ve never really addressed it – especially the second part – explicitly, though I’ve sometimes felt like doing that. I figured this post might be a decent place to at least scratch the surface. The idea that there are more type 1 diabetics now than there used to be because type 1 diabetics used to die of their disease and now they don’t (…and so now they are able to transmit their faulty genes to subsequent generations, leading to more diabetic individuals over time) sounds sort of reasonable if you don’t know very much about diabetes, but it sounds less reasonable to people who do. Genes matter, and changed selection pressures have probably played a role, but I find it hard to believe this particular mechanism is a major factor. I have included both my of my replies to ‘Nybbler’ below:

First comment:

“I’m not a geneticist and this is sort-of-kind-of near the boundary area of where I feel comfortable providing answers (given that others may be more qualified to evaluate questions like this than I am). However a few observations which might be relevant are the following:

i) Although I’ll later go on to say that vertical transmission is low, I first have to point out that some people who developed type 1 diabetes in the past did in fact have offspring, though there’s no doubt about the condition being fitness-reducing to a very large degree. The median age of diagnosis of type 1 is somewhere in the teenage years (…today. Was it the same way 1000 years ago, or has the age profile changed over time? This again relates to questions asked elsewhere in this discussion…), but people above the age of 30 get type 1 too.

ii) Although type 1 display some level of familia[l] clustering, most cases of type 1 are not the result of diabetics having had children who then proceed to inherit their parents’ disease. To the extent that reduced selection is a driver of increased incidence, the main cause would be broad selection effects pertaining to immune system functioning in general in the total population at risk (i.e. children in general, including many children with what might be termed suboptimal immune system functioning, being more likely to survive and later develop type 1 diabetes), not effects derived from vertical transmission of the disease (from parent to child). Roughly 90% of newly diagnosed type 1 diabetics in population studies have a negative family history of the disease, and on average only 2% of the children of type 1 diabetic mothers, and 5% of the children of type 1 diabetic fathers, go on to develop type 1 diabetes themselves.

iii) Historically vertical transmission has even in modern times been low. On top of the quite low transmission rates mentioned above, until well into the 80es or 90es many type 1 diabetic females were explicitly advised by their medical care providers not to have children, not because of the genetic risk of disease transmission but because pregnancy outcomes were likely to be poor; and many of those who disregarded the advice gave birth to offspring who were at a severe fitness disadvantage from the start. Poorly controlled diabetes during pregnancy leads to a very high risk of birth defects and/or miscarriage, and may pose health risks to the mother as well through e.g. an increased risk of preeclampsia (relevant link). It is only very recently that we’ve developed the knowledge and medical technology required to make pregnancy a reasonably safe option for female diabetics. You still had some diabetic females who gave birth before developing diabetes, like in the far past, and the situation was different for males, but either way I feel reasonably confident claiming that if you look for genetic causes of increasing incidence, vertical transmission should not be the main factor to consider.

iv) You need to be careful when evaluating questions like these to keep a distinction between questions relating to drivers of incidence and questions relating to drivers of prevalence at the back of your mind. These two sets of questions are not equivalent.

v) If people are interested to know more about the potential causes of increased incidence of type 1 diabetes, here’s a relevant review paper.”

I followed up with a second comment a while later, because I figured a few points of interest might not have been sufficiently well addressed in my first comment:

“@Nybbler:

A few additional remarks.

i) “Temporal trends in chronic disease incidence rates are almost certainly environmentally induced. If one observes a 50% increase in the incidence of a disorder over 20 yr, it is most likely the result of changes in the environment because the gene pool cannot change that rapidly. Type 1 diabetes is a very dynamic disease. […] results clearly demonstrate that the incidence of type 1 diabetes is rising, bringing with it a large public health problem. Moreover, these findings indicate that something in our environment is changing to trigger a disease response. […] With the exception of a possible role for viruses and infant nutrition, the specific environmental determinants that initiate or precipitate the onset of type 1 diabetes remain unclear.” (Type 1 Diabetes, Etiology and Treatment. Just to make it perfectly clear that although genes matter, environmental factors are the most likely causes of the rising levels of incidence we’ve seen in recent times.)

ii. Just as you need to always keep incidence and prevalence in mind when analyzing these things (for example low prevalence does not mean incidence is necessarily low, or was low in the past; low prevalence could also be a result of a combination of high incidence and high case mortality. I know from experience that even diabetes researchers tend to sometimes overlook stuff like this), you also need to keep the distinction between genotype and phenotype in mind. Given the increased importance of one or more environmental triggers in modern times, penetrance is likely to have changed over time. This means for example that ‘a diabetic genotype’ may have been less fitness reducing in the past than it is today, even if the associated ‘diabetic phenotype’ may on the other hand have been much more fitness reducing than it is now; people who developed diabetes died, but many of the people who might in the current environment be considered high-risk cases may not have been high risk in the far past, because the environmental trigger causing disease was absent, or rarely encountered. Assessing genetic risk for diabetes is complicated, and there’s no general formula for calculating this risk either in the type 1 or type 2 case; monogenic forms of diabetes do exist, but they account for a very small proportion of cases (1-5% of diabetes in young individuals) – most cases are polygenic and display variable levels of penetrance. Note incidentally that a story of environmental factors becoming more important over time is actually implicitly also, to the extent that diabetes is/has been fitness-reducing, a story of selection pressures against diabetic genotypes potentially increasing over time, rather than the opposite (which seems to be the default assumption when only taking into account stuff like the increased survival rates of type 1 diabetics over time). This stuff is complicated.”

I wasn’t completely happy with my second comment (I wrote it relatively fast and didn’t have time to go over it in detail after I’d written it), so I figured it might make sense to add a few details here. One key idea here is of course that you need to distinguish between people who are ‘vulnerable’ to developing type 1 diabetes, and people who actually do develop the disease. If fewer people who today would be considered ‘vulnerable’ developed the disease in the past than is the case now, selection against the ‘vulnerable’ genotype would – all else equal – have been lower throughout evolutionary time than it is today.

All else is not equal because of insulin treatment. But a second key point is that when you’re interested in fitness effects, mortality is not the only variable of interest; many diabetic women who were alive because of insulin during the 20th century but who were also being discouraged from having children may well have left no offspring. Males who committed suicide or died from kidney failure in their twenties likely also didn’t leave many offspring. Another point related to the mortality variable is that although diabetes mortality might in the past have been approximated reasonably well by a simple binary outcome variable/process (no diabetes = alive, diabetes = dead), type 1 diabetes has had large effects on mortality rates also throughout the chunk of history during which insulin has been a treatment option; mortality rates 3 or 4 times higher than those of non-diabetics are common in population studies, and such mortality rates add up over time even if base rates are low, especially in a fitness context, as they for most type 1 diabetics are at play throughout the entire fertile period of the life history. Type 2 diabetes is diagnosed mainly in middle-aged individuals, many of whom have already completed their reproductive cycle, but type 1 diabetes is very different in that respect. Of course there are multiple indirect effects at play as well here, e.g. those of mate choice; which is the more attractive potential partner, the individual with diabetes or the one without? What if the diabetic also happens to be blind?

A few other quotes from the comments:

“The majority of patients on insulin in the US are type 2 diabetics, and it is simply wrong that type 2 diabetics are not responsive to insulin treatment. They were likely found to be unresponsive in early trials because of errors of dosage, as they require higher levels of the drug to obtain the same effect as will young patients diagnosed with type 1 (the primary group on insulin in the 30es). However, insulin treatment is not the first-line option in the type 2 context because the condition can usually be treated with insulin-sensitizing agents for a while, until they fail (those drugs will on average fail in something like ~50% of subjects within five years of diagnosis, which is the reason – combined with the much (order(/s, depending on where you are) of magnitude) higher prevalence of type 2 – why a majority of patients on insulin have type 2), and these tend to a) be more acceptable to the patients (a pill vs an injection) and b) have fewer/less severe side effects on average. One reason which also played a major role in delaying the necessary use of insulin to treat type 2 diabetes which could not be adequately controlled via other means was incidentally the fact that insulin ca[u]ses weight gain, and the obesity-type 2 link was well known.”

“Type 1 is autoimmune, and most cases of type 2 are not, but some forms of type 2 seem to have an autoimmune component as well (“the overall autoantibody frequency in type 2 patients varies between 6% and 10%” – source) (these patients, who can be identified through genetic markers, will on average proceed to insulin dependence because of treatment failure in the context of insulin sensitizing-agents much sooner than is usually the case in patients with type 2). In general type 1 is caused by autoimmune beta cell destruction and type 2 mainly by insulin resistance, but combinations of the two are also possible […], and patients with type 1 can develop insulin resistance just as patients with type 2 can lose beta cells via multiple pathways. The major point here being that the sharp diagnostic distinction between type 1 and type 2 is a major simplification of what’s really going on, and it’s hiding a lot of heterogeneity in both samples. Some patients with type 1 will develop diabetes acutely or subacutely, within days or hours, whereas others will have elevated blood glucose levels for months before medical attention is received and a diagnosis is made (you can tell whether or not blood glucose has been elevated pre-diagnosis by looking at one of the key diagnostic variables, Hba1c, which is a measure of the average blood glucose over the entire lifetime of a red blood cell (~3-4 months) – in some newly diagnosed type 1s, this variable is elevated, in others it is not. Some type 1 patients will develop other autoimmune conditions later on, whereas others will not, and some will be more likely to develop complications than others who have the same level of glycemic control.

Type 1 and type 2 diabetes are quite different conditions, but in terms of many aspects of the diseases there are significant degrees of overlap (for example they develop many of the same complications, for similar (pathophysiological) reasons), yet they are both called diabetes. You don’t want to treat a type 2 diabetic with insulin if he can be treated with metformin, and treating a type 1 with metformin will not help – so different treatments are required.”

“In terms of whether it’s ideal to have one autistic diagnostic group or two (…or three, or…) [this question was a starting point for the debate from which I quote, but I decided not to go much into this topic here], I maintain that to a significant extent the answer to that question relates to what the diagnosis is supposed to accomplish. If it makes sense for researchers to be able to distinguish, which it probably does, but it is not necessary for support organizers/providers to know the subtype in order to provide aid, then you might end up with one ‘official’ category and two (or more) ‘research categories’. I would be fine with that (but again I don’t find this discussion interesting). Again a parallel might be made to diabetes research: Endocrinologists are well aware that there’s a huge amount of variation in both the type 1 and type 2 samples, to the extent that it’s sort of silly to even categorize these illnesses using the same name, but they do it anyway for reasons which are sort of obvious. If you’re type 1 diabetic and you have an HLA mutation which made you vulnerable to diabetes and you developed diabetes at the age of 5, well, we’ll start you on insulin, try to help you achieve good metabolic control, and screen you regularly for complications. If on the other hand you’re an adult guy who due to a very different genetic vulnerability developed type 1 diabetes at the age of 30 (and later on Graves’ disease at the age of 40, due to the same mutation), well, we’ll start you on insulin, try to help you achieve good metabolic control, and screen you regularly for complications. The only thing type 1 diabetics have in common is the fact that their beta cells die due to some autoimmune processes. But it could easily be conceived of instead as literally hundreds of different diseases. Currently the distinctions between the different disease-relevant pathophysiological processes don’t matter very much in the treatment context, but they might do that at some point in the future, and if that happens the differences will start to become more important. People might at that point start to talk about type 1a diabetes, which might be the sort you can delay or stop with gene therapy, and type 1b which you can’t delay or stop (…yet). Lumping ‘different’ groups together into one diagnostic category is bad if it makes you overlook variation which is important, and this may be a problem in the autism context today, but regardless of the sizes of the diagnostic groups you’ll usually still end up with lots of residual (‘unexplained’) variation.”

I can’t recall to which extent I’ve discussed this last topic – the extent to which type 1 diabetes is best modeled as one illness or many – but it’s an important topic to keep at the back of your mind when you’re reading the diabetes literature. I’m assuming that in some contexts the subgroup heterogeneities, e.g. in terms of treatment response, will be much more important than in other contexts, so you probably need specific subject matter knowledge to make any sort of informed decision about to which extent potential unobserved heterogeneities may be important in a specific setting, but even if you don’t have that ‘a healthy skepticism’, derived from keeping the potential for these factors to play a role in mind, is likely to be more useful than the alternative. In that context I think the (poor, but understandable) standard practice of lumping together type 1 and type 2 diabetics in studies may lead many people familiar with the differences between the two conditions to think along the lines that as long as you know the type, you’re good to go – ‘at least this study only looked at type 1 individuals, not like those crappy studies which do not distinguish between type 1 and type 2, so I can definitely trust these results to apply to the subgroup of type 1 diabetics in which I’m interested’ – and I think this tendency, to the extent that it exists, is unfortunate.

July 8, 2017 Posted by | autism, Diabetes, Epidemiology, Genetics, Medicine, Psychology | Leave a comment

A few papers

i. Quality of life of adolescents with autism spectrum disorders: comparison to adolescents with diabetes.

“The goals of our study were to clarify the consequences of autistic disorder without mental retardation on […] adolescents’ daily lives, and to consider them in comparison with the impact of a chronic somatic disease (diabetes) […] Scores for adolescents with ASD were significantly lower than those of the control and the diabetic adolescents, especially for friendships, leisure time, and affective and sexual relationships. On the other hand, better scores were obtained for the relationships with parents and teachers and for self-image. […] For subjects with autistic spectrum disorders and without mental retardation, impairment of quality of life is significant in adolescence and young adulthood. Such adolescents are dissatisfied with their relationships, although they often have real motivation to succeed with them.”

As someone who has both conditions, that paper was quite interesting. A follow-up question of some personal interest to me would of course be this: How do the scores/outcomes of these two groups compare to the scores of the people who have both conditions simultaneously? This question is likely almost impossible to answer in any confident manner, certainly if the conditions are not strongly dependent (unlikely), considering the power issues; global prevalence of autism is around 0.6% (link), and although type 1 prevalence is highly variable across countries, the variation just means that in some countries almost nobody gets it whereas in other countries it’s just rare; prevalence varies from 0.5 per 100.000 to 60 per 100.000 children aged 0-15 years. Assuming independence, if you look at combinations of the sort of conditions which affect one in a hundred people with those affecting one in a thousand, you’ll need on average in the order of 100.000 people to pick up just one individual with both of the conditions of interest. It’s bothersome to even try to find people like that, and good luck doing any sort of sensible statistics on that kind of sample. Of course type 1 diabetes prevalence increases with age in a way that autism does not because people continue to be diagnosed with it into late adulthood, whereas most autistics are diagnosed as children, so this makes the rarity of the condition less of a problem in adult samples, but if you’re looking at outcomes it’s arguable whether it makes sense to not differentiate between someone diagnosed with type 1 diabetes as a 35 year old and someone diagnosed as a 5 year old (are these really comparable diseases, and which outcomes are you interested in?). At least that is the case for developed societies where people with type 1 diabetes have high life expectancies; in less developed societies there may be stronger linkage between incidence and prevalence because of high mortality in the patient group (because people who get type 1 diabetes in such countries may not live very long because of inadequate medical care, which means there’s a smaller disconnect between how many new people get the disease during each time period and how many people in total have the disease than is the case for places where the mortality rates are lower). You always need to be careful about distinguishing between incidence and prevalence when dealing with conditions like T1DM with potential high mortality rates in settings where people have limited access to medical care because differential cross-country mortality patterns may be important.

ii. Exercise for depression (Cochrane review).

Background

Depression is a common and important cause of morbidity and mortality worldwide. Depression is commonly treated with antidepressants and/or psychological therapy, but some people may prefer alternative approaches such as exercise. There are a number of theoretical reasons why exercise may improve depression. This is an update of an earlier review first published in 2009.

Objectives

To determine the effectiveness of exercise in the treatment of depression in adults compared with no treatment or a comparator intervention. […]

Selection criteria 

Randomised controlled trials in which exercise (defined according to American College of Sports Medicine criteria) was compared to standard treatment, no treatment or a placebo treatment, pharmacological treatment, psychological treatment or other active treatment in adults (aged 18 and over) with depression, as defined by trial authors. We included cluster trials and those that randomised individuals. We excluded trials of postnatal depression.

Thirty-nine trials (2326 participants) fulfilled our inclusion criteria, of which 37 provided data for meta-analyses. There were multiple sources of bias in many of the trials; randomisation was adequately concealed in 14 studies, 15 used intention-to-treat analyses and 12 used blinded outcome assessors.For the 35 trials (1356 participants) comparing exercise with no treatment or a control intervention, the pooled SMD for the primary outcome of depression at the end of treatment was -0.62 (95% confidence interval (CI) -0.81 to -0.42), indicating a moderate clinical effect. There was moderate heterogeneity (I² = 63%).

When we included only the six trials (464 participants) with adequate allocation concealment, intention-to-treat analysis and blinded outcome assessment, the pooled SMD for this outcome was not statistically significant (-0.18, 95% CI -0.47 to 0.11). Pooled data from the eight trials (377 participants) providing long-term follow-up data on mood found a small effect in favour of exercise (SMD -0.33, 95% CI -0.63 to -0.03). […]

Authors’ conclusions

Exercise is moderately more effective than a control intervention for reducing symptoms of depression, but analysis of methodologically robust trials only shows a smaller effect in favour of exercise. When compared to psychological or pharmacological therapies, exercise appears to be no more effective, though this conclusion is based on a few small trials.”

iii. Risk factors for suicide in individuals with depression: A systematic review.

“The search strategy identified 3374 papers for potential inclusion. Of these, 155 were retrieved for a detailed evaluation. Thirty-two articles fulfilled the detailed eligibility criteria. […] Nineteen studies (28 publications) were included. Factors significantly associated with suicide were: male gender (OR = 1.76, 95% CI = 1.08–2.86), family history of psychiatric disorder (OR = 1.41, 95% CI= 1.00–1.97), previous attempted suicide (OR = 4.84, 95% CI = 3.26–7.20), more severe depression (OR = 2.20, 95% CI = 1.05–4.60), hopelessness (OR = 2.20, 95% CI = 1.49–3.23) and comorbid disorders, including anxiety (OR = 1.59, 95% CI = 1.03–2.45) and misuse of alcohol and drugs (OR = 2.17, 95% CI = 1.77–2.66).
Limitations: There were fewer studies than suspected. Interdependence between risk factors could not be examined.”

iv. Cognitive behaviour therapy for social anxiety in autism spectrum disorder: a systematic review.

“Individuals who have autism spectrum disorders (ASD) commonly experience anxiety about social interaction and social situations. Cognitive behaviour therapy (CBT) is a recommended treatment for social anxiety (SA) in the non-ASD population. Therapy typically comprises cognitive interventions, imagery-based work and for some individuals, behavioural interventions. Whether these are useful for the ASD population is unclear. Therefore, we undertook a systematic review to summarise research about CBT for SA in ASD.”

I mostly include this review here to highlight how reviews aren’t everything – I like them, but you can’t do reviews when a field hasn’t been studied. This is definitely the case here. The review was sort of funny, but also depressing. So much work for so little insight. Here’s the gist of it:

“Using a priori criteria, we searched for English-language peer-reviewed empirical studies in five databases. The search yielded 1364 results. Titles, abstracts and relevant publications were independently screened by two reviewers. Findings: Four single case studies met the review inclusion criteria; data were synthesised narratively. Participants (three adults and one child) were diagnosed with ASD and social anxiety disorder.”

You search the scientific literature systematically, you find more than a thousand results, and you carefully evaluate which ones of them should be included in this kind of study …and what you end up with is 4 individual case studies…

(I won’t go into the results of the study as they’re pretty much worthless.)

v. Immigrant Labor Market Integration across Admission Classes.

“We examine patterns of labor market integration across immigrant groups. The study draws on Norwegian longitudinal administrative data covering labor earnings and social insurance claims over a 25‐year period and presents a comprehensive picture of immigrant‐native employment and social insurance differentials by admission class and by years since entry.”

Some quotes from the paper:

“A recent study using 2011 administrative data from Sweden finds an average employment gap to natives of 30 percentage points for humanitarian migrants (refugees) and 26 percentage point for family immigrants (Luik et al., 2016).”

“A considerable fraction of the immigrants leaves the country after just a few years. […] this is particularly the case for immigrants from the old EU and for students and work-related immigrants from developing countries. For these groups, fewer than 50 percent remain in the country 5 years after entry. For refugees and family migrants, the picture is very different, and around 80 percent appear to have settled permanently in the country. Immigrants from the new EU have a settlement pattern somewhere in between, with approximately 70 percent settled on a permanent basis. An implication of such differential outmigration patterns is that the long-term labor market performance of refugees and family immigrants is of particular economic and fiscal importance. […] the varying rates of immigrant inflows and outflows by admission class, along with other demographic trends, have changed the composition of the adult (25‐66) population between 1990 and 2015. In this population segment, the overall immigrant share increased from 4.9 percent in 1990 to 18.7 percent in 2015 — an increase by a factor of 3.8 over 25 years. […] Following the 2004 EU enlargement, the fraction of immigrants in Norway has increased by a steady rate of approximately one percentage point per year.”

“The trends in population and employment shares varies considerably across admission classes, with employment shares of refugees and family immigrants lagging their growth in population shares. […] In 2014, refugees and family immigrants accounted for 12.8 percent of social insurance claims, compared to 5.7 percent of employment (and 7.7 percent of the adult population). In contrast, the two EU groups made up 9.3 percent of employment (and 8.8 percent of the adult population) but only 3.6 percent of social insurance claimants. Although these patterns do illuminate the immediate (short‐term) fiscal impacts of immigration at each particular point in time, they are heavily influenced by each year’s immigrant composition – in terms of age, years since migration, and admission classes – and therefore provide little information about long‐term consequences and impacts of fiscal sustainability. To assess the latter, we need to focus on longer‐term integration in the Norwegian labor market.”

