Econstudentlog

A few diabetes papers of interest

i. The dynamic origins of type 1 diabetes.

“Over a century ago, there was diabetes and only diabetes. Subsequently, diabetes came to be much more discretely defined (1) by age at onset (childhood or adult onset), clinical phenotype (lean or obese), treatment (insulin dependent or not insulin dependent), and, more recently, immune genotype (type 1 or type 2 diabetes). Although these categories broadly describe groups, they are often insufficient to categorize specific individuals, such as children having non–insulin-dependent diabetes and adults having type 1 diabetes (T1D) even when not requiring insulin. Indeed, ketoacidosis at presentation can be a feature of either T1D or type 2 diabetes. That heterogeneity extends to the origins and character of both major types of diabetes. In this issue of Diabetes Care, Redondo et al. (2) leverage the TrialNet study of subjects with a single diabetes-associated autoantibody at screening in order to explore factors determining progression to multiple autoantibodies and, subsequently, the pathogenesis of T1D.

T1D is initiated by presumed nongenetic event(s) operating in children with potent genetic susceptibility. But there is substantial heterogeneity even within the origins of this disease. Those nongenetic events evoke different autoantibodies such that T1D patients with insulin autoantibodies (IAA) have different features from those with GAD autoantibodies (GADA) (3,4). The former, in contrast with the latter, are younger both at seroconversion and at development of clinical diabetes, the two groups having different genetic risk and those with IAA having greater insulin secretory loss […]. These observations hint at distinct disease-associated networks leading to T1D, perhaps induced by distinct nongenetic events. Such disease-associated pathways could operate in unison, especially in children with T1D, who often have multiple autoantibodies. […]

Genetic analyses of autoimmune diseases suggest that only a small number of pathways contribute to disease risk. These pathways include NF-κB signaling, T-cell costimulation, interleukin-2, and interleukin-21 pathways and type 1 interferon antiviral responses (5,6). T1D shares most risk loci with celiac disease and rheumatoid arthritis (5), while paradoxically most risk loci shared with inflammatory bowel disease are protective or involve different haplotypes at the same locus. […] Events leading to islet autoimmunity may be encountered very early in life and invoke disease risk or disease protection (4,7) […]. Islet autoantibodies rarely appear before age 6 months, and among children with a family history of T1D there are two peaks for autoantibody seroconversion (3,4), the first for IAA at approximately age 1–2 years, while GADA-restricted autoimmunity develops after age 3 years up to adolescence, with a peak at about age 11 years”

“The precise nature of […] disease-associated nongenetic events remains unclear, but knowledge of the disease heterogeneity (1,9) has cast light on their character. Nongenetic events are implicated in increasing disease incidence, disease discordance even between identical twins, and geographical variation; e.g., Finland has 100-fold greater childhood T1D incidence than China (9,10). That effect likely increases with older age at onset […] disease incidence in Finland is sixfold greater than in an adjacent, relatively impoverished Russian province, despite similar racial origins and frequencies of high-risk HLA DQ genotypes […] Viruses, especially enteroviruses, and dietary factors have been invoked (1215). The former have been implicated because of the genetic association with antiviral interferon networks, seasonal pattern of autoantibody conversion, seroconversion being associated with enterovirus infections, and protection from seroconversion by maternal gestational respiratory infection, while respiratory infections even in the first year of life predispose to seroconversion (14) […]. Dietary factors also predispose to seroconversion and include the time of introduction of solid foods and the use of vitamin C and vitamin D (13,15). The Diabetes Autoimmunity Study in the Young (DAISY) found that early exposure to solid food (1–3 months of age) and vitamin C and late exposure to vitamin D and gluten (after 6 and 9 months of age, respectively) are T1D risk factors, leading the researchers to suggest that genetically at-risk children should have solid foods introduced at about 4 months of age with a diet high in dairy and fruit (13).” [my bold, US]

“This TCF7L2 locus is of particular interest in the context of T1D (9) as it is usually seen as the major type 2 diabetes signal worldwide. The rs7903146 SNP optimally captures that TCF7L2 disease association and is likely the causal variant. Intriguingly, this locus is associated, in some populations, with those adult-onset autoimmune diabetes patients with GADA alone who masquerade as having type 2 diabetes, since they initially do not require insulin therapy, and also markedly increases the diabetes risk in cystic fibrosis patients. One obvious explanation for these associations is that adult-onset autoimmune diabetes is simply a heterogeneous disease, an admixture of both T1D and type 2 diabetes (9), in which shared genes alter the threshold for diabetes. […] A high proportion of T1D cases present in adulthood (17,18), likely more than 50%, and many do not require insulin initially. The natural history, phenotype, and metabolic changes in adult-onset diabetes with GADA resemble a separate cluster of cases with type 2 diabetes but without GADA, which together constitute up to 24% of adult-onset diabetes (19). […] Knowledge of heterogeneity enables understanding of disease processes. In particular, identification of distinct pathways to clinical diabetes offers the possibility of defining distinct nongenetic events leading to T1D and, by implication, modulating those events could limit or eliminate disease progression. There is a growing appreciation that the two major types of diabetes may share common etiopathological factors. Just as there are a limited number of genes and pathways contributing to autoimmunity risk, there may also be a restricted number of pathways contributing to β-cell fragility.”