Which they then proceed to do in the paper. From the results of those analyses:

“For immigrant men, the sample average share in employment (i.e., whose main source of income is work) ranges from 58 percent for refugees to 89 percent for EU immigrants, with family migrants somewhere between (around 80 percent). The average shares with social insurance as the main source of income ranges from only four percent for EU immigrants to as much as 38 percent for refugees. The corresponding shares for native men are 87 percent in employment and 12 percent with social insurance as their main income source. For women, the average shares in employment vary from 46 percent for refugees to 85 percent for new EU immigrants, whereas the average shares in social insurance vary from five percent for new EU immigrants to 42 percent for refugees. The corresponding rates for native women are 80 percent in employment and 17 percent with social insurance as their main source of income.”

“The profiles estimated for refugees are particularly striking. For men, we find that the native‐immigrant employment gap reaches its minimum value at 20 percentage points after five to six years of residence. The gap then starts to increase quite sharply again, and reaches 30 percentage points after 15 years. This development is mirrored by a corresponding increase in social insurance dependency. For female refugees, the employment differential reaches its minimum of 30 percentage points after 5‐9 years of residence. The subsequent decline is less dramatic than what we observe for men, but the differential stands at 35 percentage points 15 years after admission. […] The employment difference between refugees from Bosnia and Somalia is fully 22.2 percentage points for men and 37.7 points for women. […] For immigrants from the old EU, the employment differential is slightly in favor of immigrants regardless of years since migration, and the social insurance differentials remain consistently negative. In other words, employment of old EU immigrants is almost indistinguishable from that of natives, and they are less likely to claim social insurance benefits.”

vi. Glucose Peaks and the Risk of Dementia and 20-Year Cognitive Decline.

“Hemoglobin A1c (HbA1c), a measure of average blood glucose level, is associated with the risk of dementia and cognitive impairment. However, the role of glycemic variability or glucose excursions in this association is unclear. We examined the association of glucose peaks in midlife, as determined by the measurement of 1,5-anhydroglucitol (1,5-AG) level, with the risk of dementia and 20-year cognitive decline.”

“Nearly 13,000 participants from the Atherosclerosis Risk in Communities (ARIC) study were examined. […] Over a median time of 21 years, dementia developed in 1,105 participants. Among persons with diabetes, each 5 μg/mL decrease in 1,5-AG increased the estimated risk of dementia by 16% (hazard ratio 1.16, P = 0.032). For cognitive decline among participants with diabetes and HbA1c <7% (53 mmol/mol), those with glucose peaks had a 0.19 greater z score decline over 20 years (P = 0.162) compared with those without peaks. Among participants with diabetes and HbA1c ≥7% (53 mmol/mol), those with glucose peaks had a 0.38 greater z score decline compared with persons without glucose peaks (P < 0.001). We found no significant associations in persons without diabetes.

CONCLUSIONS Among participants with diabetes, glucose peaks are a risk factor for cognitive decline and dementia. Targeting glucose peaks, in addition to average glycemia, may be an important avenue for prevention.”

vii. Gaze direction detection in autism spectrum disorder.

“Detecting where our partners direct their gaze is an important aspect of social interaction. An atypical gaze processing has been reported in autism. However, it remains controversial whether children and adults with autism spectrum disorder interpret indirect gaze direction with typical accuracy. This study investigated whether the detection of gaze direction toward an object is less accurate in autism spectrum disorder. Individuals with autism spectrum disorder (n = 33) and intelligence quotients–matched and age-matched controls (n = 38) were asked to watch a series of synthetic faces looking at objects, and decide which of two objects was looked at. The angle formed by the two possible targets and the face varied following an adaptive procedure, in order to determine individual thresholds. We found that gaze direction detection was less accurate in autism spectrum disorder than in control participants. Our results suggest that the precision of gaze following may be one of the altered processes underlying social interaction difficulties in autism spectrum disorder.”

“Where people look at informs us about what they know, want, or attend to. Atypical or altered detection of gaze direction might thus lead to impoverished acquisition of social information and social interaction. Alternatively, it has been suggested that abnormal monitoring of inner states […], or the lack of social motivation […], would explain the reduced tendency to follow conspecific gaze in individuals with ASD. Either way, a lower tendency to look at the eyes and to follow the gaze would provide fewer opportunities to practice GDD [gaze direction detection – US] ability. Thus, impaired GDD might either play a causal role in atypical social interaction, or conversely be a consequence of it. Exploring GDD earlier in development might help disentangle this issue.”

June 1, 2017 Posted by | Diabetes, Economics, Epidemiology, Medicine, Neurology, Psychiatry, Psychology, Studies | Leave a comment

Imported Plant Diseases

I found myself debating whether or not I should read Lewis, Petrovskii, and Potts’ text The Mathematics Behind Biological Invasions a while back, but at the time I in the end decided that it would simply be too much work to justify the potential payoff – so instead of reading the book, I decided to just watch the above lecture and leave it at that. This lecture is definitely a very poor textbook substitute, and I was strongly debating whether or not to blog it because it just isn’t very good; the level of coverage is very low. Which is sad, because some of the diseases discussed in the lecture – like e.g. wheat leaf rust – are really important and worth knowing about. One of the important points made in the lecture is that in the context of potential epidemics, it can be difficult to know when and how to intervene because of the uncertainty involved; early action may be the more efficient choice in terms of resource use, but the earlier you intervene, the less certain will be the intervention payoff and the less you’ll know about stuff like transmission patterns (…would outbreak X ever really have spread very wide if we had not intervened? We don’t observe the counterfactual…). Such aspects of course are not only relevant to plant-diseases, and the lecture also contains other basic insights from epidemiology which apply to other types of disease – but if you’ve ever opened a basic epidemiology text you’ll know all these things already.

May 22, 2017 Posted by | Biology, Botany, Ecology, Epidemiology, Lectures | Leave a comment

A few diabetes papers of interest

1. Cognitive Dysfunction in Older Adults With Diabetes: What a Clinician Needs to Know. I’ve talked about these topics before here on the blog (see e.g. these posts on related topics), but this is a good summary article. I have added some observations from the paper below:

“Although cognitive dysfunction is associated with both type 1 and type 2 diabetes, there are several distinct differences observed in the domains of cognition affected in patients with these two types. Patients with type 1 diabetes are more likely to have diminished mental flexibility and slowing of mental speed, whereas learning and memory are largely not affected (8). Patients with type 2 diabetes show decline in executive function, memory, learning, attention, and psychomotor efficiency (9,10).”

“So far, it seems that the risk of cognitive dysfunction in type 2 diabetes may be influenced by glycemic control, hypoglycemia, inflammation, depression, and macro- and microvascular pathology (14). The cumulative impact of these conditions on the vascular etiology may further decrease the threshold at which cognition is affected by other neurological conditions in the aging brain. In patients with type 1 diabetes, it seems as though diabetes has a lesser impact on cognitive dysfunction than those patients with type 2 diabetes. […] Thus, the cognitive decline in patients with type 1 diabetes may be mild and may not interfere with their functionality until later years, when other aging-related factors become important. […] However, recent studies have shown a higher prevalence of cognitive dysfunction in older patients (>60 years of age) with type 1 diabetes (5).”

“Unlike other chronic diseases, diabetes self-care involves many behaviors that require various degrees of cognitive pliability and insight to perform proper self-care coordination and planning. Glucose monitoring, medications and/or insulin injections, pattern management, and diet and exercise timing require participation from different domains of cognitive function. In addition, the recognition, treatment, and prevention of hypoglycemia, which are critical for the older population, also depend in large part on having intact cognition.

The reason a clinician needs to recognize different domains of cognition affected in patients with diabetes is to understand which self-care behavior will be affected in that individual. […] For example, a patient with memory problems may forget to take insulin doses, forget to take medications/insulin on time, or forget to eat on time. […] Cognitively impaired patients using insulin are more likely to not know what to do in the event of low blood glucose or how to manage medication on sick days (34). Patients with diminished mental flexibility and processing speed may do well with a simple regimen but may fail if the regimen is too complex. In general, older patients with diabetes with cognitive dysfunction are less likely to be involved in diabetes self-care and glucose monitoring compared with age-matched control subjects (35). […] Other comorbidities associated with aging and diabetes also add to the burden of cognitive impairment and its impact on self-care abilities. For example, depression is associated with a greater decline in cognitive function in patients with type 2 diabetes (36). Depression also can independently negatively impact the motivation to practice self-care.”

“Recently, there is an increasing discomfort with the use of A1C as a sole parameter to define glycemic goals in the older population. Studies have shown that A1C values in the older population may not reflect the same estimated mean glucose as in the younger population. Possible reasons for this discrepancy are the commonly present comorbidities that impact red cell life span (e.g., anemia, uremia, renal dysfunction, blood transfusion, erythropoietin therapy) (45,46). In addition, A1C level does not reflect glucose excursions and variability. […] Thus, it is prudent to avoid A1C as the sole measure of glycemic goal in this population. […] In patients who need insulin therapy, simplification, also known as de-intensification of the regimen, is generally recommended in all frail patients, especially if they have cognitive dysfunction (37,49). However, the practice has not caught up with the recommendations as shown by large observational studies showing unnecessary intensive control in patients with diabetes and dementia (50–52).”

“With advances in the past few decades, we now see a larger number of patients with type 1 diabetes who are aging successfully and facing the new challenges that aging brings. […] Patients with type 1 diabetes are typically proactive in their disease management and highly disciplined. Cognitive dysfunction in these patients creates significant distress for the first time in their lives; they suddenly feel a “lack of control” over the disease they have managed for many decades. The addition of autonomic dysfunction, gastropathy, or neuropathy may result in wider glucose excursions. These patients are usually more afraid of hyperglycemia than hypoglycemia — both of which they have managed for many years. However, cognitive dysfunction in older adults with type 1 diabetes has been found to be associated with hypoglycemic unawareness and glucose variability (5), which in turn increases the risk of severe hypoglycemia (54). The need for goal changes to avoid hypoglycemia and accept some hyperglycemia can be very difficult for many of these patients.”

2. Trends in Drug Utilization, Glycemic Control, and Rates of Severe Hypoglycemia, 2006–2013.

“From 2006 to 2013, use increased for metformin (from 47.6 to 53.5%), dipeptidyl peptidase 4 inhibitors (0.5 to 14.9%), and insulin (17.1 to 23.0%) but declined for sulfonylureas (38.8 to 30.8%) and thiazolidinediones (28.5 to 5.6%; all P < 0.001). […] The overall rate of severe hypoglycemia remained the same (1.3 per 100 person-years; P = 0.72), declined modestly among the oldest patients (from 2.9 to 2.3; P < 0.001), and remained high among those with two or more comorbidities (3.2 to 3.5; P = 0.36). […] During the recent 8-year period, the use of glucose-lowering drugs has changed dramatically among patients with T2DM. […] The use of older classes of medications, such as sulfonylureas and thiazolidinediones, declined. During this time, glycemic control of T2DM did not improve in the overall population and remained poor among nearly a quarter of the youngest patients. Rates of severe hypoglycemia remained largely unchanged, with the oldest patients and those with multiple comorbidities at highest risk. These findings raise questions about the value of the observed shifts in drug utilization toward newer and costlier medications.”

“Our findings are consistent with a prior study of drug prescribing in U.S. ambulatory practice conducted from 1997 to 2012 (2). In that study, similar increases in DPP-4 inhibitor and insulin analog prescribing were observed; these changes were accompanied by a 61% increase in drug expenditures (2). Our study extends these findings to drug utilization and demonstrates that these increases occurred in all age and comorbidity subgroups. […] In contrast, metformin use increased only modestly between 2006 and 2013 and remained relatively low among older patients and those with two or more comorbidities. Although metformin is recommended as first-line therapy (26), it may be underutilized as the initial agent for the treatment of T2DM (27). Its use may be additionally limited by coexisting contraindications, such as chronic kidney disease (28).”

“The proportion of patients with a diagnosis of diabetes who did not fill any glucose-lowering medications declined slightly (25.7 to 24.1%; P < 0.001).”

That is, one in four people who had a diagnosis of type 2 diabetes were not taking any prescription drugs for their health condition. I wonder how many of those people have read wikipedia articles like this one

“When considering treatment complexity, the use of oral monotherapy increased slightly (from 24.3 to 26.4%) and the use of multiple (two or more) oral agents declined (from 33.0 to 26.5%), whereas the use of insulin alone and in combination with oral agents increased (from 6.0 to 8.5% and from 11.1 to 14.6%, respectively; all P values <0.001).”

“Between 1987 and 2011, per person medical spending attributable to diabetes doubled (4). More than half of the increase was due to prescription drug spending (4). Despite these spending increases and greater utilization of newly developed medications, we showed no concurrent improvements in overall glycemic control or the rates of severe hypoglycemia in our study. Although the use of newer and more expensive agents may have other important benefits (44), further studies are needed to define the value and cost-effectiveness of current treatment options.”

iii. Among Low-Income Respondents With Diabetes, High-Deductible Versus No-Deductible Insurance Sharply Reduces Medical Service Use.

“Using the 2011–2013 Medical Expenditure Panel Survey, bivariate and regression analyses were conducted to compare demographic characteristics, medical service use, diabetes care, and health status among privately insured adult respondents with diabetes, aged 18–64 years (N = 1,461) by lower (<200% of the federal poverty level) and higher (≥200% of the federal poverty level) income and deductible vs. no deductible (ND), low deductible ($1,000/$2,400) (LD), and high deductible (>$1,000/$2,400) (HD). The National Health Interview Survey 2012–2014 was used to analyze differences in medical debt and delayed/avoided needed care among adult respondents with diabetes (n = 4,058) by income. […] Compared with privately insured respondents with diabetes with ND, privately insured lower-income respondents with diabetes with an LD report significant decreases in service use for primary care, checkups, and specialty visits (27%, 39%, and 77% lower, respectively), and respondents with an HD decrease use by 42%, 65%, and 86%, respectively. Higher-income respondents with an LD report significant decreases in specialty (28%) and emergency department (37%) visits.”

“The reduction in ambulatory visits made by lower-income respondents with ND compared with lower-income respondents with an LD or HD is far greater than for higher-income patients. […] The substantial reduction in checkup (preventive) and specialty visits by those with a lower income who have an HDHP [high-deductible health plan, US] implies a very different pattern of service use compared with lower-income respondents who have ND and with higher-income respondents. Though preventive visits require no out-of-pocket costs, reduced preventive service use with HDHPs is well established and might be the result of patients being unaware of this benefit or their concern about findings that could lead to additional expenses (31). Such sharply reduced service use by low-income respondents with diabetes may not be desirable. Patients with diabetes benefit from assessment of diabetes control, encouragement and reinforcement of behavior change and medication use, and early detection and treatment of diabetes complications or concomitant disease.”

iv. Long-term Mortality and End-Stage Renal Disease in a Type 1 Diabetes Population Diagnosed at Age 15–29 Years in Norway.

OBJECTIVE To study long-term mortality, causes of death, and end-stage renal disease (ESRD) in people diagnosed with type 1 diabetes at age 15–29 years.

RESEARCH DESIGN AND METHODS This nationwide, population-based cohort with type 1 diabetes diagnosed during 1978–1982 (n = 719) was followed from diagnosis until death, emigration, or September 2013. Linkages to the Norwegian Cause of Death Registry and the Norwegian Renal Registry provided information on causes of death and whether ESRD was present.

RESULTS During 30 years’ follow-up, 4.6% of participants developed ESRD and 20.6% (n = 148; 106 men and 42 women) died. Cumulative mortality by years since diagnosis was 6.0% (95% CI 4.5–8.0) at 10 years, 12.2% (10.0–14.8) at 20 years, and 18.4% (15.8–21.5) at 30 years. The SMR [standardized mortality ratio] was 4.4 (95% CI 3.7–5.1). Mean time from diagnosis of diabetes to ESRD was 23.6 years (range 14.2–33.5). Death was caused by chronic complications (32.2%), acute complications (20.5%), violent death (19.9%), or any other cause (27.4%). Death was related to alcohol in 15% of cases. SMR for alcohol-related death was 6.8 (95% CI 4.5–10.3), for cardiovascular death was 7.3 (5.4–10.0), and for violent death was 3.6 (2.3–5.3).

CONCLUSIONS The cumulative incidence of ESRD was low in this cohort with type 1 diabetes followed for 30 years. Mortality was 4.4 times that of the general population, and more than 50% of all deaths were caused by acute or chronic complications. A relatively high proportion of deaths were related to alcohol.”

Some additional observations from the paper:

“Studies assessing causes of death in type 1 diabetes are most frequently conducted in individuals diagnosed during childhood (17) or without evaluating the effect of age at diagnosis (8,9). Reports on causes of death in cohorts of patients diagnosed during late adolescence or young adulthood, with long-term follow-up, are less frequent (10). […] Adherence to treatment during this age is poor and the risk of acute diabetic complications is high (1316). Mortality may differ between those with diabetes diagnosed during this period of life and those diagnosed during childhood.”

“Mortality was between four and five times higher than in the general population […]. The excess mortality was similar for men […] and women […]. SMR was higher in the lower age bands — 6.7 (95% CI 3.9–11.5) at 15–24 years and 7.3 (95% CI 5.2–10.1) at 25–34 years — compared with the higher age bands: 3.7 (95% CI 2.7–4.9) at 45–54 years and 3.9 (95% CI 2.6–5.8) at 55–65 years […]. The Cox regression model showed that the risk of death increased significantly by age at diagnosis (HR 1.1; 95% CI 1.1–1.2; P < 0.001) and was eight to nine times higher if ESRD was present (HR 8.7; 95% CI 4.8–15.5; P < 0.0001). […] the underlying cause of death was diabetes in 57 individuals (39.0%), circulatory in 22 (15.1%), cancer in 18 (12.3%), accidents or intoxications in 20 (13.7%), suicide in 8 (5.5%), and any other cause in 21 (14.4%) […] In addition, diabetes contributed to death in 29.5% (n = 43) and CVD contributed to death in 10.9% (n = 29) of the 146 cases. Diabetes was mentioned on the death certificate for 68.2% of the cohort but for only 30.0% of the violent deaths. […] In 60% (88/146) of the cases the review committee considered death to be related to diabetes, whereas in 40% (58/146) the cause was unrelated to diabetes or had an unknown relation to diabetes. According to the clinical committee, acute complications caused death in 20.5% (30/146) of the cases; 20 individuals died as a result of DKA and 10 from hypoglycemia. […] Chronic complications caused the largest proportion of deaths (47/146; 32.2%) and increased with increasing duration of diabetes […]. Among individuals dying as a result of chronic complications (n = 47), CVD caused death in 94% (n = 44) and renal failure in 6% (n = 3). ESRD contributed to death in 22.7% (10/44) of those dying from CVD. Cardiovascular death occurred at mortality rates seven times higher than those in the general population […]. ESRD caused or contributed to death in 13 of 14 cases, when present.”

“Violence (intoxications, accidents, and suicides) was the leading cause of death before 10 years’ duration of diabetes; thereafter it was only a minor cause […] Insulin was used in two of seven suicides. […] According to the available medical records and autopsy reports, about 20% (29/146) of the deceased misused alcohol. In 15% (22/146) alcohol-related ICD-10 codes were listed on the death certificate (18% [19/106] of men and 8% [3/40] of women). In 10 cases the cause of death was uncertain but considered to be related to alcohol or diabetes […] The SMR for alcohol-related death was high when considering the underlying cause of death (5.0; 95% CI 2.5–10.0), and even higher when considering all alcohol-related ICD-10 codes listed on the death certificate (6.8; 95% CI 4.5–10.3). The cause of death was associated with alcohol in 21.8% (19/87) of those who died with less than 20 years’ diabetes duration. Drug abuse was noted on the death certificate in only two cases.”

“During follow-up, 33 individuals (4.6%; 22 men and 11 women) developed ESRD as a result of diabetic nephropathy. Mean time from diagnosis of diabetes to ESRD was 23.6 years (range 14.2–33.5 years). Cumulative incidence of ESRD by years since diagnosis of diabetes was 1.4% (95% CI 0.7–2.7) at 20 years and 4.8% (95% CI 3.4–6.9) at 30 years.”

“This study highlights three important findings. First, among individuals who were diagnosed with type 1 diabetes in late adolescence and early adulthood and had good access to health care, and who were followed for 30 years, mortality was four to five times that of the general population. Second, 15% of all deaths were associated with alcohol, and the SMR for alcohol-related deaths was 6.8. Third, there was a relatively low cumulative incidence of ESRD (4.8%) 30 years after the diagnosis of diabetes.

We report mortality higher than those from a large, population-based study from Finland that found cumulative mortality around 6% at 20 years’ and 15% at 30 years’ duration of diabetes among a population with age at onset and year of diagnosis similar to those in our cohort (10). The corresponding numbers in our cohort were 12% and 18%, respectively; the discrepancy was particularly high at 20 years. The SMR in the Finnish cohort was lower than that in our cohort (2.6–3.0 vs. 3.7–5.1), and those authors reported the SMR to be lower in late-onset diabetes (at age 15–29 years) compared with early-onset diabetes (at age 23). The differences between the Norwegian and Finnish data are difficult to explain since both reports are from countries with good access to health care and a high incidence of type 1 diabetes.”

However the reason for the somewhat different SMRs in these two reasonably similar countries may actually be quite simple – the important variable may be alcohol:

“Finland and Norway are appropriate to compare because they share important population and welfare characteristics. There are, however, significant differences in drinking levels and alcohol-related mortality: the Finnish population consumes more alcohol and the Norwegian population consumes less. The mortality rates for deaths related to alcohol are about three to four times higher in Finland than in Norway (30). […] The markedly higher SMR in our cohort can probably be explained by the lower mortality rates for alcohol-related mortality in the general population. […] In conclusion, the high mortality reported in this cohort with an onset of diabetes in late adolescence and young adulthood draws attention to people diagnosed during a vulnerable period of life. Both acute and chronic complications cause substantial premature mortality […] Our study suggests that increased awareness of alcohol-related death should be encouraged in clinics providing health care to this group of patients.”

April 23, 2017 Posted by | Diabetes, Economics, Epidemiology, Medicine, Nephrology, Neurology, Papers, Pharmacology, Psychology | Leave a comment

Biodemography of aging (III)

Latent class representation of the Grade of Membership model.
Singular value decomposition.
Affine space.
Lebesgue measure.
General linear position.

The links above are links to topics I looked up while reading the second half of the book. The first link is quite relevant to the book’s coverage as a comprehensive longitudinal Grade of Membership (-GoM) model is covered in chapter 17. Relatedly, chapter 18 covers linear latent structure (-LLS) models, and as observed in the book LLS is a generalization of GoM. As should be obvious from the nature of the links some of the stuff included in the second half of the text is highly technical, and I’ll readily admit I was not fully able to understand all the details included in the coverage of chapters 17 and 18 in particular. On account of the technical nature of the coverage in Part 2 I’m not sure I’ll cover the second half of the book in much detail, though I probably shall devote at least one more post to some of those topics, as they were quite interesting even if some of the details were difficult to follow.

I have almost finished the book at this point, and I have already decided to both give the book five stars and include it on my list of favorite books on goodreads; it’s really well written, and it provides consistently highly detailed coverage of very high quality. As I also noted in the first post about the book the authors have given readability aspects some thought, and I am sure most readers would learn quite a bit from this text even if they were to skip some of the more technical chapters. The main body of Part 2 of the book, the subtitle of which is ‘Statistical Modeling of Aging, Health, and Longevity’, is however probably in general not worth the effort of reading unless you have a solid background in statistics.

This post includes some observations and quotes from the last chapters of the book’s Part 1.

“The proportion of older adults in the U.S. population is growing. This raises important questions about the increasing prevalence of aging-related diseases, multimorbidity issues, and disability among the elderly population. […] In 2009, 46.3 million people were covered by Medicare: 38.7 million of them were aged 65 years and older, and 7.6 million were disabled […]. By 2031, when the baby-boomer generation will be completely enrolled, Medicare is expected to reach 77 million individuals […]. Because the Medicare program covers 95 % of the nation’s aged population […], the prediction of future Medicare costs based on these data can be an important source of health care planning.”

“Three essential components (which could be also referred as sub-models) need to be developed to construct a modern model of forecasting of population health and associated medical costs: (i) a model of medical cost projections conditional on each health state in the model, (ii) health state projections, and (iii) a description of the distribution of initial health states of a cohort to be projected […] In making medical cost projections, two major effects should be taken into account: the dynamics of the medical costs during the time periods comprising the date of onset of chronic diseases and the increase of medical costs during the last years of life. In this chapter, we investigate and model the first of these two effects. […] the approach developed in this chapter generalizes the approach known as “life tables with covariates” […], resulting in a new family of forecasting models with covariates such as comorbidity indexes or medical costs. In sum, this chapter develops a model of the relationships between individual cost trajectories following the onset of aging-related chronic diseases. […] The underlying methodological idea is to aggregate the health state information into a single (or several) covariate(s) that can be determinative in predicting the risk of a health event (e.g., disease incidence) and whose dynamics could be represented by the model assumptions. An advantage of such an approach is its substantial reduction of the degrees of freedom compared with existing forecasting models  (e.g., the FEM model, Goldman and RAND Corporation 2004). […] We found that the time patterns of medical cost trajectories were similar for all diseases considered and can be described in terms of four components having the meanings of (i) the pre-diagnosis cost associated with initial comorbidity represented by medical expenditures, (ii) the cost peak associated with the onset of each disease, (iii) the decline/reduction in medical expenditures after the disease onset, and (iv) the difference between post- and pre-diagnosis cost levels associated with an acquired comorbidity. The description of the trajectories was formalized by a model which explicitly involves four parameters reflecting these four components.”

As I noted earlier in my coverage of the book, I don’t think the model above fully captures all relevant cost contributions of the diseases included, as the follow-up period was too short to capture all relevant costs to be included in the part iv model component. This is definitely a problem in the context of diabetes. But then again nothing in theory stops people from combining the model above with other models which are better at dealing with the excess costs associated with long-term complications of chronic diseases, and the model results were intriguing even if the model likely underperforms in a few specific disease contexts.

Moving on…

“Models of medical cost projections usually are based on regression models estimated with the majority of independent predictors describing demographic status of the individual, patient’s health state, and level of functional limitations, as well as their interactions […]. If the health states needs to be described by a number of simultaneously manifested diseases, then detailed stratification over the categorized variables or use of multivariate regression models allows for a better description of the health states. However, it can result in an abundance of model parameters to be estimated. One way to overcome these difficulties is to use an approach in which the model components are demographically-based aggregated characteristics that mimic the effects of specific states. The model developed in this chapter is an example of such an approach: the use of a comorbidity index rather than of a set of correlated categorical regressor variables to represent the health state allows for an essential reduction in the degrees of freedom of the problem.”

“Unlike mortality, the onset time of chronic disease is difficult to define with high precision due to the large variety of disease-specific criteria for onset/incident case identification […] there is always some arbitrariness in defining the date of chronic disease onset, and a unified definition of date of onset is necessary for population studies with a long-term follow-up.”

“Individual age trajectories of physiological indices are the product of a complicated interplay among genetic and non-genetic (environmental, behavioral, stochastic) factors that influence the human body during the course of aging. Accordingly, they may differ substantially among individuals in a cohort. Despite this fact, the average age trajectories for the same index follow remarkable regularities. […] some indices tend to change monotonically with age: the level of blood glucose (BG) increases almost monotonically; pulse pressure (PP) increases from age 40 until age 85, then levels off and shows a tendency to decline only at later ages. The age trajectories of other indices are non-monotonic: they tend to increase first and then decline. Body mass index (BMI) increases up to about age 70 and then declines, diastolic blood pressure (DBP) increases until age 55–60 and then declines, systolic blood pressure (SBP) increases until age 75 and then declines, serum cholesterol (SCH) increases until age 50 in males and age 70 in females and then declines, ventricular rate (VR) increases until age 55 in males and age 45 in females and then declines. With small variations, these general patterns are similar in males and females. The shapes of the age-trajectories of the physiological variables also appear to be similar for different genotypes. […] The effects of these physiological indices on mortality risk were studied in Yashin et al. (2006), who found that the effects are gender and age specific. They also found that the dynamic properties of the individual age trajectories of physiological indices may differ dramatically from one individual to the next.”

“An increase in the mortality rate with age is traditionally associated with the process of aging. This influence is mediated by aging-associated changes in thousands of biological and physiological variables, some of which have been measured in aging studies. The fact that the age trajectories of some of these variables differ among individuals with short and long life spans and healthy life spans indicates that dynamic properties of the indices affect life history traits. Our analyses of the FHS data clearly demonstrate that the values of physiological indices at age 40 are significant contributors both to life span and healthy life span […] suggesting that normalizing these variables around age 40 is important for preventing age-associated morbidity and mortality later in life. […] results [also] suggest that keeping physiological indices stable over the years of life could be as important as their normalizing around age 40.”

“The results […] indicate that, in the quest of identifying longevity genes, it may be important to look for candidate genes with pleiotropic effects on more than one dynamic characteristic of the age-trajectory of a physiological variable, such as genes that may influence both the initial value of a trait (intercept) and the rates of its changes over age (slopes). […] Our results indicate that the dynamic characteristics of age-related changes in physiological variables are important predictors of morbidity and mortality risks in aging individuals. […] We showed that the initial value (intercept), the rate of changes (slope), and the variability of a physiological index, in the age interval 40–60 years, significantly influenced both mortality risk and onset of unhealthy life at ages 60+ in our analyses of the Framingham Heart Study data. That is, these dynamic characteristics may serve as good predictors of late life morbidity and mortality risks. The results also suggest that physiological changes taking place in the organism in middle life may affect longevity through promoting or preventing diseases of old age. For non-monotonically changing indices, we found that having a later age at the peak value of the index […], a lower peak value […], a slower rate of decline in the index at older ages […], and less variability in the index over time, can be beneficial for longevity. Also, the dynamic characteristics of the physiological indices were, overall, associated with mortality risk more significantly than with onset of unhealthy life.”

“Decades of studies of candidate genes show that they are not linked to aging-related traits in a straightforward manner […]. Recent genome-wide association studies (GWAS) have reached fundamentally the same conclusion by showing that the traits in late life likely are controlled by a relatively large number of common genetic variants […]. Further, GWAS often show that the detected associations are of tiny effect […] the weak effect of genes on traits in late life can be not only because they confer small risks having small penetrance but because they confer large risks but in a complex fashion […] In this chapter, we consider several examples of complex modes of gene actions, including genetic tradeoffs, antagonistic genetic effects on the same traits at different ages, and variable genetic effects on lifespan. The analyses focus on the APOE common polymorphism. […] The analyses reported in this chapter suggest that the e4 allele can be protective against cancer with a more pronounced role in men. This protective effect is more characteristic of cancers at older ages and it holds in both the parental and offspring generations of the FHS participants. Unlike cancer, the effect of the e4 allele on risks of CVD is more pronounced in women. […] [The] results […] explicitly show that the same allele can change its role on risks of CVD in an antagonistic fashion from detrimental in women with onsets at younger ages to protective in women with onsets at older ages. […] e4 allele carriers have worse survival compared to non-e4 carriers in each cohort. […] Sex stratification shows sexual dimorphism in the effect of the e4 allele on survival […] with the e4 female carriers, particularly, being more exposed to worse survival. […] The results of these analyses provide two important insights into the role of genes in lifespan. First, they provide evidence on the key role of aging-related processes in genetic susceptibility to lifespan. For example, taking into account the specifics of aging-related processes gains 18 % in estimates of the RRs and five orders of magnitude in significance in the same sample of women […] without additional investments in increasing sample sizes and new genotyping. The second is that a detailed study of the role of aging-related processes in estimates of the effects of genes on lifespan (and healthspan) helps in detecting more homogeneous [high risk] sub-samples”.

“The aging of populations in developed countries requires effective strategies to extend healthspan. A promising solution could be to yield insights into the genetic predispositions for endophenotypes, diseases, well-being, and survival. It was thought that genome-wide association studies (GWAS) would be a major breakthrough in this endeavor. Various genetic association studies including GWAS assume that there should be a deterministic (unconditional) genetic component in such complex phenotypes. However, the idea of unconditional contributions of genes to these phenotypes faces serious difficulties which stem from the lack of direct evolutionary selection against or in favor of such phenotypes. In fact, evolutionary constraints imply that genes should be linked to age-related phenotypes in a complex manner through different mechanisms specific for given periods of life. Accordingly, the linkage between genes and these traits should be strongly modulated by age-related processes in a changing environment, i.e., by the individuals’ life course. The inherent sensitivity of genetic mechanisms of complex health traits to the life course will be a key concern as long as genetic discoveries continue to be aimed at improving human health.”

“Despite the common understanding that age is a risk factor of not just one but a large portion of human diseases in late life, each specific disease is typically considered as a stand-alone trait. Independence of diseases was a plausible hypothesis in the era of infectious diseases caused by different strains of microbes. Unlike those diseases, the exact etiology and precursors of diseases in late life are still elusive. It is clear, however, that the origin of these diseases differs from that of infectious diseases and that age-related diseases reflect a complicated interplay among ontogenetic changes, senescence processes, and damages from exposures to environmental hazards. Studies of the determinants of diseases in late life provide insights into a number of risk factors, apart from age, that are common for the development of many health pathologies. The presence of such common risk factors makes chronic diseases and hence risks of their occurrence interdependent. This means that the results of many calculations using the assumption of disease independence should be used with care. Chapter 4 argued that disregarding potential dependence among diseases may seriously bias estimates of potential gains in life expectancy attributable to the control or elimination of a specific disease and that the results of the process of coping with a specific disease will depend on the disease elimination strategy, which may affect mortality risks from other diseases.”

April 17, 2017 Posted by | Biology, Books, Cancer/oncology, Demographics, Economics, Epidemiology, Genetics, Medicine, Statistics | Leave a comment

Random stuff

It’s been a long time since I last posted one of these posts, so a great number of links of interest has accumulated in my bookmarks. I intended to include a large number of these in this post and this of course means that I surely won’t cover each specific link included in this post in anywhere near the amount of detail it deserves, but that can’t be helped.

i. Autism Spectrum Disorder Grown Up: A Chart Review of Adult Functioning.

“For those diagnosed with ASD in childhood, most will become adults with a significant degree of disability […] Seltzer et al […] concluded that, despite considerable heterogeneity in social outcomes, “few adults with autism live independently, marry, go to college, work in competitive jobs or develop a large network of friends”. However, the trend within individuals is for some functional improvement over time, as well as a decrease in autistic symptoms […]. Some authors suggest that a sub-group of 15–30% of adults with autism will show more positive outcomes […]. Howlin et al. (2004), and Cederlund et al. (2008) assigned global ratings of social functioning based on achieving independence, friendships/a steady relationship, and education and/or a job. These two papers described respectively 22% and 27% of groups of higher functioning (IQ above 70) ASD adults as attaining “Very Good” or “Good” outcomes.”

“[W]e evaluated the adult outcomes for 45 individuals diagnosed with ASD prior to age 18, and compared this with the functioning of 35 patients whose ASD was identified after 18 years. Concurrent mental illnesses were noted for both groups. […] Comparison of adult outcome within the group of subjects diagnosed with ASD prior to 18 years of age showed significantly poorer functioning for those with co-morbid Intellectual Disability, except in the domain of establishing intimate relationships [my emphasis. To make this point completely clear, one way to look at these results is that apparently in the domain of partner-search autistics diagnosed during childhood are doing so badly in general that being intellectually disabled on top of being autistic is apparently conferring no additional disadvantage]. Even in the normal IQ group, the mean total score, i.e. the sum of the 5 domains, was relatively low at 12.1 out of a possible 25. […] Those diagnosed as adults had achieved significantly more in the domains of education and independence […] Some authors have described a subgroup of 15–27% of adult ASD patients who attained more positive outcomes […]. Defining an arbitrary adaptive score of 20/25 as “Good” for our normal IQ patients, 8 of thirty four (25%) of those diagnosed as adults achieved this level. Only 5 of the thirty three (15%) diagnosed in childhood made the cutoff. (The cut off was consistent with a well, but not superlatively, functioning member of society […]). None of the Intellectually Disabled ASD subjects scored above 10. […] All three groups had a high rate of co-morbid psychiatric illnesses. Depression was particularly frequent in those diagnosed as adults, consistent with other reports […]. Anxiety disorders were also prevalent in the higher functioning participants, 25–27%. […] Most of the higher functioning ASD individuals, whether diagnosed before or after 18 years of age, were functioning well below the potential implied by their normal range intellect.”

Related papers: Social Outcomes in Mid- to Later Adulthood Among Individuals Diagnosed With Autism and Average Nonverbal IQ as Children, Adults With Autism Spectrum Disorders.

ii. Premature mortality in autism spectrum disorder. This is a Swedish matched case cohort study. Some observations from the paper:

“The aim of the current study was to analyse all-cause and cause-specific mortality in ASD using nationwide Swedish population-based registers. A further aim was to address the role of intellectual disability and gender as possible moderators of mortality and causes of death in ASD. […] Odds ratios (ORs) were calculated for a population-based cohort of ASD probands (n = 27 122, diagnosed between 1987 and 2009) compared with gender-, age- and county of residence-matched controls (n = 2 672 185). […] During the observed period, 24 358 (0.91%) individuals in the general population died, whereas the corresponding figure for individuals with ASD was 706 (2.60%; OR = 2.56; 95% CI 2.38–2.76). Cause-specific analyses showed elevated mortality in ASD for almost all analysed diagnostic categories. Mortality and patterns for cause-specific mortality were partly moderated by gender and general intellectual ability. […] Premature mortality was markedly increased in ASD owing to a multitude of medical conditions. […] Mortality was significantly elevated in both genders relative to the general population (males: OR = 2.87; females OR = 2.24)”.

“Individuals in the control group died at a mean age of 70.20 years (s.d. = 24.16, median = 80), whereas the corresponding figure for the entire ASD group was 53.87 years (s.d. = 24.78, median = 55), for low-functioning ASD 39.50 years (s.d. = 21.55, median = 40) and high-functioning ASD 58.39 years (s.d. = 24.01, median = 63) respectively. […] Significantly elevated mortality was noted among individuals with ASD in all analysed categories of specific causes of death except for infections […] ORs were highest in cases of mortality because of diseases of the nervous system (OR = 7.49) and because of suicide (OR = 7.55), in comparison with matched general population controls.”

iii. Adhesive capsulitis of shoulder. This one is related to a health scare I had a few months ago. A few quotes:

Adhesive capsulitis (also known as frozen shoulder) is a painful and disabling disorder of unclear cause in which the shoulder capsule, the connective tissue surrounding the glenohumeral joint of the shoulder, becomes inflamed and stiff, greatly restricting motion and causing chronic pain. Pain is usually constant, worse at night, and with cold weather. Certain movements or bumps can provoke episodes of tremendous pain and cramping. […] People who suffer from adhesive capsulitis usually experience severe pain and sleep deprivation for prolonged periods due to pain that gets worse when lying still and restricted movement/positions. The condition can lead to depression, problems in the neck and back, and severe weight loss due to long-term lack of deep sleep. People who suffer from adhesive capsulitis may have extreme difficulty concentrating, working, or performing daily life activities for extended periods of time.”

Some other related links below:

The prevalence of a diabetic condition and adhesive capsulitis of the shoulder.
“Adhesive capsulitis is characterized by a progressive and painful loss of shoulder motion of unknown etiology. Previous studies have found the prevalence of adhesive capsulitis to be slightly greater than 2% in the general population. However, the relationship between adhesive capsulitis and diabetes mellitus (DM) is well documented, with the incidence of adhesive capsulitis being two to four times higher in diabetics than in the general population. It affects about 20% of people with diabetes and has been described as the most disabling of the common musculoskeletal manifestations of diabetes.”

Adhesive Capsulitis (review article).
“Patients with type I diabetes have a 40% chance of developing a frozen shoulder in their lifetimes […] Dominant arm involvement has been shown to have a good prognosis; associated intrinsic pathology or insulin-dependent diabetes of more than 10 years are poor prognostic indicators.15 Three stages of adhesive capsulitis have been described, with each phase lasting for about 6 months. The first stage is the freezing stage in which there is an insidious onset of pain. At the end of this period, shoulder ROM [range of motion] becomes limited. The second stage is the frozen stage, in which there might be a reduction in pain; however, there is still restricted ROM. The third stage is the thawing stage, in which ROM improves, but can take between 12 and 42 months to do so. Most patients regain a full ROM; however, 10% to 15% of patients suffer from continued pain and limited ROM.”

Musculoskeletal Complications in Type 1 Diabetes.
“The development of periarticular thickening of skin on the hands and limited joint mobility (cheiroarthropathy) is associated with diabetes and can lead to significant disability. The objective of this study was to describe the prevalence of cheiroarthropathy in the well-characterized Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort and examine associated risk factors […] This cross-sectional analysis was performed in 1,217 participants (95% of the active cohort) in EDIC years 18/19 after an average of 24 years of follow-up. Cheiroarthropathy — defined as the presence of any one of the following: adhesive capsulitis, carpal tunnel syndrome, flexor tenosynovitis, Dupuytren’s contracture, or a positive prayer sign [related link] — was assessed using a targeted medical history and standardized physical examination. […] Cheiroarthropathy was present in 66% of subjects […] Cheiroarthropathy is common in people with type 1 diabetes of long duration (∼30 years) and is related to longer duration and higher levels of glycemia. Clinicians should include cheiroarthropathy in their routine history and physical examination of patients with type 1 diabetes because it causes clinically significant functional disability.”

Musculoskeletal disorders in diabetes mellitus: an update.
“Diabetes mellitus (DM) is associated with several musculoskeletal disorders. […] The exact pathophysiology of most of these musculoskeletal disorders remains obscure. Connective tissue disorders, neuropathy, vasculopathy or combinations of these problems, may underlie the increased incidence of musculoskeletal disorders in DM. The development of musculoskeletal disorders is dependent on age and on the duration of DM; however, it has been difficult to show a direct correlation with the metabolic control of DM.”

Rheumatic Manifestations of Diabetes Mellitus.

Prevalence of symptoms and signs of shoulder problems in people with diabetes mellitus.