ii. The Association of Severe Diabetic Retinopathy With Cardiovascular Outcomes in Long-standing Type 1 Diabetes: A Longitudinal Follow-up.

OBJECTIVE It is well established that diabetic nephropathy increases the risk of cardiovascular disease (CVD), but how severe diabetic retinopathy (SDR) impacts this risk has yet to be determined.

RESEARCH DESIGN AND METHODS The cumulative incidence of various CVD events, including coronary heart disease (CHD), peripheral artery disease (PAD), and stroke, retrieved from registries, was evaluated in 1,683 individuals with at least a 30-year duration of type 1 diabetes drawn from the Finnish Diabetic Nephropathy Study (FinnDiane).”

RESULTS During 12,872 person-years of follow-up, 416 incident CVD events occurred. Even in the absence of DKD [Diabetic Kidney Disease], SDR increased the risk of any CVD (hazard ratio 1.46 [95% CI 1.11–1.92]; P < 0.01), after adjustment for diabetes duration, age at diabetes onset, sex, smoking, blood pressure, waist-to-hip ratio, history of hypoglycemia, and serum lipids. In particular, SDR alone was associated with the risk of PAD (1.90 [1.13–3.17]; P < 0.05) and CHD (1.50 [1.09–2.07; P < 0.05) but not with any stroke. Moreover, DKD increased the CVD risk further (2.85 [2.13–3.81]; P < 0.001). […]

CONCLUSIONS SDR alone, even without DKD, increases cardiovascular risk, particularly for PAD, independently of common cardiovascular risk factors in long-standing type 1 diabetes. More remains to be done to fully understand the link between SDR and CVD. This knowledge could help combat the enhanced cardiovascular risk beyond currently available regimens.”

“The 15-year cumulative incidence of any CVD in patients with and without SDR was 36.8% (95% CI 33.4–40.1) and 27.3% (23.3–31.0), respectively (P = 0.0004 for log-rank test) […] Patients without DKD and SDR at baseline had 4.0-fold (95% CI 3.3–4.7) increased risk of CVD compared with control subjects without diabetes up to 70 years of age […]. Intriguingly, after this age, the CVD incidence was similar to that in the matched control subjects (SIR 0.9 [95% CI 0.3–1.9]) in this subgroup of patients with diabetes. However, in patients without DKD but with SDR, the CVD risk was still increased after the patients had reached 70 years of age (SIR 3.4 [95% CI 1.8–6.2]) […]. Of note, in patients with both DKD and SDR, the CVD burden was high already at young ages.”

“This study highlights the role of SDR on a complete range of CVD outcomes in a large sample of patients with long-standing T1D and longitudinal follow-up. We showed that SDR alone, without concomitant DKD, increases the risk of macrovascular disease, independently of the traditional risk factors. The risk is further increased in case of accompanying DKD, especially if SDR is present together with DKD. Findings from this large and well-characterized cohort of patients have a direct impact on clinical practice, emphasizing the importance of regular screening for SDR in individuals with T1D and intensive multifactorial interventions for CVD prevention throughout their life span.

This study also confirms and complements previous data on the continuum of diabetic vascular disease, by which microvascular and macrovascular disease do not seem to be separate diseases, but rather interconnected (10,12,18). The link is most obvious for DKD, which clearly emerges as a major predictor of cardiovascular morbidity and mortality (2,24,25). The association of SDR with CVD is less clear. However, our recent cross-sectional study with the Joslin Medalist Study showed that the CVD risk was in fact increased in patients with SDR on top of DKD compared with DKD alone (19). In the present longitudinal study, we were able to extend those results also to show that SDR alone, without DKD and after the adjustment for other traditional risk factors, increases CVD risk substantially. SDR further increases CVD risk in case DKD is present as well. In addition, the role of SDR as an independent CVD risk predictor is also supported by our data using albuminuria as a marker of DKD. This is important because albuminuria is a known predictor of diabetic retinopathy progression (26) as well as a recognized biomarker for CVD.”