Musculoskeletal Disorders of the Hand and Shoulder in Patients with Diabetes.
“In addition to micro- and macroangiopathic complications, diabetes mellitus is also associated with several musculoskeletal disorders of the hand and shoulder that can be debilitating (1,2). Limited joint mobility, also termed diabetic hand syndrome or cheiropathy (3), is characterized by skin thickening over the dorsum of the hands and restricted mobility of multiple joints. While this syndrome is painless and usually not disabling (2,4), other musculoskeletal problems occur with increased frequency in diabetic patients, including Dupuytren’s disease [“Dupuytren’s disease […] may be observed in up to 42% of adults with diabetes mellitus, typically in patients with long-standing T1D” – link], carpal tunnel syndrome [“The prevalence of [carpal tunnel syndrome, CTS] in patients with diabetes has been estimated at 11–30 % […], and is dependent on the duration of diabetes. […] Type I DM patients have a high prevalence of CTS with increasing duration of disease, up to 85 % after 54 years of DM” – link], palmar flexor tenosynovitis or trigger finger [“The incidence of trigger finger [/stenosing tenosynovitis] is 7–20 % of patients with diabetes comparing to only about 1–2 % in nondiabetic patients” – link], and adhesive capsulitis of the shoulder (5–10). The association of adhesive capsulitis with pain, swelling, dystrophic skin, and vasomotor instability of the hand constitutes the “shoulder-hand syndrome,” a rare but potentially disabling manifestation of diabetes (1,2).”

“The prevalence of musculoskeletal disorders was greater in diabetic patients than in control patients (36% vs. 9%, P < 0.01). Adhesive capsulitis was present in 12% of the diabetic patients and none of the control patients (P < 0.01), Dupuytren’s disease in 16% of diabetic and 3% of control patients (P < 0.01), and flexor tenosynovitis in 12% of diabetic and 2% of control patients (P < 0.04), while carpal tunnel syndrome occurred in 12% of diabetic patients and 8% of control patients (P = 0.29). Musculoskeletal disorders were more common in patients with type 1 diabetes than in those with type 2 diabetes […]. Forty-three patients [out of 100] with type 1 diabetes had either hand or shoulder disorders (37 with hand disorders, 6 with adhesive capsulitis of the shoulder, and 10 with both syndromes), compared with 28 patients [again out of 100] with type 2 diabetes (24 with hand disorders, 4 with adhesive capsulitis of the shoulder, and 3 with both syndromes, P = 0.03).”

Association of Diabetes Mellitus With the Risk of Developing Adhesive Capsulitis of the Shoulder: A Longitudinal Population-Based Followup Study.
“A total of 78,827 subjects with at least 2 ambulatory care visits with a principal diagnosis of DM in 2001 were recruited for the DM group. The non-DM group comprised 236,481 age- and sex-matched randomly sampled subjects without DM. […] During a 3-year followup period, 946 subjects (1.20%) in the DM group and 2,254 subjects (0.95%) in the non-DM group developed ACS. The crude HR of developing ACS for the DM group compared to the non-DM group was 1.333 […] the association between DM and ACS may be explained at least in part by a DM-related chronic inflammatory process with increased growth factor expression, which in turn leads to joint synovitis and subsequent capsular fibrosis.”

It is important to note when interpreting the results of the above paper that these results are based on Taiwanese population-level data, and type 1 diabetes – which is obviously the high-risk diabetes subgroup in this particular context – is rare in East Asian populations (as observed in Sperling et al., “A child in Helsinki, Finland is almost 400 times more likely to develop diabetes than a child in Sichuan, China”. Taiwanese incidence of type 1 DM in children is estimated at ~5 in 100.000).

iv. Parents who let diabetic son starve to death found guilty of first-degree murder. It’s been a while since I last saw one of these ‘boost-your-faith-in-humanity’-cases, but they in my impression do pop up every now and then. I should probably keep at hand one of these articles in case my parents ever express worry to me that they weren’t good parents; they could have done a lot worse…

v. Freedom of medicine. One quote from the conclusion of Cochran’s post:

“[I]t is surely possible to materially improve the efficacy of drug development, of medical research as a whole. We’re doing better than we did 500 years ago – although probably worse than we did 50 years ago. But I would approach it by learning as much as possible about medical history, demographics, epidemiology, evolutionary medicine, theory of senescence, genetics, etc. Read Koch, not Hayek. There is no royal road to medical progress.”

I agree, and I was considering including some related comments and observations about health economics in this post – however I ultimately decided against doing that in part because the post was growing unwieldy; I might include those observations in another post later on. Here’s another somewhat older Westhunt post I at some point decided to bookmark – I in particular like the following neat quote from the comments, which expresses a view I have of course expressed myself in the past here on this blog:

“When you think about it, falsehoods, stupid crap, make the best group identifiers, because anyone might agree with you when you’re obviously right. Signing up to clear nonsense is a better test of group loyalty. A true friend is with you when you’re wrong. Ideally, not just wrong, but barking mad, rolling around in your own vomit wrong.”

vi. Economic Costs of Diabetes in the U.S. in 2012.

“Approximately 59% of all health care expenditures attributed to diabetes are for health resources used by the population aged 65 years and older, much of which is borne by the Medicare program […]. The population 45–64 years of age incurs 33% of diabetes-attributed costs, with the remaining 8% incurred by the population under 45 years of age. The annual attributed health care cost per person with diabetes […] increases with age, primarily as a result of increased use of hospital inpatient and nursing facility resources, physician office visits, and prescription medications. Dividing the total attributed health care expenditures by the number of people with diabetes, we estimate the average annual excess expenditures for the population aged under 45 years, 45–64 years, and 65 years and above, respectively, at $4,394, $5,611, and $11,825.”

“Our logistic regression analysis with NHIS data suggests that diabetes is associated with a 2.4 percentage point increase in the likelihood of leaving the workforce for disability. This equates to approximately 541,000 working-age adults leaving the workforce prematurely and 130 million lost workdays in 2012. For the population that leaves the workforce early because of diabetes-associated disability, we estimate that their average daily earnings would have been $166 per person (with the amount varying by demographic). Presenteeism accounted for 30% of the indirect cost of diabetes. The estimate of a 6.6% annual decline in productivity attributed to diabetes (in excess of the estimated decline in the absence of diabetes) equates to 113 million lost workdays per year.”

vii. Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: a systemically searched meta-analysis of randomized controlled trials.

viii. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. Did I blog this paper at some point in the past? I could not find any coverage of it on the blog when I searched for it so I decided to include it here, even if I have a nagging suspicion I may have talked about these findings before. What did they find? The short version is this:

“A modest reduction in salt intake for four or more weeks causes significant and, from a population viewpoint, important falls in blood pressure in both hypertensive and normotensive individuals, irrespective of sex and ethnic group. Salt reduction is associated with a small physiological increase in plasma renin activity, aldosterone, and noradrenaline and no significant change in lipid concentrations. These results support a reduction in population salt intake, which will lower population blood pressure and thereby reduce cardiovascular disease.”

ix. Some wikipedia links:

Heroic Age of Antarctic Exploration (featured).

Wien’s displacement law.

Kuiper belt (featured).

Treason (one quote worth including here: “Currently, the consensus among major Islamic schools is that apostasy (leaving Islam) is considered treason and that the penalty is death; this is supported not in the Quran but in the Hadith.[42][43][44][45][46][47]“).

Lymphatic filariasis.

File:World map of countries by number of cigarettes smoked per adult per year.

Australian gold rushes.

Savant syndrome (“It is estimated that 10% of those with autism have some form of savant abilities”). A small sidenote of interest to Danish readers: The Danish Broadcasting Corporation recently featured a series about autistics with ‘special abilities’ – the show was called ‘The hidden talents’ (De skjulte talenter), and after multiple people had nagged me to watch it I ended up deciding to do so. Most of the people in that show presumably had some degree of ‘savantism’ combined with autism at the milder end of the spectrum, i.e. Asperger’s. I was somewhat conflicted about what to think about the show and did consider blogging it in detail (in Danish?), but I decided against it. However I do want to add here to Danish readers reading along who’ve seen the show that they would do well to repeatedly keep in mind that a) the great majority of autistics do not have abilities like these, b) many autistics with abilities like these presumably do quite poorly, and c) that many autistics have even greater social impairments than do people like e.g. (the very likeable, I have to add…) Louise Wille from the show).

Quark–gluon plasma.

Simo Häyhä.

Chernobyl liquidators.

Black Death (“Over 60% of Norway’s population died in 1348–1350”).

Renault FT (“among the most revolutionary and influential tank designs in history”).

Weierstrass function (“an example of a pathological real-valued function on the real line. The function has the property of being continuous everywhere but differentiable nowhere”).

W Ursae Majoris variable.

Void coefficient. (“a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor moderator or coolant. […] Reactivity is directly related to the tendency of the reactor core to change power level: if reactivity is positive, the core power tends to increase; if it is negative, the core power tends to decrease; if it is zero, the core power tends to remain stable. […] A positive void coefficient means that the reactivity increases as the void content inside the reactor increases due to increased boiling or loss of coolant; for example, if the coolant acts as a neutron absorber. If the void coefficient is large enough and control systems do not respond quickly enough, this can form a positive feedback loop which can quickly boil all the coolant in the reactor. This happened in the RBMK reactor that was destroyed in the Chernobyl disaster.”).

Gregor MacGregor (featured) (“a Scottish soldier, adventurer, and confidence trickster […] MacGregor’s Poyais scheme has been called one of the most brazen confidence tricks in history.”).

Stimming.

Irish Civil War.

March 10, 2017 Posted by | Astronomy, autism, Cardiology, Diabetes, Economics, Epidemiology, History, Infectious disease, Mathematics, Medicine, Papers, Physics, Psychology, Random stuff, Wikipedia | Leave a comment

Biodemography of aging (II)

In my first post about the book I included a few general remarks about the book and what it’s about. In this post I’ll continue my coverage of the book, starting with a few quotes from and observations related to the content in chapter 4 (‘Evidence for Dependence Among Diseases‘).

“To compare the effects of public health policies on a population’s characteristics, researchers commonly estimate potential gains in life expectancy that would result from eradication or reduction of selected causes of death. For example, Keyfitz (1977) estimated that eradication of cancer would result in 2.265 years of increase in male life expectancy at birth (or by 3 % compared to its 1964 level). Lemaire (2005) found that the potential gain in the U.S. life expectancy from cancer eradication would not exceed 3 years for both genders. Conti et al. (1999) calculated that the potential gain in life expectancy from cancer eradication in Italy would be 3.84 years for males and 2.77 years for females. […] All these calculations assumed independence between cancer and other causes of death. […] for today’s populations in developed countries, where deaths from chronic non-communicable diseases are in the lead, this assumption might no longer be valid. An important feature of such chronic diseases is that they often develop in clusters manifesting positive correlations with each other. The conventional view is that, in a case of such dependence, the effect of cancer eradication on life expectancy would be even smaller.”

I think the great majority of people you asked would have assumed that the beneficial effect of hypothetical cancer eradication in humans on human life expectancy would be much larger than this, but that’s just an impression. I’ve seen estimates like these before, so I was not surprised – but I think many people would be if they knew this. A very large number of people die as a result of developing cancer today, but the truth of the matter is that if they hadn’t died from cancer they’d have died anyway, and on average probably not really all that much later. I linked to Richard Alexander’s comments on this topic in my last post about the book, and again his observations apply so I thought I might as well add the relevant quote from the book here:

“In the course of working against senescence, selection will tend to remove, one by one, the most frequent sources of mortality as a result of senescence. Whenever a single cause of mortality, such as a particular malfunction of any vital organ, becomes the predominant cause of mortality, then selection will more effectively reduce the significance of that particular defect (meaning those who lack it will outreproduce) until some other achieves greater relative significance. […] the result will be that all organs and systems will tend to deteriorate together. […] The point is that as we age, and as senescence proceeds, large numbers of potential sources of mortality tend to lurk ever more malevolently just “below the surface,”so that, unfortunately, the odds are very high against any dramatic lengthening of the maximum human lifetime through technology.”

Remove one cause of death and there are plenty of others standing in line behind it. We already knew that; two hundred years ago one out of every four deaths in England was the result of tuberculosis, but developing treatments for tuberculosis and other infectious diseases did not mean that English people stopped dying; these days they just die from cardiovascular disease and cancer instead. Do note in the context of that quote that Alexander is talking about the maximum human lifetime, not average life expectancy; again, we know and have known for a long time that human technology can have a dramatic effect on the latter variable. Of course a shift in one distribution will be likely to have spill-over effects on the other (if more people are alive at the age of 70, the potential group of people also living on to reach e.g. 100 years is higher, even if the mortality rate for the 70-100 year old group did not change) the point is just that these effects are secondary effects and are likely to be marginal at best.

Anyway, some more stuff from the chapter. Just like the previous chapter in the book did, this one also includes analyses of very large data sets:

The Multiple Cause of Death (MCD) data files contain information about underlying and secondary causes of death in the U.S. during 1968–2010. In total, they include more than 65 million individual death certificate records. […] we used data for the period 1979–2004.”

There’s some formal modelling stuff in the chapter which I won’t go into in detail here, this is the chapter in which I encountered the comment about ‘the multivariate lognormal frailty model’ I included in my first post about the book. One of the things the chapter looks at are the joint frequencies of deaths from cancer and other fatal diseases; it turns out that there are multiple diseases that are negatively related with cancer as a cause of death when you look at the population-level data mentioned above. The chapter goes into some of the biological mechanisms which may help explain why these associations look the way they do, and I’ll quote a little from that part of the coverage. A key idea here is (as always..?) that there are tradeoffs at play; some genetic variants may help protect you against e.g. cancer, but at the same time increase the risk of other diseases for the same reason that they protect you against cancer. In the context of the relationship between cancer deaths and deaths from other diseases they note in the conclusion that: “One potential biological mechanism underlying the negative correlation among cancer and other diseases could be related to the differential role of apoptosis in the development of these diseases.” The chapter covers that stuff in significantly more detail, and I decided to add some observations from the chapter on these topics below:

“Studying the role of the p53 gene in the connection between cancer and cellular aging, Campisi (2002, 2003) suggested that longevity may depend on a balance between tumor suppression and tissue renewal mechanisms. […] Although the mechanism by which p53 regulates lifespan remains to be determined, […] findings highlight the possibility that careful manipulation of p53 activity during adult life may result in beneficial effects on healthy lifespan. Other tumor suppressor genes are also involved in regulation of longevity. […] In humans, Dumont et al. (2003) demonstrated that a replacement of arginine (Arg) by proline (Pro) at position 72 of human p53 decreases its ability to initiate apoptosis, suggesting that these variants may differently affect longevity and vulnerability to cancer. Van Heemst et al. (2005) showed that individuals with the Pro/Pro genotype of p53 corresponding to reduced apoptosis in cells had significantly increased overall survival (by 41%) despite a more than twofold increased proportion of cancer deaths at ages 85+, together with a decreased proportion of deaths from senescence related causes such as COPD, fractures, renal failure, dementia, and senility. It was suggested that human p53 may protect against cancer but at a cost of longevity. […] Other biological factors may also play opposing roles in cancer and aging and thus contribute to respective trade-offs […]. E.g., higher levels of IGF-1 [have been] linked to both cancer and attenuation of phenotypes of physical senescence, such as frailty, sarcopenia, muscle atrophy, and heart failure, as well as to better muscle regeneration”.

“The connection between cancer and longevity may potentially be mediated by trade-offs between cancer and other diseases which do not necessarily involve any basic mechanism of aging per se. In humans, it could result, for example, from trade-offs between vulnerabilities to cancer and AD, or to cancer and CVD […] There may be several biological mechanisms underlying the negative correlation among cancer and these diseases. One can be related to the differential role of apoptosis in their development. For instance, in stroke, the number of dying neurons following brain ischemia (and thus probability of paralysis or death) may be less in the case of a downregulated apoptosis. As for cancer, the downregulated apoptosis may, conversely, mean a higher risk of the disease because more cells may survive damage associated with malignant transformation. […] Also, the role of the apoptosis may be different or even opposite in the development of cancer and Alzheimer’s disease (AD). Indeed, suppressed apoptosis is a hallmark of cancer, while increased apoptosis is a typical feature of AD […]. If so, then chronically upregulated apoptosis (e.g., due to a genetic polymorphism) may potentially be protective against cancer, but be deleterious in relation to AD. […] Increased longevity can be associated not only with increased but also with decreased chances of cancer. […] The most popular to-date “anti-aging” intervention, caloric restriction, often results in increased maximal life span along with reduced tumor incidence in laboratory rodents […] Because the rate of apoptosis was significantly and consistently higher in food restricted mice regardless of age, James et al. (1998) suggested that caloric restriction may have a cancer-protective effect primarily due to the upregulated apoptosis in these mice.”

Below I’ll discuss content covered in chapter 5, which deals with ‘Factors That May Increase Vulnerability to Cancer and Longevity in Modern Human Populations’. I’ll start out with a few quotes:

“Currently, the overall cancer incidence rate (age-adjusted) in the less developed world is roughly half that seen in the more developed world […] For countries with similar levels of economic development but different climate and ethnic characteristics […], the cancer rate patterns look much more similar than for the countries that share the same geographic location, climate, and ethnic distribution, but differ in the level of economic development […]. This suggests that different countries may share common factors linked to economic prosperity that could be primarily responsible for the modern increases in overall cancer risk. […] Population aging (increases in the proportion of older people) may […] partly explain the rise in the global cancer burden […]; however, it cannot explain increases in age-specific cancer incidence rates over time […]. Improved diagnostics and elevated exposures to carcinogens may explain increases in rates for selected cancer sites, but they cannot fully explain the increase in the overall cancer risk, nor incidence rate trends for most individual cancers (Jemal et al. 2008, 2013).”

“[W]e propose that the association between the overall cancer risk and the economic progress and spread of the Western lifestyle could in part be explained by the higher proportion of individuals more susceptible to cancer in the populations of developed countries, and discuss several mechanisms of such an increase in the proportion of the vulnerable. […] mechanisms include but are not limited to: (i) Improved survival of frail individuals. […] (ii) Avoiding or reducing traditional exposures. Excessive disinfection and hygiene typical of the developed world can diminish exposure to some factors that were abundant in the past […] Insufficiently or improperly trained immune systems may be less capable of resisting cancer. (iii) Burden of novel exposures. Some new medicines, cleaning agents, foods, etc., that are not carcinogenic themselves may still affect the natural ways of processing carcinogens in the body, and through this increase a person’s susceptibility to established carcinogens. [If this one sounds implausible to you, I’ll remind you that drug metabolism is complicatedUS] […] (iv) Some of the factors linked to economic prosperity and the Western lifestyle (e.g., delayed childbirth and food enriched with growth factors) may antagonistically influence aging and cancer risk.”

They provide detailed coverage of all of these mechanisms in the chapter, below I have included a few select observations from that part of the coverage.

“There was a dramatic decline in infant and childhood mortality in developed countries during the last century. For example, the infant mortality rate in the United States was about 6 % of live births in 1935, 3 % in 1950, 1.3 % in 1980, and 0.6 % in 2010. That is, it declined tenfold over the course of 75 years […] Because almost all children (including those with immunity deficiencies) survive, the proportion of the children who are inherently more vulnerable could be higher in the more developed countries. This is consistent with a typically higher proportion of children with chronic inflammatory immune disorders such as asthma and allergy in the populations of developed countries compared to less developed ones […] Over-reduction of such traditional exposures may result in an insufficiently/improperly trained immune system early in life, which could make it less able to resist diseases, including cancer later in life […] There is accumulating evidence of the important role of these effects in cancer risk. […] A number of studies have connected excessive disinfection and lack of antigenic stimulation (especially in childhood) of the immune system in Westernized communities with increased risks of both chronic inflammatory diseases and cancer […] The IARC data on migrants to Israel […] allow for comparison of the age trajectories of cancer incidence rates between adult Jews who live in Israel but were born in other countries […] [These data] show that Jews born in less developed regions (Africa and Asia) have overall lower cancer risk than those born in the more developed regions (Europe and America).  The discrepancy is unlikely to be due to differences in cancer diagnostics because at the moment of diagnosis all these people were citizens of the same country with the same standard of medical care. These results suggest that surviving childhood and growing up in a less developed country with diverse environmental exposures might help form resistance to cancer that lasts even after moving to a high risk country.”

I won’t go much into the ‘burden of novel exposures’ part, but I should note that exposures that may be relevant include factors like paracetamol use and antibiotics for treatment of H. pylori. Paracetamol is not considered carcinogenic by the IARC, but we know from animal studies that if you give rats paratamol and then expose them to an established carcinogen (with the straightforward name N-nitrosoethyl-N-hydroxyethylamine), the number of rats developing kidney cancer goes up. In the context of H. pylori, we know that these things may cause stomach cancer, but when you treat rats with metronidazol (which is used to treat H. pylori) and expose them to an established carcinogen, they’re more likely to develop colon cancer. The link between colon cancer and antibiotics use has been noted in other contexts as well; decreased microbial diversity after antibiotics use may lead to suppression of the bifidobacteria and promotion of E. coli in the colon, the metabolic products of which may lead to increased cancer risk. Over time an increase in colon cancer risk and a decrease in stomach cancer risk has been observed in developed societies, but aside from changes in diet another factor which may play a role is population-wide exposure to antibiotics. Colon and stomach cancers are incidentally not the only ones of interest in this particular context; it has also been found that exposure to chloramphenicol, a broad-spectrum antibiotic used since the 40es, increases the risk of lymphoma in mice when the mice are exposed to a known carcinogen, despite the drug itself again not being clearly carcinogenic on its own.

Many new exposures aside from antibiotics are of course relevant. Two other drug-related ones that might be worth mentioning are hormone replacement therapy and contraceptives. HRT is not as commonly used today as it was in the past, but to give some idea of the scope here, half of all women in the US aged 50-65 are estimated to have been on HRT at the peak of its use, around the turn of the millennium, and HRT is assumed to be partly responsible for the higher incidence of hormone-related cancers observed in female populations living in developed countries. It’s of some note that the use of HRT dropped dramatically shortly after this peak (from 61 million prescriptions in 2001 to 21 million in 2004), and that the incidence of estrogen-receptor positive cancers subsequently dropped. As for oral contraceptives, these have been in use since the 1960s, and combined hormonal contraceptives are known to increase the risk of liver- and breast cancer, while seemingly also having a protective effect against endometrial cancer and ovarian cancer. The authors speculate that some of the cancer incidence changes observed in the US during the latter half of the last century, with a decline in female endometrial and ovarian cancer combined with an increase in breast- and liver cancer, could in part be related to widespread use of these drugs. An estimated 10% of all women of reproductive age alive in the world, and 16% of those living in the US, are estimated to be using combined hormonal contraceptives. In the context of the protective effect of the drugs, it should perhaps be noted that endometrial cancer in particular is strongly linked to obesity so if you are not overweight you are relatively low-risk.

Many ‘exposures’ in a cancer context are not drug-related. For example women in Western societies tend to go into menopause at a higher age, and higher age of menopause has been associated with hormone-related cancers; but again the picture is not clear in terms of how the variable affects longevity, considering that later menopause has also been linked to increased longevity in several large studies. In the studies the women did have higher mortality from the hormone-related cancers, but on the other hand they were less likely to die from some of the other causes, such as pneumonia, influenza, and falls. Age of childbirth is also a variable where there are significant differences between developed countries and developing countries, and this variable may also be relevant to cancer incidence as it has been linked to breast cancer and melanoma; in one study women who first gave birth after the age of 35 had a 40% increased risk of breast cancer compared to mothers who gave birth before the age of 20 (good luck ‘controlling for everything’ in a context like that, but…), and in a meta-analysis the relative risk for melanoma was 1.47 for women in the oldest age group having given birth, compared to the youngest (again, good luck controlling for everything, but at least it’s not just one study). Lest you think this literature only deals with women, it’s also been found that parental age seems to be linked to cancers in the offspring (higher parental age -> higher cancer risk in the offspring), though the effect sizes are not mentioned in the coverage.

Here’s what they conclude at the end of the chapter:

“Some of the factors associated with economic prosperity and a Western lifestyle may influence both aging and vulnerability to cancer, sometimes oppositely. Current evidence supports a possibility of trade-offs between cancer and aging-related phenotypes […], which could be influenced by delayed reproduction and exposures to growth factors […]. The latter may be particularly beneficial at very old age. This is because the higher levels of growth factors may attenuate some phenotypes of physical senescence, such as decline in regenerative and healing ability, sarcopenia, frailty, elderly fractures and heart failure due to muscles athrophy. They may also increase the body’s vulnerability to cancer, e.g., through growth promoting and anti-apoptotic effects […]. The increase in vulnerability to cancer due to growth factors can be compatible with extreme longevity because cancer is a major contributor to mortality mainly before age 85, while senescence-related causes (such as physical frailty) become major contributors to mortality at oldest old ages (85+). In this situation, the impact of growth factors on vulnerability to death could be more deleterious in middle-to-old life (~before 85) and more beneficial at older ages (85+).

The complex relationships between aging, cancer, and longevity are challenging. This complexity warns against simplified approaches to extending longevity without taking into account the possible trade-offs between phenotypes of physical aging and various health disorders, as well as the differential impacts of such tradeoffs on mortality risks at different ages (e.g., Ukraintseva and Yashin 2003a; Yashin et al. 2009; Ukraintseva et al. 2010, 2016).”

March 7, 2017 Posted by | Books, Cancer/oncology, Epidemiology, Genetics, Immunology, Medicine, Pharmacology | Leave a comment

Diabetes and the brain (IV)

Here’s one of my previous posts in the series about the book. In this post I’ll cover material dealing with two acute hyperglycemia-related diabetic complications (DKA and HHS – see below…) as well as multiple topics related to diabetes and stroke. I’ll start out with a few quotes from the book about DKA and HHS:

“DKA [diabetic ketoacidosis] is defined by a triad of hyperglycemia, ketosis, and acidemia and occurs in the absolute or near-absolute absence of insulin. […] DKA accounts for the bulk of morbidity and mortality in children with T1DM. National population-based studies estimate DKA mortality at 0.15% in the United States (4), 0.18–0.25% in Canada (4, 5), and 0.31% in the United Kingdom (6). […] Rates reach 25–67% in those who are newly diagnosed (4, 8, 9). The rates are higher in younger children […] The risk of DKA among patients with pre-existing diabetes is 1–10% annual per person […] DKA can present with mild-to-severe symptoms. […] polyuria and polydipsia […] patients may present with signs of dehydration, such as tachycardia and dry mucus membranes. […] Vomiting, abdominal pain, malaise, and weight loss are common presenting symptoms […] Signs related to the ketoacidotic state include hyperventilation with deep breathing (Kussmaul’s respiration) which is a compensatory respiratory response to an underlying metabolic acidosis. Acetonemia may cause a fruity odor to the breath. […] Elevated glucose levels are almost always present; however, euglycemic DKA has been described (19). Anion-gap metabolic acidosis is the hallmark of this condition and is caused by elevated ketone bodies.”

“Clinically significant cerebral edema occurs in approximately 1% of patients with diabetic ketoacidosis […] DKA-related cerebral edema may represent a continuum. Mild forms resulting in subtle edema may result in modest mental status abnormalities whereas the most severe manifestations result in overt cerebral injury. […] Cerebral edema typically presents 4–12 h after the treatment for DKA is started (28, 29), but can occur at any time. […] Increased intracranial pressure with cerebral edema has been recognized as the leading cause of morbidity and mortality in pediatric patients with DKA (59). Mortality from DKA-related cerebral edema in children is high, up to 90% […] and accounts for 60–90% of the mortality seen in DKA […] many patients are left with major neurological deficits (28, 31, 35).”

“The hyperosmolar hyperglycemic state (HHS) is also an acute complication that may occur in patients with diabetes mellitus. It is seen primarily in patients with T2DM and has previously been referred to as “hyperglycemic hyperosmolar non-ketotic coma” or “hyperglycemic hyperosmolar non-ketotic state” (13). HHS is marked by profound dehydration and hyperglycemia and often by some degree of neurological impairment. The term hyperglycemic hyperosmolar state is used because (1) ketosis may be present and (2) there may be varying degrees of altered sensorium besides coma (13). Like DKA, the basic underlying disorder is inadequate circulating insulin, but there is often enough insulin to inhibit free fatty acid mobilization and ketoacidosis. […] Up to 20% of patients diagnosed with HHS do not have a previous history of diabetes mellitus (14). […] Kitabchi et al. estimated the rate of hospital admissions due to HHS to be lower than DKA, accounting for less than 1% of all primary diabetic admissions (13). […] Glucose levels rise in the setting of relative insulin deficiency. The low levels of circulating insulin prevent lipolysis, ketogenesis, and ketoacidosis (62) but are unable to suppress hyperglycemia, glucosuria, and water losses. […] HHS typically presents with one or more precipitating factors, similar to DKA. […] Acute infections […] account for approximately 32–50% of precipitating causes (13). […] The mortality rates for HHS vary between 10 and 20% (14, 93).”

It should perhaps be noted explicitly that the mortality rates for these complications are particularly high in the settings of either very young individuals (DKA) or in elderly individuals (HHS) who might have multiple comorbidities. Relatedly HHS often develops acutely specifically in settings where the precipitating factor is something really unpleasant like pneumonia or a cardiovascular event, so a high-ish mortality rate is perhaps not that surprising. Nor is it surprising that very young brains are particularly vulnerable in the context of DKA (I already discussed some of the research on these matters in some detail in an earlier post about this book).

This post to some extent covered the topic of ‘stroke in general’, however I wanted to include here also some more data specifically on diabetes-related matters about this topic. Here’s a quote to start off with:

“DM [Diabetes Mellitus] has been consistently shown to represent a strong independent risk factor of ischemic stroke. […] The contribution of hyperglycemia to increased stroke risk is not proven. […] the relationship between hyperglycemia and stroke remains subject of debate. In this respect, the association between hyperglycemia and cerebrovascular disease is established less strongly than the association between hyperglycemia and coronary heart disease. […] The course of stroke in patients with DM is characterized by higher mortality, more severe disability, and higher recurrence rate […] It is now well accepted that the risk of stroke in individuals with DM is equal to that of individuals with a history of myocardial infarction or stroke, but no DM (24–26). This was confirmed in a recently published large retrospective study which enrolled all inhabitants of Denmark (more than 3 million people out of whom 71,802 patients with DM) and were followed-up for 5 years. In men without DM the incidence of stroke was 2.5 in those without and 7.8% in those with prior myocardial infarction, whereas in patients with DM it was 9.6 in those without and 27.4% in those with history of myocardial infarction. In women the numbers were 2.5, 9.0, 10.0, and 14.2%, respectively (22).

That study incidentally is very nice for me in particular to know about, given that I am a Danish diabetic. I do not here face any of the usual tiresome questions about ‘external validity’ and issues pertaining to ‘extrapolating out of sample’ – not only is it quite likely I’ve actually looked at some of the data used in that analysis myself, I also know that I am almost certainly one of the people included in the analysis. Of course you need other data as well to assess risk (e.g. age, see the previously linked post), but this is pretty clean as far as it goes. Moving on…

“The number of deaths from stroke attributable to DM is highest in low-and-middle-income countries […] the relative risk conveyed by DM is greater in younger subjects […] It is not well known whether type 1 or type 2 DM affects stroke risk differently. […] In the large cohort of women enrolled in the Nurses’ Health Study (116,316 women followed for up to 26 years) it was shown that the incidence of total stroke was fourfold higher in women with type 1 DM and twofold higher among women with type 2 DM than for non-diabetic women (33). […] The impact of DM duration as a stroke risk factor has not been clearly defined. […] In this context it is important to note that the actual duration of type 2 DM is difficult to determine precisely […and more generally: “the date of onset of a certain chronic disease is a quantity which is not defined as precisely as mortality“, as Yashin et al. put it – I also talked about this topic in my previous post, but it’s important when you’re looking at these sorts of things and is worth reiterating – US]. […] Traditional risk factors for stroke such as arterial hypertension, dyslipidemia, atrial fibrillation, heart failure, and previous myocardial infarction are more common in people with DM […]. However, the impact of DM on stroke is not just due to the higher prevalence of these risk factors, as the risk of mortality and morbidity remains over twofold increased after correcting for these factors (4, 37). […] It is informative to distinguish between factors that are non-specific and specific to DM. DM-specific factors, including chronic hyperglycemia, DM duration, DM type and complications, and insulin resistance, may contribute to an elevated stroke risk either by amplification of the harmful effect of other “classical” non-specific risk factors, such as hypertension, or by acting independently.”

More than a few variables are known to impact stroke risk, but the fact that many of the risk factors are related to each other (‘fat people often also have high blood pressure’) makes it hard to figure out which variables are most important, how they interact with each other, etc., etc. One might in that context perhaps conceptualize the metabolic syndrome (-MS) as a sort of indicator variable indicating whether a relatively common set of such related potential risk factors of interest are present or not – it is worth noting in that context that the authors include in the text the observation that: “it is yet uncertain if the whole concept of the MS entails more than its individual components. The clustering of risk factors complicates the assessment of the contribution of individual components to the risk of vascular events, as well as assessment of synergistic or interacting effects.” MS confers a two-threefold increased stroke risk, depending on the definition and the population analyzed, so there’s definitely some relevant stuff included in that box, but in the context of developing new treatment options and better assess risk it might be helpful to – to put it simplistically – know if variable X is significantly more important than variable Y (and how the variables interact, etc., etc.). But this sort of information is hard to get.

There’s more than one type of stroke, and the way diabetes modifies the risk of various stroke types is not completely clear:

“Most studies have consistently shown that DM is an important risk factor for ischemic stroke, while the incidence of hemorrhagic stroke in subjects with DM does not seem to be increased. Consequently, the ratio of ischemic to hemorrhagic stroke is higher in patients with DM than in those stroke patients without DM [recall the base rates I’ve mentioned before in the coverage of this book: 80% of strokes are ischemic strokes in Western countries, and 15 % hemorrhagic] […] The data regarding an association between DM and the risk of hemorrhagic stroke are quite conflicting. In the most series no increased risk of cerebral hemorrhage was found (10, 101), and in the Copenhagen Stroke Registry, hemorrhagic stroke was even six times less frequent in diabetic patients than in non-diabetic subjects (102). […] However, in another prospective population-based study DM was associated with an increased risk of primary intracerebral hemorrhage (103). […] The significance of DM as a risk factor of hemorrhagic stroke could differ depending on ethnicity of subjects or type of DM. In the large Nurses’ Health Study type 1 DM increased the risk of hemorrhagic stroke by 3.8 times while type 2 DM did not increase such a risk (96). […] It is yet unclear if DM predominantly predisposes to either large or small vessel ischemic stroke. Nevertheless, lacunar stroke (small, less than 15mm in diameter infarction, cyst-like, frequently multiple) is considered to be the typical type of stroke in diabetic subjects (105–107), and DM may be present in up to 28–43% of patients with cerebral lacunar infarction (108–110).”

The Danish results mentioned above might not be as useful to me as they were before if the type is important, because the majority of those diabetics included were type 2 diabetics. I know from personal experience that it is difficult to type-identify diabetics using the Danish registry data available if you want to work with population-level data, and any type of scheme attempting this will be subject to potentially large misidentification problems. Some subgroups can be presumably correctly identified using diagnostic codes, but a very large number of individuals will be left out of the analyses if you only rely on identification strategies where you’re (at least reasonably?) certain about the type. I’ve worked on these identification problems during my graduate work so perhaps a few more things are worth mentioning here. In the context of diabetic subgroup analyses, misidentification is in general a much larger problem in the context of type 1 results than in the context of type 2 results; unless the study design takes the large prevalence difference of the two conditions into account, the type 1 sample will be much smaller than the type 2 sample in pretty much all analytical contexts, so a small number of misidentified type 2 individuals can have large impacts on the results of the type 1 sample. Type 1s misidentified as type 2 individuals is in general to be expected to be a much smaller problem in terms of the validity of the type 2 analysis; misidentification of that type will cause a loss of power in the context of the type 1 subgroup analysis, which is already low to start with (and it’ll also make the type 1 subgroup analysis even more vulnerable to misidentified type 2s), but it won’t much change the results of the type 2 subgroup analysis in any significant way. Relatedly, even if enough type 2 patients are misidentified to cause problems with the interpretation of the type 1 subgroup analysis, this would not on its own be a good reason to doubt the results of the type 2 subgroup analysis. Another thing to note in terms of these things is that given that misidentification will tend to lead to ‘mixing’, i.e. it’ll make the subgroup results look similar, when outcomes are not similar in the type 1 and the type 2 individuals then this might be taken to be an indicator that something potentially interesting might be going on, because most analyses will struggle with some level of misidentification which will tend to reduce the power of tests of group differences.

What about stroke outcomes? A few observations were included on that topic above, but the book has a lot more stuff on that – some observations on this topic:

“DM is an independent risk factor of death from stroke […]. Tuomilehto et al. (35) calculated that 16% of all stroke mortality in men and 33% in women could be directly attributed to DM. Patients with DM have higher hospital and long-term stroke mortality, more pronounced residual neurological deficits, and more severe disability after acute cerebrovascular accidents […]. The 1-year mortality rate, for example, was twofold higher in diabetic patients compared to non-diabetic subjects (50% vs. 25%) […]. Only 20% of people with DM survive over 5 years after the first stroke and half of these patients die within the first year (36, 128). […] The mechanisms underlying the worse outcome of stroke in diabetic subjects are not fully understood. […] Regarding prevention of stroke in patients with DM, it may be less relevant than in non-DM subjects to distinguish between primary and secondary prevention as all patients with DM are considered to be high-risk subjects regardless of the history of cerebrovascular accidents or the presence of clinical and subclinical vascular lesions. […] The influence of the mode of antihyperglycemic treatment on the risk of stroke is uncertain.

Control of blood pressure is very important in the diabetic setting:

“There are no doubts that there is a linear relation between elevated systolic blood pressure and the risk of stroke, both in people with or without DM. […] Although DM and arterial hypertension represent significant independent risk factors for stroke if they co-occur in the same patient the risk increases dramatically. A prospective study of almost 50 thousand subjects in Finland followed up for 19 years revealed that the hazard ratio for stroke incidence was 1.4, 2.0, 2.5, 3.5, and 4.5 and for stroke mortality was 1.5, 2.6, 3.1, 5.6, and 9.3, respectively, in subjects with an isolated modestly elevated blood pressure (systolic 140–159/diastolic 90–94 mmHg), isolated more severe hypertension (systolic >159 mmHg, diastolic >94 mmHg, or use of antihypertensive drugs), with isolated DM only, with both DM and modestly elevated blood pressure, and with both DM and more severe hypertension, relative to subjects without either of the risk factors (168). […] it remains unclear whether some classes of antihypertensive agents provide a stronger protection against stroke in diabetic patients than others. […] effective antihypertensive treatment is highly beneficial for reduction of stroke risk in diabetic patients, but the advantages of any particular class of antihypertensive medications are not substantially proven.”

Treatment of dyslipidemia is also very important, but here it does seem to matter how you treat it:

“It seems that the beneficial effect of statins is dose-dependent. The lower the LDL level that is achieved the stronger the cardiovascular protection. […] Recently, the results of the meta-analysis of 14 randomized trials of statins in 18,686 patients with DM had been published. It was calculated that statins use in diabetic patients can result in a 21% reduction of the risk of any stroke per 1 mmol/l reduction of LDL achieved […] There is no evidence from trials that supports efficacy of fibrates for stroke prevention in diabetic patients. […] No reduction of stroke risk by fibrates was shown also in a meta-analysis of eight trials enrolled 12,249 patients with type 2 DM (204).”

Antiplatelets?

“Significant reductions in stroke risk in diabetic patients receiving antiplatelet therapy were found in large-scale controlled trials (205). It appears that based on the high incidence of stroke and prevalence of stroke risk factors in the diabetic population the benefits of routine aspirin use for primary and secondary stroke prevention outweigh its potential risk of hemorrhagic stroke especially in patients older than 30 years having at least one additional risk factor (206). […] both guidelines issued by the AHA/ADA or the ESC/EASD on the prevention of cardiovascular disease in patients with DM support the use of aspirin in a dose of 50–325 mg daily for the primary prevention of stroke in subjects older than 40 years of age and additional risk factors, such as DM […] The newer antiplatelet agent, clopidogrel, was more efficacious in prevention of ischemic stroke than aspirin with greater risk reduction in the diabetic cohort especially in those treated with insulin compared to non-diabetics in CAPRIE trial (209). However, the combination of aspirin and clopidogrel does not appear to be more efficacious and safe compared to clopidogrel or aspirin alone”.

When you treat all risk factors aggressively, it turns out that the elevated stroke risk can be substantially reduced. Again the data on this stuff is from Denmark:

“Gaede et al. (216) have shown in the Steno 2 study that intensive multifactorial intervention aimed at correction of hyperglycemia, hypertension, dyslipidemia, and microalbuminuria along with aspirin use resulted in a reduction of cardiovascular morbidity including non-fatal stroke […] recently the results of the extended 13.3 years follow-up of this study were presented and the reduction of cardiovascular mortality by 57% and morbidity by 59% along with the reduction of the number of non-fatal stroke (6 vs. 30 events) in intensively treated group was convincingly demonstrated (217). Antihypertensive, hypolipidemic treatment, use of aspirin should thus be recommended as either primary or secondary prevention of stroke for patients with DM.”

March 3, 2017 Posted by | Books, Cardiology, Diabetes, Epidemiology, Medicine, Neurology, Pharmacology, Statistics | Leave a comment

Biodemography of aging (I)

“The goal of this monograph is to show how questions about the connections between and among aging, health, and longevity can be addressed using the wealth of available accumulated knowledge in the field, the large volumes of genetic and non-genetic data collected in longitudinal studies, and advanced biodemographic models and analytic methods. […] This monograph visualizes aging-related changes in physiological variables and survival probabilities, describes methods, and summarizes the results of analyses of longitudinal data on aging, health, and longevity in humans performed by the group of researchers in the Biodemography of Aging Research Unit (BARU) at Duke University during the past decade. […] the focus of this monograph is studying dynamic relationships between aging, health, and longevity characteristics […] our focus on biodemography/biomedical demography meant that we needed to have an interdisciplinary and multidisciplinary biodemographic perspective spanning the fields of actuarial science, biology, economics, epidemiology, genetics, health services research, mathematics, probability, and statistics, among others.”

The quotes above are from the book‘s preface. In case this aspect was not clear from the comments above, this is the kind of book where you’ll randomly encounter sentences like these:

The simplest model describing negative correlations between competing risks is the multivariate lognormal frailty model. We illustrate the properties of such model for the bivariate case.

“The time-to-event sub-model specifies the latent class-specific expressions for the hazard rates conditional on the vector of biomarkers Yt and the vector of observed covariates X …”

…which means that some parts of the book are really hard to blog; it simply takes more effort to deal with this stuff here than it’s worth. As a result of this my coverage of the book will not provide a remotely ‘balanced view’ of the topics covered in it; I’ll skip a lot of the technical stuff because I don’t think it makes much sense to cover specific models and algorithms included in the book in detail here. However I should probably also emphasize while on this topic that although the book is in general not an easy read, it’s hard to read because ‘this stuff is complicated’, not because the authors are not trying. The authors in fact make it clear already in the preface that some chapters are more easy to read than are others and that some chapters are actually deliberately written as ‘guideposts and way-stations‘, as they put it, in order to make it easier for the reader to find the stuff in which he or she is most interested (“the interested reader can focus directly on the chapters/sections of greatest interest without having to read the entire volume“) – they have definitely given readability aspects some thought, and I very much like the book so far; it’s full of great stuff and it’s very well written.

I have had occasion to question a few of the observations they’ve made, for example I was a bit skeptical about a few of the conclusions they drew in chapter 6 (‘Medical Cost Trajectories and Onset of Age-Associated Diseases’), but this was related to what some would certainly consider to be minor details. In the chapter they describe a model of medical cost trajectories where the post-diagnosis follow-up period is 20 months; this is in my view much too short a follow-up period to draw conclusions about medical cost trajectories in the context of type 2 diabetes, one of the diseases included in the model, which I know because I’m intimately familiar with the literature on that topic; you need to look 7-10 years ahead to get a proper sense of how this variable develops over time – and it really is highly relevant to include those later years, because if you do not you may miss out on a large proportion of the total cost given that a substantial proportion of the total cost of diabetes relate to complications which tend to take some years to develop. If your cost analysis is based on a follow-up period as short as that of that model you may also on a related note draw faulty conclusions about which medical procedures and -subsidies are sensible/cost effective in the setting of these patients, because highly adherent patients may be significantly more expensive in a short run analysis like this one (they show up to their medical appointments and take their medications…) but much cheaper in the long run (…because they take their medications they don’t go blind or develop kidney failure). But as I say, it’s a minor point – this was one condition out of 20 included in the analysis they present, and if they’d addressed all the things that pedants like me might take issue with, the book would be twice as long and it would likely no longer be readable. Relatedly, the model they discuss in that chapter is far from unsalvageable; it’s just that one of the components of interest –  ‘the difference between post- and pre-diagnosis cost levels associated with an acquired comorbidity’ – in the case of at least one disease is highly unlikely to be correct (given the authors’ interpretation of the variable), because there’s some stuff of relevance which the model does not include. I found the model quite interesting, despite the shortcomings, and the results were definitely surprising. (No, the above does not in my opinion count as an example of coverage of a ‘specific model […] in detail’. Or maybe it does, but I included no equations. On reflection I probably can’t promise much more than that, sometimes the details are interesting…)

Anyway, below I’ve added some quotes from the first few chapters of the book and a few remarks along the way.

“The genetics of aging, longevity, and mortality has become the subject of intensive analyses […]. However, most estimates of genetic effects on longevity in GWAS have not reached genome-wide statistical significance (after applying the Bonferroni correction for multiple testing) and many findings remain non-replicated. Possible reasons for slow progress in this field include the lack of a biologically-based conceptual framework that would drive development of statistical models and methods for genetic analyses of data [here I was reminded of Burnham & Anderson’s coverage, in particular their criticism of mindless ‘Let the computer find out’-strategies – the authors of that chapter seem to share their skepticism…], the presence of hidden genetic heterogeneity, the collective influence of many genetic factors (each with small effects), the effects of rare alleles, and epigenetic effects, as well as molecular biological mechanisms regulating cellular functions. […] Decades of studies of candidate genes show that they are not linked to aging-related traits in a straightforward fashion (Finch and Tanzi 1997; Martin 2007). Recent genome-wide association studies (GWAS) have supported this finding by showing that the traits in late life are likely controlled by a relatively large number of common genetic variants […]. Further, GWAS often show that the detected associations are of tiny size (Stranger et al. 2011).”

I think this ties in well with what I’ve previously read on these and related topics – see e.g. the second-last paragraph quoted in my coverage of Richard Alexander’s book, or some of the remarks included in Roberts et al. Anyway, moving on:

“It is well known from epidemiology that values of variables describing physiological states at a given age are associated with human morbidity and mortality risks. Much less well known are the facts that not only the values of these variables at a given age, but also characteristics of their dynamic behavior during the life course are also associated with health and survival outcomes. This chapter [chapter 8 in the book, US] shows that, for monotonically changing variables, the value at age 40 (intercept), the rate of change (slope), and the variability of a physiological variable, at ages 40–60, significantly influence both health-span and longevity after age 60. For non-monotonically changing variables, the age at maximum, the maximum value, the rate of decline after reaching the maximum (right slope), and the variability in the variable over the life course may influence health-span and longevity. This indicates that such characteristics can be important targets for preventive measures aiming to postpone onsets of complex diseases and increase longevity.”

The chapter from which the quotes in the next two paragraphs are taken was completely filled with data from the Framingham Heart Study, and it was hard for me to know what to include here and what to leave out – so you should probably just consider the stuff I’ve included below as samples of the sort of observations included in that part of the coverage.

“To mediate the influence of internal or external factors on lifespan, physiological variables have to show associations with risks of disease and death at different age intervals, or directly with lifespan. For many physiological variables, such associations have been established in epidemiological studies. These include body mass index (BMI), diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), blood glucose (BG), serum cholesterol (SCH), hematocrit (H), and ventricular rate (VR). […] the connection between BMI and mortality risk is generally J-shaped […] Although all age patterns of physiological indices are non-monotonic functions of age, blood glucose (BG) and pulse pressure (PP) can be well approximated by monotonically increasing functions for both genders. […] the average values of body mass index (BMI) increase with age (up to age 55 for males and 65 for females), and then decline for both sexes. These values do not change much between ages 50 and 70 for males and between ages 60 and 70 for females. […] Except for blood glucose, all average age trajectories of physiological indices differ between males and females. Statistical analysis confirms the significance of these differences. In particular, after age 35 the female BMI increases faster than that of males. […] [When comparing women with less than or equal to 11 years of education [‘LE’] to women with 12 or more years of education [HE]:] The average values of BG for both groups are about the same until age 45. Then the BG curve for the LE females becomes higher than that of the HE females until age 85 where the curves intersect. […] The average values of BMI in the LE group are substantially higher than those among the HE group over the entire age interval. […] The average values of BG for the HE and LE males are very similar […] However, the differences between groups are much smaller than for females.”

They also in the chapter compared individuals with short life-spans [‘SL’, died before the age of 75] and those with long life-spans [‘LL’, 100 longest-living individuals in the relevant sample] to see if the variables/trajectories looked different. They did, for example: “trajectories for the LL females are substantially different from those for the SL females in all eight indices. Specifically, the average values of BG are higher and increase faster in the SL females. The entire age trajectory of BMI for the LL females is shifted to the right […] The average values of DBP [diastolic blood pressure, US] among the SL females are higher […] A particularly notable observation is the shift of the entire age trajectory of BMI for the LL males and females to the right (towards an older age), as compared with the SL group, and achieving its maximum at a later age. Such a pattern is markedly different from that for healthy and unhealthy individuals. The latter is mostly characterized by the higher values of BMI for the unhealthy people, while it has similar ages at maximum for both the healthy and unhealthy groups. […] Physiological aging changes usually develop in the presence of other factors affecting physiological dynamics and morbidity/mortality risks. Among these other factors are year of birth, gender, education, income, occupation, smoking, and alcohol use. An important limitation of most longitudinal studies is the lack of information regarding external disturbances affecting individuals in their day-today life.”

I incidentally noted while I was reading that chapter that a relevant variable ‘lurking in the shadows’ in the context of the male and female BMI trajectories might be changing smoking habits over time; I have not looked at US data on this topic, but I do know that the smoking patterns of Danish males and females during the latter half of the last century were markedly different and changed really quite dramatically in just a few decades; a lot more males than females smoked in the 60es, whereas the proportions of male- and female smokers today are much more similar, because a lot of males have given up smoking (I refer Danish readers to this blog post which I wrote some years ago on these topics). The authors of the chapter incidentally do look a little at data on smokers and they observe that smokers’ BMI are lower than non-smokers (not surprising), and that the smokers’ BMI curve (displaying the relationship between BMI and age) grows at a slower rate than the BMI curve of non-smokers (that this was to be expected is perhaps less clear, at least to me – the authors don’t interpret these specific numbers, they just report them).

The next chapter is one of the chapters in the book dealing with the SEER data I also mentioned not long ago in the context of my coverage of Bueno et al. Some sample quotes from that chapter below:

“To better address the challenge of “healthy aging” and to reduce economic burdens of aging-related diseases, key factors driving the onset and progression of diseases in older adults must be identified and evaluated. An identification of disease-specific age patterns with sufficient precision requires large databases that include various age-specific population groups. Collections of such datasets are costly and require long periods of time. That is why few studies have investigated disease-specific age patterns among older U.S. adults and there is limited knowledge of factors impacting these patterns. […] Information collected in U.S. Medicare Files of Service Use (MFSU) for the entire Medicare-eligible population of older U.S. adults can serve as an example of observational administrative data that can be used for analysis of disease-specific age patterns. […] In this chapter, we focus on a series of epidemiologic and biodemographic characteristics that can be studied using MFSU.”

“Two datasets capable of generating national level estimates for older U.S. adults are the Surveillance, Epidemiology, and End Results (SEER) Registry data linked to MFSU (SEER-M) and the National Long Term Care Survey (NLTCS), also linked to MFSU (NLTCS-M). […] The SEER-M data are the primary dataset analyzed in this chapter. The expanded SEER registry covers approximately 26 % of the U.S. population. In total, the Medicare records for 2,154,598 individuals are available in SEER-M […] For the majority of persons, we have continuous records of Medicare services use from 1991 (or from the time the person reached age 65 after 1990) to his/her death. […] The NLTCS-M data contain two of the six waves of the NLTCS: namely, the cohorts of years 1994 and 1999. […] In total, 34,077 individuals were followed-up between 1994 and 1999. These individuals were given the detailed NLTCS interview […] which has information on risk factors. More than 200 variables were selected”

In short, these data sets are very large, and contain a lot of information. Here are some results/data:

“Among studied diseases, incidence rates of Alzheimer’s disease, stroke, and heart failure increased with age, while the rates of lung and breast cancers, angina pectoris, diabetes, asthma, emphysema, arthritis, and goiter became lower at advanced ages. [..] Several types of age-patterns of disease incidence could be described. The first was a monotonic increase until age 85–95, with a subsequent slowing down, leveling off, and decline at age 100. This pattern was observed for myocardial infarction, stroke, heart failure, ulcer, and Alzheimer’s disease. The second type had an earlier-age maximum and a more symmetric shape (i.e., an inverted U-shape) which was observed for lung and colon cancers, Parkinson’s disease, and renal failure. The majority of diseases (e.g., prostate cancer, asthma, and diabetes mellitus among them) demonstrated a third shape: a monotonic decline with age or a decline after a short period of increased rates. […] The occurrence of age-patterns with a maximum and, especially, with a monotonic decline contradicts the hypothesis that the risk of geriatric diseases correlates with an accumulation of adverse health events […]. Two processes could be operative in the generation of such shapes. First, they could be attributed to the effect of selection […] when frail individuals do not survive to advanced ages. This approach is popular in cancer modeling […] The second explanation could be related to the possibility of under-diagnosis of certain chronic diseases at advanced ages (due to both less pronounced disease symptoms and infrequent doctor’s office visits); however, that possibility cannot be assessed with the available data […this is because the data sets are based on Medicare claims – US]”

“The most detailed U.S. data on cancer incidence come from the SEER Registry […] about 60 % of malignancies are diagnosed in persons aged 65+ years old […] In the U.S., the estimated percent of cancer patients alive after being diagnosed with cancer (in 2008, by current age) was 13 % for those aged 65–69, 25 % for ages 70–79, and 22 % for ages 80+ years old (compared with 40 % of those aged younger than 65 years old) […] Diabetes affects about 21 % of the U.S. population aged 65+ years old (McDonald et al. 2009). However, while more is known about the prevalence of diabetes, the incidence of this disease among older adults is less studied. […] [In multiple previous studies] the incidence rates of diabetes decreased with age for both males and females. In the present study, we find similar patterns […] The prevalence of asthma among the U.S. population aged 65+ years old in the mid-2000s was as high as 7 % […] older patients are more likely to be underdiagnosed, untreated, and hospitalized due to asthma than individuals younger than age 65 […] asthma incidence rates have been shown to decrease with age […] This trend of declining asthma incidence with age is in agreement with our results.”

“The prevalence and incidence of Alzheimer’s disease increase exponentially with age, with the most notable rise occurring through the seventh and eight decades of life (Reitz et al. 2011). […] whereas dementia incidence continues to increase beyond age 85, the rate of increase slows down [which] suggests that dementia diagnosed at advanced ages might be related not to the aging process per se, but associated with age-related risk factors […] Approximately 1–2 % of the population aged 65+ and up to 3–5 % aged 85+ years old suffer from Parkinson’s disease […] There are few studies of Parkinsons disease incidence, especially in the oldest old, and its age patterns at advanced ages remain controversial”.

“One disadvantage of large administrative databases is that certain factors can produce systematic over/underestimation of the number of diagnosed diseases or of identification of the age at disease onset. One reason for such uncertainties is an incorrect date of disease onset. Other sources are latent disenrollment and the effects of study design. […] the date of onset of a certain chronic disease is a quantity which is not defined as precisely as mortality. This uncertainty makes difficult the construction of a unified definition of the date of onset appropriate for population studies.”

“[W]e investigated the phenomenon of multimorbidity in the U.S. elderly population by analyzing mutual dependence in disease risks, i.e., we calculated disease risks for individuals with specific pre-existing conditions […]. In total, 420 pairs of diseases were analyzed. […] For each pair, we calculated age patterns of unconditional incidence rates of the diseases, conditional rates of the second (later manifested) disease for individuals after onset of the first (earlier manifested) disease, and the hazard ratio of development of the subsequent disease in the presence (or not) of the first disease. […] three groups of interrelations were identified: (i) diseases whose risk became much higher when patients had a certain pre-existing (earlier diagnosed) disease; (ii) diseases whose risk became lower than in the general population when patients had certain pre-existing conditions […] and (iii) diseases for which “two-tail” effects were observed: i.e., when the effects are significant for both orders of disease precedence; both effects can be direct (either one of the diseases from a disease pair increases the risk of the other disease), inverse (either one of the diseases from a disease pair decreases the risk of the other disease), or controversial (one disease increases the risk of the other, but the other disease decreases the risk of the first disease from the disease pair). In general, the majority of disease pairs with increased risk of the later diagnosed disease in both orders of precedence were those in which both the pre-existing and later occurring diseases were cancers, and also when both diseases were of the same organ. […] Generally, the effect of dependence between risks of two diseases diminishes with advancing age. […] Identifying mutual relationships in age-associated disease risks is extremely important since they indicate that development of […] diseases may involve common biological mechanisms.”

“in population cohorts, trends in prevalence result from combinations of trends in incidence, population at risk, recovery, and patients’ survival rates. Trends in the rates for one disease also may depend on trends in concurrent diseases, e.g., increasing survival from CHD contributes to an increase in the cancer incidence rate if the individuals who survived were initially susceptible to both diseases.”

March 1, 2017 Posted by | Biology, Books, Cancer/oncology, Cardiology, Demographics, Diabetes, Epidemiology, Genetics, Medicine, Nephrology, Neurology | Leave a comment

The Ageing Immune System and Health (II)

Here’s the first post about the book. I finished it a while ago but I recently realized I had not completed my intended coverage of the book here on the blog back then, and as some of the book’s material sort-of-kind-of relates to material encountered in a book I’m currently reading (Biodemography of Aging) I decided I might as well finish my coverage of the book now in order to review some things I might have forgot in the meantime, by providing coverage here of some of the material covered in the second half of the book. It’s a nice book with some interesting observations, but as I also pointed out in my first post it is definitely not an easy read. Below I have included some observations from the book’s second half.

Lungs:

“The aged lung is characterised by airspace enlargement similar to, but not identical with acquired emphysema [4]. Such tissue damage is detected even in non-smokers above 50 years of age as the septa of the lung alveoli are destroyed and the enlarged alveolar structures result in a decreased surface for gas exchange […] Additional problems are that surfactant production decreases with age [6] increasing the effort needed to expand the lungs during inhalation in the already reduced thoracic cavity volume where the weakened muscles are unable to thoroughly ventilate. […] As ageing is associated with respiratory muscle strength reduction, coughing becomes difficult making it progressively challenging to eliminate inhaled particles, pollens, microbes, etc. Additionally, ciliary beat frequency (CBF) slows down with age impairing the lungs’ first line of defence: mucociliary clearance [9] as the cilia can no longer repel invading microorganisms and particles. Consequently e.g. bacteria can more easily colonise the airways leading to infections that are frequent in the pulmonary tract of the older adult.”

“With age there are dramatic changes in neutrophil function, including reduced chemotaxis, phagocytosis and bactericidal mechanisms […] reduced bactericidal function will predispose to infection but the reduced chemotaxis also has consequences for lung tissue as this results in increased tissue bystander damage from neutrophil elastases released during migration […] It is currently accepted that alterations in pulmonary PPAR profile, more precisely loss of PPARγ activity, can lead to inflammation, allergy, asthma, COPD, emphysema, fibrosis, and cancer […]. Since it has been reported that PPARγ activity decreases with age, this provides a possible explanation for the increasing incidence of these lung diseases and conditions in older individuals [6].”

Cancer:

“Age is an important risk factor for cancer and subjects aged over 60 also have a higher risk of comorbidities. Approximately 50 % of neoplasms occur in patients older than 70 years […] a major concern for poor prognosis is with cancer patients over 70–75 years. These patients have a lower functional reserve, a higher risk of toxicity after chemotherapy, and an increased risk of infection and renal complications that lead to a poor quality of life. […] [Whereas] there is a difference in organs with higher cancer incidence in developed versus developing countries [,] incidence increases with ageing almost irrespective of country […] The findings from Surveillance, Epidemiology and End Results Program [SEERincidentally I likely shall at some point discuss this one in much more detail, as the aforementioned biodemography textbook covers this data in a lot of detail.. – US] [6] show that almost a third of all cancer are diagnosed after the age of 75 years and 70 % of cancer-related deaths occur after the age of 65 years. […] The traditional clinical trial focus is on younger and healthier patient, i.e. with few or no co-morbidities. These restrictions have resulted in a lack of data about the optimal treatment for older patients [7] and a poor evidence base for therapeutic decisions. […] In the older patient, neutropenia, anemia, mucositis, cardiomyopathy and neuropathy — the toxic effects of chemotherapy — are more pronounced […] The correction of comorbidities and malnutrition can lead to greater safety in the prescription of chemotherapy […] Immunosenescence is a general classification for changes occurring in the immune system during the ageing process, as the distribution and function of cells involved in innate and adaptive immunity are impaired or remodelled […] Immunosenescence is considered a major contributor to cancer development in aged individuals“.

Neurodegenerative diseases:

“Dementia and age-related vision loss are major causes of disability in our ageing population and it is estimated that a third of people aged over 75 are affected. […] age is the largest risk factor for the development of neurodegenerative diseases […] older patients with comorbidities such as atherosclerosis, type II diabetes or those suffering from repeated or chronic systemic bacterial and viral infections show earlier onset and progression of clinical symptoms […] analysis of post-mortem brain tissue from healthy older individuals has provided evidence that the presence of misfolded proteins alone does not correlate with cognitive decline and dementia, implying that additional factors are critical for neural dysfunction. We now know that innate immune genes and life-style contribute to the onset and progression of age-related neuronal dysfunction, suggesting that chronic activation of the immune system plays a key role in the underlying mechanisms that lead to irreversible tissue damage in the CNS. […] Collectively these studies provide evidence for a critical role of inflammation in the pathogenesis of a range of neurodegenerative diseases, but the factors that drive or initiate inflammation remain largely elusive.”

“The effect of infection, mimicked experimentally by administration of bacterial lipopolysaccharide (LPS) has revealed that immune to brain communication is a critical component of a host organism’s response to infection and a collection of behavioural and metabolic adaptations are initiated over the course of the infection with the purpose of restricting the spread of a pathogen, optimising conditions for a successful immune response and preventing the spread of infection to other organisms [10]. These behaviours are mediated by an innate immune response and have been termed ‘sickness behaviours’ and include depression, reduced appetite, anhedonia, social withdrawal, reduced locomotor activity, hyperalgesia, reduced motivation, cognitive impairment and reduced memory encoding and recall […]. Metabolic adaptation to infection include fever, altered dietary intake and reduction in the bioavailability of nutrients that may facilitate the growth of a pathogen such as iron and zinc [10]. These behavioural and metabolic adaptions are evolutionary highly conserved and also occur in humans”.

“Sickness behaviour and transient microglial activation are beneficial for individuals with a normal, healthy CNS, but in the ageing or diseased brain the response to peripheral infection can be detrimental and increases the rate of cognitive decline. Aged rodents exhibit exaggerated sickness and prolonged neuroinflammation in response to systemic infection […] Older people who contract a bacterial or viral infection or experience trauma postoperatively, also show exaggerated neuroinflammatory responses and are prone to develop delirium, a condition which results in a severe short term cognitive decline and a long term decline in brain function […] Collectively these studies demonstrate that peripheral inflammation can increase the accumulation of two neuropathological hallmarks of AD, further strengthening the hypothesis that inflammation i[s] involved in the underlying pathology. […] Studies from our own laboratory have shown that AD patients with mild cognitive impairment show a fivefold increased rate of cognitive decline when contracting a systemic urinary tract or respiratory tract infection […] Apart from bacterial infection, chronic viral infections have also been linked to increased incidence of neurodegeneration, including cytomegalovirus (CMV). This virus is ubiquitously distributed in the human population, and along with other age-related diseases such as cardiovascular disease and cancer, has been associated with increased risk of developing vascular dementia and AD [66, 67].”

Frailty:

“Frailty is associated with changes to the immune system, importantly the presence of a pro-inflammatory environment and changes to both the innate and adaptive immune system. Some of these changes have been demonstrated to be present before the clinical features of frailty are apparent suggesting the presence of potentially modifiable mechanistic pathways. To date, exercise programme interventions have shown promise in the reversal of frailty and related physical characteristics, but there is no current evidence for successful pharmacological intervention in frailty. […] In practice, acute illness in a frail person results in a disproportionate change in a frail person’s functional ability when faced with a relatively minor physiological stressor, associated with a prolonged recovery time […] Specialist hospital services such as surgery [15], hip fractures [16] and oncology [17] have now begun to recognise frailty as an important predictor of mortality and morbidity.

I should probably mention here that this is another area where there’s an overlap between this book and the biodemography text I’m currently reading; chapter 7 of the latter text is about ‘Indices of Cumulative Deficits’ and covers this kind of stuff in a lot more detail than does this one, including e.g. detailed coverage of relevant statistical properties of one such index. Anyway, back to the coverage:

“Population based studies have demonstrated that the incidence of infection and subsequent mortality is higher in populations of frail people. […] The prevalence of pneumonia in a nursing home population is 30 times higher than the general population [39, 40]. […] The limited data available demonstrates that frailty is associated with a state of chronic inflammation. There is also evidence that inflammageing predates a diagnosis of frailty suggesting a causative role. […] A small number of studies have demonstrated a dysregulation of the innate immune system in frailty. Frail adults have raised white cell and neutrophil count. […] High white cell count can predict frailty at a ten year follow up [70]. […] A recent meta-analysis and four individual systematic reviews have found beneficial evidence of exercise programmes on selected physical and functional ability […] exercise interventions may have no positive effect in operationally defined frail individuals. […] To date there is no clear evidence that pharmacological interventions improve or ameliorate frailty.”

Exercise:

“[A]s we get older the time and intensity at which we exercise is severely reduced. Physical inactivity now accounts for a considerable proportion of age-related disease and mortality. […] Regular exercise has been shown to improve neutrophil microbicidal functions which reduce the risk of infectious disease. Exercise participation is also associated with increased immune cell telomere length, and may be related to improved vaccine responses. The anti-inflammatory effect of regular exercise and negative energy balance is evident by reduced inflammatory immune cell signatures and lower inflammatory cytokine concentrations. […] Reduced physical activity is associated with a positive energy balance leading to increased adiposity and subsequently systemic inflammation [5]. […] Elevated neutrophil counts accompany increased inflammation with age and the increased ratio of neutrophils to lymphocytes is associated with many age-related diseases including cancer [7]. Compared to more active individuals, less active and overweight individuals have higher circulating neutrophil counts [8]. […] little is known about the intensity, duration and type of exercise which can provide benefits to neutrophil function. […] it remains unclear whether exercise and physical activity can override the effects of NK cell dysfunction in the old. […] A considerable number of studies have assessed the effects of acute and chronic exercise on measures of T-cell immunesenescence including T cell subsets, phenotype, proliferation, cytokine production, chemotaxis, and co-stimulatory capacity. […] Taken together exercise appears to promote an anti-inflammatory response which is mediated by altered adipocyte function and improved energy metabolism leading to suppression of pro-inflammatory cytokine production in immune cells.”

February 24, 2017 Posted by | Biology, Books, Cancer/oncology, Epidemiology, Immunology, Medicine, Neurology | Leave a comment

Diabetes and the Brain (III)

Some quotes from the book below.

Tests that are used in clinical neuropsychology in most cases examine one or more aspects of cognitive domains, which are theoretical constructs in which a multitude of cognitive processes are involved. […] By definition, a subdivision in cognitive domains is arbitrary, and many different classifications exist. […] for a test to be recommended, several criteria must be met. First, a test must have adequate reliability: the test must yield similar outcomes when applied over multiple test sessions, i.e., have good test–retest reliability. […] Furthermore, the interobserver reliability is important, in that the test must have a standardized assessment procedure and is scored in the same manner by different examiners. Second, the test must have adequate validity. Here, different forms of validity are important. Content validity is established by expert raters with respect to item formulation, item selection, etc. Construct validity refers to the underlying theoretical construct that the test is assumed to measure. To assess construct validity, both convergent and divergent validities are important. Convergent validity refers to the amount of agreement between a given test and other tests that measure the same function. In turn, a test with a good divergent validity correlates minimally with tests that measure other cognitive functions. Moreover, predictive validity (or criterion validity) is related to the degree of correlation between the test score and an external criterion, for example, the correlation between a cognitive test and functional status. […] it should be stressed that cognitive tests alone cannot be used as ultimate proof for organic brain damage, but should be used in combination with more direct measures of cerebral abnormalities, such as neuroimaging.”

“Intelligence is a theoretically ill-defined construct. In general, it refers to the ability to think in an abstract manner and solve new problems. Typically, two forms of intelligence are distinguished, crystallized intelligence (academic skills and knowledge that one has acquired during schooling) and fluid intelligence (the ability to solve new problems). Crystallized intelligence is better preserved in patients with brain disease than fluid intelligence (3). […] From a neuropsychological viewpoint, the concept of intelligence as a unitary construct (often referred to as g-factor) does not provide valuable information, since deficits in specific cognitive functions may be averaged out in the total IQ score. Thus, in most neuropsychological studies, intelligence tests are included because of specific subtests that are assumed to measure specific cognitive functions, and the performance profile is analyzed rather than considering the IQ measure as a compound score in isolation.”

“Attention is a concept that in general relates to the selection of relevant information from our environment and the suppression of irrelevant information (selective or “focused” attention), the ability to shift attention between tasks (divided attention), and to maintain a state of alertness to incoming stimuli over longer periods of time (concentration and vigilance). Many different structures in the human brain are involved in attentional processing and, consequently, disorders in attention occur frequently after brain disease or damage (21). […] Speed of information processing is not a localized cognitive function, but depends greatly on the integrity of the cerebral network as a whole, the subcortical white matter and the interhemispheric and intrahemispheric connections. It is one of the cognitive functions that clearly declines with age and it is highly susceptible to brain disease or dysfunction of any kind.”

“The MiniMental State Examination (MMSE) is a screening instrument that has been developed to determine whether older adults have cognitive impairments […] numerous studies have shown that the MMSE has poor sensitivity and specificity, as well as a low-test–retest reliability […] the MMSE has been developed to determine cognitive decline that is typical for Alzheimer’s dementia, but has been found less useful in determining cognitive decline in nondemented patients (44) or in patients with other forms of dementia. This is important since odds ratios for both vascular dementia and Alzheimer’s dementia are increased in diabetes (45). Notwithstanding this increased risk, most patients with diabetes have subtle cognitive deficits (46, 47) that may easily go undetected using gross screening instruments such as the MMSE. For research in diabetes a high sensitivity is thus especially important. […] ceiling effects in test performance often result in a lack of sensitivity. Subtle impairments are easily missed, resulting in a high proportion of false-negative cases […] In general, tests should be cognitively demanding to avoid ceiling effects in patients with mild cognitive dysfunction.[…] sensitive domains such as speed of information processing, (working) memory, attention, and executive function should be examined thoroughly in diabetes patients, whereas other domains such as language, motor function, and perception are less likely to be affected. Intelligence should always be taken into account, and confounding factors such as mood, emotional distress, and coping are crucial for the interpretation of the neuropsychological test results.”

“The life-time risk of any dementia has been estimated to be more than 1 in 5 for women and 1 in 6 for men (2). Worldwide, about 24 million people have dementia, with 4.6 million new cases of dementia every year (3). […] Dementia can be caused by various underlying diseases, the most common of which is Alzheimer’s disease (AD) accounting for roughly 70% of cases in the elderly. The second most common cause of dementia is vascular dementia (VaD), accounting for 16% of cases. Other, less common, causes include dementia with Lewy bodies (DLB) and frontotemporal lobar degeneration (FTLD). […] It is estimated that both the incidence and the prevalence [of AD] double with every 5-year increase in age. Other risk factors for AD include female sex and vascular risk factors, such as diabetes, hypercholesterolaemia and hypertension […] In contrast with AD, progression of cognitive deficits [in VaD] is mostly stepwise and with an acute or subacute onset. […] it is clear that cerebrovascular disease is one of the major causes of cognitive decline. Vascular risk factors such as diabetes mellitus and hypertension have been recognized as risk factors for VaD […] Although pure vascular dementia is rare, cerebrovascular pathology is frequently observed on MRI and in pathological studies of patients clinically diagnosed with AD […] Evidence exists that AD and cerebrovascular pathology act synergistically (60).”

“In type 1 diabetes the annual prevalence of severe hypoglycemia (requiring help for recovery) is 30–40% while the annual incidence varies depending on the duration of diabetes. In insulin-treated type 2 diabetes, the frequency is lower but increases with duration of insulin therapy. […] In normal health, blood glucose is maintained within a very narrow range […] The functioning of the brain is optimal within this range; cognitive function rapidly becomes impaired when the blood glucose falls below 3.0 mmol/l (54 mg/dl) (3). Similarly, but much less dramatically, cognitive function deteriorates when the brain is exposed to high glucose concentrations” (I did not know the latter for certain, but I certainly have had my suspicions for a long time).

“When exogenous insulin is injected into a non-diabetic adult human, peripheral tissues such as skeletal muscle and adipose tissue rapidly take up glucose, while hepatic glucose output is suppressed. This causes blood glucose to fall and triggers a series of counterregulatory events to counteract the actions of insulin; this prevents a progressive decline in blood glucose and subsequently reverses the hypoglycemia. In people with insulin-treated diabetes, many of the homeostatic mechanisms that regulate blood glucose are either absent or deficient. [If you’re looking for more details on these topics, it should perhaps be noted here that Philip Cryer’s book on these topics is very nice and informative]. […] The initial endocrine response to a fall in blood glucose in non-diabetic humans is the suppression of endogenous insulin secretion. This is followed by the secretion of the principal counterregulatory hormones, glucagon and epinephrine (adrenaline) (5). Cortisol and growth hormone also contribute, but have greater importance in promoting recovery during exposure to prolonged hypoglycemia […] Activation of the peripheral sympathetic nervous system and the adrenal glands provokes the release of a copious quantity of catecholamines, epinephrine, and norepinephrine […] Glucagon is secreted from the alpha cells of the pancreatic islets, apparently in response to localized neuroglycopenia and independent of central neural control. […] The large amounts of catecholamines that are secreted in response to hypoglycemia exert other powerful physiological effects that are unrelated to counterregulation. These include major hemodynamic actions with direct effects on the heart and blood pressure. […] regional blood flow changes occur during hypoglycemia that encourages the transport of substrates to the liver for gluconeogenesis and simultaneously of glucose to the brain. Organs that have no role in the response to acute stress, such as the spleen and kidneys, are temporarily under-perfused. The mobilisation and activation of white blood cells are accompanied by hemorheological effects, promoting increased viscosity, coagulation, and fibrinolysis and may influence endothelial function (6). In normal health these acute physiological changes probably exert no harmful effects, but may acquire pathological significance in people with diabetes of long duration.”

“The more complex and attention-demanding cognitive tasks, and those that require speeded responses are more affected by hypoglycemia than simple tasks or those that do not require any time restraint (3). The overall speed of response of the brain in making decisions is slowed, yet for many tasks, accuracy is preserved at the expense of speed (8, 9). Many aspects of mental performance become impaired when blood glucose falls below 3.0 mmol/l […] Recovery of cognitive function does not occur immediately after the blood glucose returns to normal, but in some cognitive domains may be delayed for 60 min or more (3), which is of practical importance to the performance of tasks that require complex cognitive functions, such as driving. […] [the] major changes that occur during hypoglycemia – counterregulatory hormone secretion, symptom generation, and cognitive dysfunction – occur as components of a hierarchy of responses, each being triggered as the blood glucose falls to its glycemic threshold. […] In nondiabetic individuals, the glycemic thresholds are fixed and reproducible (10), but in people with diabetes, these thresholds are dynamic and plastic, and can be modified by external factors such as glycemic control or exposure to preceding (antecedent) hypoglycemia (11). Changes in the glycemic thresholds for the responses to hypoglycemia underlie the effects of the acquired hypoglycemia syndromes that can develop in people with insulin-treated diabetes […] the incidence of severe hypoglycemia in people with insulin-treated type 2 diabetes increases steadily with duration of insulin therapy […], as pancreatic beta-cell failure develops. The under-recognized risk of severe hypoglycemia in insulin-treated type 2 diabetes is of great practical importance as this group is numerically much larger than people with type 1 diabetes and encompasses many older, and some very elderly, people who may be exposed to much greater danger because they often have co-morbidities such as macrovascular disease, osteoporosis, and general frailty.”

“Hypoglycemia occurs when a mismatch develops between the plasma concentrations of glucose and insulin, particularly when the latter is inappropriately high, which is common during the night. Hypoglycemia can result when too much insulin is injected relative to oral intake of carbohydrate or when a meal is missed or delayed after insulin has been administered. Strenuous exercise can precipitate hypoglycemia through accelerated absorption of insulin and depletion of muscle glycogen stores. Alcohol enhances the risk of prolonged hypoglycemia by inhibiting hepatic gluconeogenesis, but the hypoglycemia may be delayed for several hours. Errors of dosage or timing of insulin administration are common, and there are few conditions where the efficacy of the treatment can be influenced by so many extraneous factors. The time–action profiles of different insulins can be modified by factors such as the ambient temperature or the site and depth of injection and the person with diabetes has to constantly try to balance insulin requirement with diet and exercise. It is therefore not surprising that hypoglycemia occurs so frequently. […] The lower the median blood glucose during the day, the greater the frequency
of symptomatic and biochemical hypoglycemia […] Strict glycemic control can […] induce the acquired hypoglycemia syndromes, impaired awareness of hypoglycemia (a major risk factor for severe hypoglycemia), and counterregulatory hormonal deficiencies (which interfere with blood glucose recovery). […] Severe hypoglycemia is more common at the extremes of age – in very young children and in elderly people.
[…] In type 1 diabetes the frequency of severe hypoglycemia increases with duration of diabetes (12), while in type 2 diabetes it is associated with increasing duration of insulin treatment (18). […] Around one quarter of all episodes of severe hypoglycemia result in coma […] In 10% of episodes of severe hypoglycemia affecting people with type 1 diabetes and around 30% of those in people with insulin-treated type 2 diabetes, the assistance of the emergency medical services is required (23). However, most episodes (both mild and severe) are treated in the community, and few people require admission to hospital.”

“Severe hypoglycemia is potentially dangerous and has a significant mortality and morbidity, particularly in older people with insulin-treated diabetes who often have premature macrovascular disease. The hemodynamic effects of autonomic stimulation may provoke acute vascular events such as myocardial ischemia and infarction, cardiac failure, cerebral ischemia, and stroke (6). In clinical practice the cardiovascular and cerebrovascular consequences of hypoglycemia are frequently overlooked because the role of hypoglycemia in precipitating the vascular event is missed. […] The profuse secretion of catecholamines in response to hypoglycemia provokes a fall in plasma potassium and causes electrocardiographic (ECG) changes, which in some individuals may provoke a cardiac arrhythmia […]. A possible mechanism that has been observed with ECG recordings during hypoglycemia is prolongation of the QT interval […]. Hypoglycemia-induced arrhythmias during sleep have been implicated as the cause of the “dead in bed” syndrome that is recognized in young people with type 1 diabetes (40). […] Total cerebral blood flow is increased during acute hypoglycemia while regional blood flow within the brain is altered acutely. Blood flow increases in the frontal cortex, presumably as a protective compensatory mechanism to enhance the supply of available glucose to the most vulnerable part of the brain. These regional vascular changes become permanent in people who are exposed to recurrent severe hypoglycemia and in those with impaired awareness of hypoglycemia, and are then present during normoglycemia (41). This probably represents an adaptive response of the brain to recurrent exposure to neuroglycopenia. However, these permanent hypoglycemia-induced changes in regional cerebral blood flow may encourage localized neuronal ischemia, particularly if the cerebral circulation is already compromised by the development of cerebrovascular disease associated with diabetes. […] Hypoglycemia-induced EEG changes can persist for days or become permanent, particularly after recurrent severe hypoglycemia”.

“In the large British Diabetic Association Cohort Study of people who had developed type 1 diabetes before the age of 30, acute metabolic complications of diabetes were the greatest single cause of excess death under the age of 30; hypoglycemia was the cause of death in 18% of males and 6% of females in the 20–49 age group (47).”

“[The] syndromes of counterregulatory hormonal deficiencies and impaired awareness of hypoglycemia (IAH) develop over a period of years and ultimately affect a substantial proportion of people with type 1 diabetes and a lesser number with insulin-treated type 2 diabetes. They are considered to be components of hypoglycemia-associated autonomic failure (HAAF), through down-regulation of the central mechanisms within the brain that would normally activate glucoregulatory responses to hypoglycemia, including the release of counterregulatory hormones and the generation of warning symptoms (48). […] The glucagon secretory response to hypoglycemia becomes diminished or absent within a few years of the onset of insulin-deficient diabetes. With glucagon deficiency alone, blood glucose recovery from hypoglycemia is not noticeably affected because the secretion of epinephrine maintains counterregulation. However, almost half of those who have type 1 diabetes of 20 years duration have evidence of impairment of both glucagon and epinephrine in response to hypoglycemia (49); this seriously delays blood glucose recovery and allows progression to more severe and prolonged hypoglycemia when exposed to low blood glucose. People with type 1 diabetes who have these combined counterregulatory hormonal deficiencies have a 25-fold higher risk of experiencing severe hypoglycemia if they are subjected to intensive insulin therapy compared with those who have lost their glucagon response but have retained epinephrine secretion […] Impaired awareness is not an “all or none” phenomenon. “Partial” impairment of awareness may develop, with the individual being aware of some episodes of hypoglycemia but not others (53). Alternatively, the intensity or number of symptoms may be reduced, and neuroglycopenic symptoms predominate. […] total absence of any symptoms, albeit subtle, is very uncommon […] IAH affects 20–25% of patients with type 1 diabetes (11, 55) and less than 10% with type 2 diabetes (24), becomes more prevalent with increasing duration of diabetes (12) […], and predisposes the patient to a sixfold higher risk of severe hypoglycemia than people who retain normal awareness (56). When IAH is associated with strict glycemic control during intensive insulin therapy or has followed episodes of recurrent severe hypoglycemia, it may be reversible by relaxing glycemic control or by avoiding further hypoglycemia (11), but in many patients with type 1 diabetes of long duration, it appears to be a permanent defect. […] The modern management of diabetes strives to achieve strict glycemic control using intensive therapy to avoid or minimize the long-term complications of diabetes; this strategy tends to increase the risk of hypoglycemia and promotes development of the acquired hypoglycemia syndromes.”

February 5, 2017 Posted by | Books, Cardiology, Diabetes, Epidemiology, Medicine, Neurology, Psychology | Leave a comment

Diabetes and the Brain (II)

Here’s my first post about the book, which I recently finished – here’s my goodreads review. I added the book to my list of favourite books on goodreads, it’s a great textbook. Below some observations from the first few chapters of the book.

“Several studies report T1D [type 1 diabetes] incidence numbers of 0.1–36.8/100,000 subjects worldwide (2). Above the age of 15 years ketoacidosis at presentation occurs on average in 10% of the population; in children ketoacidosis at presentation is more frequent (3, 4). Overall, publications report a male predominance (1.8 male/female ratio) and a seasonal pattern with higher incidence in November through March in European countries. Worldwide, the incidence of T1D is higher in more developed countries […] After asthma, T1D is a leading cause of chronic disease in children. […]  twin studies show a low concordant prevalence of T1D of only 30–55%. […] Diabetes mellitus type 1 may be sporadic or associated with other autoimmune diseases […] The latter has been classified as autoimmune polyglandular syndrome type II (APS-II). APS-II is a polygenic disorder with a female preponderance which typically occurs between the ages of 20 and 40 years […] In clinical practice, anti-thyroxine peroxidase (TPO) positive hypothyroidism is the most frequent concomitant autoimmune disease in type 1 diabetic patients, therefore all type 1 diabetic patients should annually be screened for the presence of anti-TPO antibodies. Other frequently associated disorders are atrophic gastritis leading to vitamin B12 deficiency (pernicious anemia) and vitiligo. […] The normal human pancreas contains a superfluous amount of β-cells. In T1D, β-cell destruction therefore remains asymptomatic until a critical β-cell reserve is left. This destructive process takes months to years […] Only in a minority of type 1 diabetic patients does the disease begin with diabetic ketoacidosis, the majority presents with a milder course that may be mistaken as type 2 diabetes (7).”

“Insulin is the main regulator of glucose metabolism by stimulating glucose uptake in tissues and glycogen storage in liver and muscle and by inhibiting gluconeogenesis in the liver (11). Moreover, insulin is a growth factor for cells and cell differentiation, and acting as anabolic hormone insulin stimulates lipogenesis and protein synthesis. Glucagon is the counterpart of insulin and is secreted by the α-cells in the pancreatic islets in an inversely proportional quantity to the insulin concentration. Glucagon, being a catabolic hormone, stimulates glycolysis and gluconeogenesis in the liver as well as lipolysis and uptake of amino acids in the liver. Epinephrine and norepinephrine have comparable catabolic effects […] T1D patients lose the glucagon response to hypoglycemia after several years, when all β-cells are destructed […] The risk of hypoglycemia increases with improved glycemic control, autonomic neuropathy, longer duration of diabetes, and the presence of long-term complications (17) […] Long-term complications are prevalent in any population of type 1 diabetic patients with increasing prevalence and severity in relation to disease duration […] The pathogenesis of diabetic complications is multifactorial, complicated, and not yet fully elucidated.”

“Cataract is much more frequent in patients with diabetes and tends to become clinically significant at a younger age. Glaucoma is markedly increased in diabetes too.” (I was unaware of this).

“T1D should be considered as an independent risk factor for atherosclerosis […] An older study shows that the cumulative mortality of coronary heart disease in T1D was 35% by the age 55 (34). In comparison, the Framingham Heart Study showed a cardiovascular mortality of 8% of men and 4% of women without diabetes, respectively. […] Atherosclerosis is basically a systemic disease. Patients with one clinically apparent localization are at risk for other manifestations. […] Musculoskeletal disease in diabetes is best viewed as a systemic disorder with involvement of connective tissue. Potential pathophysiological mechanisms that play a role are glycosylation of collagen, abnormal cross-linking of collagen, and increased collagen hydration […] Dupuytren’s disease […] may be observed in up to 42% of adults with diabetes mellitus, typically in patients with long-standing T1D. Dupuytren’s is characterized by thickening of the palmar fascia due to fibrosis with nodule formation and contracture, leading to flexion contractures of the digits, most commonly affecting the fourth and fifth digits. […] Foot problems in diabetes are common and comprise ulceration, infection, and gangrene […] The lifetime risk of a foot ulcer for diabetic patients is about 15% (42). […] Wound depth is an important determinant of outcome (46, 47). Deep ulcers with cellulitis or abscess formation often involve osteomyelitis. […] Radiologic changes occur late in the course of osteomyelitis and negative radiographs certainly do not exclude it.”

“Education of people with diabetes is a comprehensive task and involves teamwork by a team that comprises at least a nurse educator, a dietician, and a physician. It is, however, essential that individuals with diabetes assume an active role in their care themselves, since appropriate self-care behavior is the cornerstone of the treatment of diabetes.” (for much more on these topics, see Simmons et al.)

“The International Diabetes Federation estimates that more than 245 million people around the world have diabetes (4). This total is expected to rise to 380 million within 20 years. Each year a further 7 million people develop diabetes. Diabetes, mostly type 2 diabetes (T2D), now affects 5.9% of the world’s adult population with almost 80% of the total in developing countries. […] According to […] 2007 prevalence data […] [a]lmost 25% of the population aged 60 years and older had diabetes in 2007. […] It has been projected that one in three Americans born in 2000 will develop diabetes, with the highest estimated lifetime risk among Latinos (males, 45.4% and females, 52.5%) (6). A rise in obesity rates is to blame for much of the increase in T2D (7). Nearly two-thirds of American adults are overweight or obese (8). [my bold, US]

“In the natural history of progression to diabetes, β-cells initially increase insulin secretion in response to insulin resistance and, for a period of time, are able to effectively maintain glucose levels below the diabetic range. However, when β-cell function begins to decline, insulin production is inadequate to overcome the insulin resistance, and blood glucose levels rise. […] Insulin resistance, once established, remains relatively stable over time. […] progression of T2D is a result of worsening β-cell function with pre-existing insulin resistance.”

“Lifestyle modification (i.e., weight loss through diet and increased physical activity) has proven effective in reducing incident T2D in high-risk groups. The Da Qing Study (China) randomly allocated 33 clinics (557 persons with IGT) to 1 of 4 study conditions: control, diet, exercise, or diet plus exercise (23). Compared with the control group, the incidence of diabetes was reduced in the three intervention groups by 31, 46, and 42%, respectively […] The Finnish Diabetes Prevention Study evaluated 522 obese persons with IGT randomly allocated on an individual basis to a control group or a lifestyle intervention group […] During the trial, the incidence of diabetes was reduced by 58% in the lifestyle group compared with the control group. The US Diabetes Prevention Program is the largest trial of primary prevention of diabetes to date and was conducted at 27 clinical centers with 3,234 overweight and obese participants with IGT randomly allocated to 1 of 3 study conditions: control, use of metformin, or intensive lifestyle intervention […] Over 3 years, the incidence of diabetes was reduced by 31% in the metformin group and by 58% in the lifestyle group; the latter value is identical to that observed in the Finnish Study. […] Metformin is recommended as first choice for pharmacologic treatment [of type 2 diabetes] and has good efficacy to lower HbA1c […] However, most patients will eventually require treatment with combinations of oral medications with different mechanisms of action simultaneously in order to attain adequate glycemic control.”

CVD [cardiovascular disease, US] is the cause of 65% of deaths in patients with T2D (31). Epidemiologic studies have shown that the risk of a myocardial infarction (MI) or CVD death in a diabetic individual with no prior history of CVD is comparable to that of an individual who has had a previous MI (32, 33). […] Stroke is the second leading cause of long-term disability in high-income countries and the second leading cause of death worldwide. […] Stroke incidence is highly age-dependent. The median stroke incidence in persons between 15 and 49 years of age is 10 per 100,000 per year, whereas this is 2,000 per 100,000 for persons aged 85 years or older. […] In Western communities, about 80% of strokes are caused by focal cerebral ischemia, secondary to arterial occlusion, 15% by intracerebral hemorrhage, and 5% by subarachnoid hemorrhage (2). […] Patients with ischemic stroke usually present with focal neurological deficit of sudden onset. […] Common deficits include dysphasia, dysarthria, hemianopia, weakness, ataxia, sensory loss, and cognitive disorders such as spatial neglect […] Mild-to-moderate headache is an accompanying symptom in about a quarter of all patients with ischemic stroke […] The risk of symptomatic intracranial hemorrhage after thrombolysis is higher with more severe strokes and higher age (21). [worth keeping in mind when in the ‘I-am-angry-and-need-someone-to-blame-for-the-death-of-individual-X-phase’ – if the individual died as a result of the treatment, the prognosis was probably never very good to start with..] […] Thirty-day case fatality rates for ischemic stroke in Western communities generally range between 10 and 17% (2). Stroke outcome strongly depends not only on age and comorbidity, but also on the type and cause of the infarct. Early case fatality can be as low as 2.5% in patients with lacunar infarcts (7) and as high as 78% in patients with space-occupying hemispheric infarction (8).”

“In the previous 20 years, ten thousands of patients with acute ischemic stroke have participated in hundreds of clinical trials of putative neuroprotective therapies. Despite this enormous effort, there is no evidence of benefit of a single neuroprotective agent in humans, whereas over 500 have been effective in animal models […] the failure of neuroprotective agents in the clinic may […] be explained by the fact that most neuroprotectants inhibit only a single step in the broad cascade of events that lead to cell death (9). Currently, there is no rationale for the use of any neuroprotective medication in patients with acute ischemic stroke.”

“Between 5 and 10% of patients with ischemic stroke suffer from epileptic seizures in the first week and about 3% within the first 24 h […] Post-stroke seizures are not associated with a higher mortality […] About 1 out of every 11 patient with an early epileptic seizure develops epilepsy within 10 years after stroke onset (51) […] In the first 12 h after stroke onset, plasma glucose concentrations are elevated in up to 68% of patients, of whom more than half are not known to have diabetes mellitus (53). An initially high blood glucose concentration in patients with acute stroke is a predictor of poor outcome (53, 54). […] Acute stroke is associated with a blood pressure higher than 170/110 mmHg in about two thirds of patients. Blood pressure falls spontaneously in the majority of patients during the first week after stroke. High blood pressure during the acute phase of stroke has been associated with a poor outcome (56). It is unclear how blood pressure should be managed during the acute phase of ischemic stroke. […] routine lowering of the blood pressure is not recommended in the first week after stroke, except for extremely elevated values on repeated measurements […] Urinary incontinence affects up to 60% of stroke patients admitted to hospital, with 25% still having problems on hospital discharge, and around 15% remaining incontinent at 1 year. […] Between 22 and 43% of patients develop fever or subfebrile temperatures during the first days after stroke […] High body temperature in the first days after stroke is associated with poor outcome (42, 67). There is currently no evidence from randomized trials to support the routine lowering of body temperature above 37◦C.”

December 28, 2016 Posted by | Books, Cardiology, Diabetes, Epidemiology, Immunology, Medicine, Neurology | Leave a comment

Diabetes and the brain (I)

I recently learned that the probability that I have brain-damage as a result of my diabetes is higher than I thought it was.

I first took note of the fact that there might be a link between diabetes and brain development some years ago, but this is a topic I knew very little about before reading the book I’m currently reading. Below I have added some relevant quotes from chapters 10 and 11 of the book:

“Cognitive decrements [in adults with type 1 diabetes] are limited to only some cognitive domains and can best be characterised as a slowing of mental speed and a diminished mental flexibility, whereas learning and memory are generally spared. […] the cognitive decrements are mild in magnitude […] and seem neither to be progressive over time, nor to be substantially worse in older adults. […] neuroimaging studies […] suggest that type 1 diabetic patients have relatively subtle reductions in brain volume but these structural changes may be more pronounced in patients with an early disease onset.”

“With the rise of the subspecialty area ‘medical neuropsychology’ […] it has become apparent that many medical conditions may […] affect the structure and function of the central nervous system (CNS). Diabetes mellitus has received much attention in that regard, and there is now an extensive literature demonstrating that adults with type 1 diabetes have an elevated risk of CNS anomalies. This literature is no longer limited to small cross-sectional studies in relatively selected populations of young adults with type 1 diabetes, but now includes studies that investigated the pattern and magnitude of neuropsychological decrements and the associated neuroradiological changes in much more detail, with more sensitive measurements, in both younger and older patients.”

“Compared to non-diabetic controls, the type 1 diabetic group [in a meta-analysis including 33 studies] demonstrated a significant overall lowered performance, as well as impairment in the cognitive domains intelligence, implicit memory, speed of information processing, psychomotor efficiency, visual and sustained attention, cognitive flexibility, and visual perception. There was no difference in explicit memory, motor speed, selective attention, or language function. […] These results strongly support the hypothesis that there is a relationship between cognitive dysfunction and type 1 diabetes. Clearly, there is a modest, but statistically significant, lowered cognitive performance in patients with type 1 diabetes compared to non-diabetic controls. The pattern of cognitive findings does not suggest decline in all cognitive domains, but is characterised by a slowing of mental speed and a diminished mental flexibility. Patients with type 1 diabetes seem to be less able to flexibly apply acquired knowledge in a new situation. […] In all, the cognitive problems we see in type 1 diabetes mimics the patterns of cognitive ageing. […] One of the problems with much of this research is that it is conducted in patients who are seen in specialised medical centres where care is very good. Other aspects of population selection may also have affected the results. Persons who participate in research projects that include a detailed work-up at a hospital tend to be less affected than persons who refuse participation. Possibly, specific studies that recruit type 1 adults from the community, with individuals being in poorer health, would result in greater cognitive deficits”.

“[N]eurocognitive research suggests that type 1 diabetes is primarily associated with psychomotor slowing and reductions in mental efficiency. This pattern is more consistent with damage to the brain’s white matter than with grey-matter abnormalities. […] A very large neuroimaging literature indicates that adults with either type 1 or type 2 diabetes manifest structural changes in a number of brain regions […]. MRI changes in the brain of patients with type 1 diabetes are relatively subtle. In terms of effect sizes, these are at best large enough to distinguish the patient group from the control group, but not large enough to classify an individual subject as being patient or control.”

“[T]he subtle cognitive decrements in speed of information processing and mental flexibility found in diabetic patients are not merely caused by acute metabolic derangements or psychological factors, but point to end-organ damage in the central nervous system. Although some uncertainty remains about the exact pathogenesis, several mechanisms through which diabetes may affect the brain have now been identified […] The issue whether or not repeated episodes of severe hypoglycaemia result in permanent mild cognitive impairment has been debated extensively in the literature. […] The meta-analysis on the effect of type 1 diabetes on cognition (1) does not support the idea that there are important negative effects from recurrent episodes of severe hypoglycaemia on cognitive functioning, and large prospective studies did not confirm the earlier observations […] there is no evidence for a linear relationship between recurrent episodes of hypoglycaemia and permanent brain dysfunction in adults. […] Cerebral microvascular pathology in diabetes may result in a decrease of regional cerebral blood flow and an alteration in cerebral metabolism, which could partly explain the occurrence of cognitive impairments. It could be hypothesised that vascular pathology disrupts white-matter integrity in a way that is akin to what one sees in peripheral neuropathy and as such could perhaps affect the integrity of neurotransmitter systems and as a consequence limits cognitive efficiency. These effects are likely to occur diffusely across the brain. Indeed, this is in line with MRI findings and other reports.”

“[An] important issue is the interaction between different disease variables. In particular, patients with diabetes onset before the age of 5 […] and patients with advanced microangiopathy might be more sensitive to the effects of hypoglycaemic episodes or elevated HbA1c levels. […] decrements in cognitive function have been observed as early as 2 years after the diagnosis (63). It is important to consider the possibility that the developing brain is more vulnerable to the effect of diabetes […] Diabetes has a marked effect on brain function and structure in children and adolescents. As a group, diabetic children are more likely to perform more poorly than their nondiabetic peers in the classroom and earn lower scores on measures of academic achievement and verbal intelligence. Specialized neuropsychological testing reveals evidence of dysfunction in a variety of cognitive domains, including sustained attention, visuoperceptual skills, and psychomotor speed. Children diagnosed early in life – before 7 years of age – appear to be most vulnerable, showing impairments on virtually all types of cognitive tests, with learning and memory skills being particularly affected. Results from neurophysiological, cerebrovascular, and neuroimaging studies also show evidence of CNS anomalies. Earlier research attributed diabetes-associated brain dysfunction to episodes of recurrent hypoglycemia, but more recent studies have generally failed to find strong support for that view.”

“[M]ethodological issues notwithstanding, extant research on diabetic children’s brain function has identified a number of themes […]. All other things being equal, children diagnosed with type 1 diabetes early in life – within the first 5–7 years of age – have the greatest risk of manifesting neurocognitive dysfunction, the magnitude of which is greater than that seen in children with a later onset of diabetes. The development of brain dysfunction seems to occur within a relatively brief period of time, often appearing within the first 2–3 years following diagnosis. It is not limited to performance on neuropsychological tests, but is manifested on a wide range of electrophysiological measures as marked neural slowing. Somewhat surprisingly, the magnitude of these effects does not seem to worsen appreciably with increasing duration of diabetes – at least through early adulthood. […] As a group, diabetic children earn somewhat lower grades in school as compared to their nondiabetic classmates, are more likely to fail or repeat a grade, perform more poorly on formal tests of academic achievement, and have lower IQ scores, particularly on tests of verbal intelligence.”

The most compelling evidence for a link between diabetes and poorer school outcomes has been provided by a Swedish population-based register study involving 5,159 children who developed diabetes between July 1997 and July 2000 and 1,330,968 nondiabetic children […] Those who developed diabetes very early in life (diagnosis before 2 years of age) had a significantly increased risk of not completing school as compared to either diabetic patients diagnosed after that age or to the reference population. Small, albeit statistically reliable between-group differences were noted in school marks, with diabetic children, regardless of age at diagnosis, consistently earning somewhat lower grades. Of note is their finding that the diabetic sample had a significantly lower likelihood of getting a high mark (passed with distinction or excellence) in two subjects and was less likely to take more advanced courses. The authors conclude that despite universal access to active diabetes care, diabetic children – particularly those with a very early disease onset – had a greatly increased risk of somewhat lower educational achievement […] Similar results have been reported by a number of smaller studies […] in the prospective Melbourne Royal Children’s Hospital (RCH) cohort study (22), […] only 68% of [the] diabetic sample completed 12 years of school, as compared to 85% of the nondiabetic comparison group […] Children with diabetes, especially those with an earlier onset, have also been found to require more remedial educational services and to be more likely to repeat a grade (25–28), to earn lower school grades over time (29), to experience somewhat greater school absenteeism (28, 30–32), to have a two to threefold increase in rates of depression (33– 35), and to manifest more externalizing behavior problems (25).”

“Children with diabetes have a greatly increased risk of manifesting mild neurocognitive dysfunction. This is an incontrovertible fact that has emerged from a large body of research conducted over the past 60 years […]. There is, however, less agreement about the details. […] On standardized tests of academic achievement, diabetic children generally perform somewhat worse than their healthy peers […] Performance on measures of verbal intelligence – particularly those that assess vocabulary knowledge and general information about the world – is frequently compromised in diabetic children (9, 14, 26, 40) and in adults (41) with a childhood onset of diabetes. The few studies that have followed subjects over time have noted that verbal IQ scores tend to decline as the duration of diabetes increases (13, 15, 29). These effects appear to be more pronounced in boys and in those children with an earlier onset of diabetes. Whether this phenomenon is a marker of cognitive decline or whether it reflects a delay in cognitive development cannot yet be determined […] it is possible, but remains unproven, that psychosocial processes (e.g., school absence, depression, distress, externalizing problems) (42), and/or multiple and prolonged periods of classroom inattention and reduced motivation secondary to acute and prolonged episodes of hypoglycemia (43–45) may be contributing to the poor academic outcomes characteristic of children with diabetes. Although it may seem more reasonable to attribute poorer school performance and lower IQ scores to diabetes-associated disruption of specific neurocognitive processes (e.g., attention, learning, memory) secondary to brain dysfunction, there is little compelling evidence to support that possibility at the present time.”

“Children and adults who develop diabetes within the first 5–7 years of life may show moderate cognitive dysfunction that can affect all cognitive domains, although the specific pattern varies, depending both on the cognitive domain assessed and on the child’s age at assessment. Data from a recent meta-analysis of 19 pediatric studies have indicated that effect sizes tend to range between ∼ 0.4 and 0.5 for measures of learning, memory, and attention, but are lower for other cognitive domains (47). For the younger child with an early onset of diabetes, decrements are particularly pronounced on visuospatial tasks that require copying complex designs, solving jigsaw puzzles, or using multi-colored blocks to reproduce designs, with girls more likely to earn lower scores than boys (8). By adolescence and early adulthood, gender differences are less apparent and deficits occur on measures of attention, mental efficiency, learning, memory, eye–hand coordination, and “executive functioning” (13, 26, 40, 48–50). Not only do children with an early onset of diabetes often – but not invariably – score lower than healthy comparison subjects, but a subset earn scores that fall into the “clinically impaired” range […]. According to one estimate, the prevalence of clinically significant impairment is approximately four times higher in those diagnosed within the first 6 years of life as compared to either those diagnosed after that age or to nondiabetic peers (25 vs. 6%) (49). Nevertheless, it is important to keep in mind that not all early onset diabetic children show cognitive dysfunction, and not all tests within a particular cognitive domain differentiate diabetic from nondiabetic subjects.”

“Slowed neural activity, measured at rest by electroencephalogram (EEG) and in response to sensory stimuli, is common in children with diabetes. On tests of auditory- or visual-evoked potentials (AEP; VEP), children and adolescents with more than a 2-year history of diabetes show significant slowing […] EEG recordings have also demonstrated abnormalities in diabetic adolescents in very good metabolic control. […] EEG abnormalities have also been associated with childhood diabetes. One large study noted that 26% of their diabetic subjects had abnormal EEG recordings, as compared to 7% of healthy controls […] diabetic children with EEG abnormalities recorded at diagnosis may be more likely to experience a seizure or coma (i.e., a severe hypoglycemic event) when blood glucose levels subsequently fall […] This intriguing possibility – that seizures occur in some diabetic children during hypoglycemia because of the presence of pre-existing brain dysfunction – requires further study.” 

“A very large body of research on adults with diabetes now demonstrates that the risk of developing a wide range of neurocognitive changes – poorer cognitive function, slower neural functioning, abnormalities in cerebral blood flow and brain metabolites, and reductions or alterations in gray and white-brain matter – is associated with chronically elevated blood glucose values […] Taken together, the limited animal research on this topic […] provides quite compelling support for the view that even relatively brief bouts of chronically elevated blood glucose values can induce structural and functional changes to the brain. […] [One pathophysiological model proposed is] the “diathesis” or vulnerability model […] According to this model, in the very young child diagnosed with diabetes, chronically elevated blood glucose levels interfere with normal brain maturation at a time when those neurodevelopmental processes are particularly labile, as they are during the first 5–7 years of life […]. The resulting alterations in brain organization that occur during this “sensitive period” will not only lead to delayed cognitive development and lasting cognitive dysfunction, but may also induce a predisposition or diathesis that increases the individual’s sensitivity to subsequent insults to the brain, as could be initiated by the prolonged neuroglycopenia that occurs during an episode of hypoglycemia. Data from most, but not all, research are consistent with that view. […] Research is only now beginning to focus on plausible pathophysiological mechanisms.”

After having read these chapters, I’m now sort-of-kind-of wondering to which extent my autism was/is also at least partly diabetes-mediated. There’s no evidence linking autism and diabetes presented in the chapters, but you do start to wonder even so – the central nervous system is complicated.. If diabetes did play a role there, that would probably be an argument for not considering potential diabetes-mediated brain changes in me as ‘minor’ despite my somewhat higher than average IQ (just to be clear, a high observed IQ in an individual does not preclude the possibility that diabetes had a negative IQ-effect – we don’t observe the counterfactual – but a high observed IQ does make a potential IQ-lowering effect less likely to have happened, all else equal).

December 21, 2016 Posted by | Books, Diabetes, Epidemiology, Medicine, Neurology, Personal | Leave a comment