“A novel finding is that, independently of any signs of DKD, the risk of PAD is increased twofold in the presence of SDR. Although this association has recently been highlighted in individuals with type 2 diabetes (10,29), the data in T1D are scarce (16,30). Notably, the previous studies mostly lack adjustments for DKD, the major predictor of mortality in patients with shorter diabetes duration. Both complications, besides sharing some conventional cardiovascular risk factors, may be linked by additional pathological processes involving changes in the microvasculature in both the retina and the vasa vasorum of the conductance vessels (31). […] Patients with T1D duration of >30 years face a continuously increased CVD risk that is further increased by the occurrence of advanced PDR. Therefore, by examining the retina, additional insight into individual CVD risk is gained and can guide the clinician to a more tailored approach to CVD prevention. Moreover, our findings suggest that the link between SDR and CVD is at least partially independent of traditional risk factors, and the mechanism behind the phenomenon warrants further research, aiming to find new therapies to alleviate the CVD burden more efficiently.”

The model selection method employed in the paper is far from optimal [“Variables for the model were chosen based on significant univariable associations.” – This is not the way to do things!], but regardless these are interesting results.

iii. Fasting Glucose Variability in Young Adulthood and Cognitive Function in Middle Age: The Coronary Artery Risk Development in Young Adults (CARDIA) Study.

“Individuals with type 2 diabetes (T2D) have 50% greater risk for the development of neurocognitive dysfunction relative to those without T2D (13). The American Diabetes Association recommends screening for the early detection of cognitive impairment for adults ≥65 years of age with diabetes (4). Coupled with the increasing prevalence of prediabetes and diabetes, this calls for better understanding of the impact of diabetes on cerebral structure and function (5,6). Among older individuals with diabetes, higher intraindividual variability in glucose levels around the mean is associated with worse cognition and the development of Alzheimer disease (AD) (7,8). […] Our objectives were to characterize fasting glucose (FG) variability during young adulthood before the onset of diabetes and to assess whether such variability in FG is associated with cognitive function in middle adulthood. We hypothesized that a higher variability of FG during young adulthood would be associated with a lower level of cognitive function in midlife compared with lower FG variability.”

“We studied 3,307 CARDIA (Coronary Artery Risk Development in Young Adults) Study participants (age range 18–30 years and enrolled in 1985–1986) at baseline and calculated two measures of long-term glucose variability: the coefficient of variation about the mean FG (CV-FG) and the absolute difference between successive FG measurements (average real variability [ARV-FG]) before the onset of diabetes over 25 and 30 years of follow-up. Cognitive function was assessed at years 25 (2010–2011) and 30 (2015–2016) with the Digit Symbol Substitution Test (DSST), Rey-Auditory Verbal Learning Test (RAVLT), Stroop Test, Montreal Cognitive Assessment, and category and letter fluency tests. We estimated the association between glucose variability and cognitive function test score with adjustment for clinical and behavioral risk factors, mean FG level, change in FG level, and diabetes development, medication use, and duration.

RESULTS After multivariable adjustment, 1-SD increment of CV-FG was associated with worse cognitive scores at year 25: DSST, standardized regression coefficient −0.95 (95% CI −1.54, −0.36); RAVLT, −0.14 (95% CI −0.27, −0.02); and Stroop Test, 0.49 (95% CI 0.04, 0.94). […] We did not find evidence for effect modification by race or sex for any variability-cognitive function association”

CONCLUSIONS Higher intraindividual FG variability during young adulthood below the threshold of diabetes was associated with worse processing speed, memory, and language fluency in midlife independent of FG levels. […] In this cohort of black and white adults followed from young adulthood into middle age, we observed that greater intraindividual variability in FG below a diabetes threshold was associated with poorer cognitive function independent of behavioral and clinical risk factors. This association was observed above and beyond adjustment for concurrent glucose level; change in FG level during young adulthood; and diabetes status, duration, and medication use. Intraindividual glucose variability as determined by CV was more strongly associated with cognitive function than was absolute average glucose variability.”

iv. Maternal Antibiotic Use During Pregnancy and Type 1 Diabetes in Children — A National Prospective Cohort Study. It is important that papers like these get published and read, even if the results may not sound particularly exciting:

“Prenatal prescription of antibiotics is common but may perturb the composition of the intestinal microbiota in the offspring. In childhood the latter may alter the developing immune system to affect the pathogenesis of type 1 diabetes (1). Previous epidemiological studies reported conflicting results regarding the association between early exposure to antibiotics and childhood type 1 diabetes (2,3). Here we investigated the association in a Danish register setting.

The Danish National Birth Cohort (DNBC) provided data from 100,418 pregnant women recruited between 1996 and 2002 and their children born between 1997 and 2003 (n = 96,840). The women provided information on exposures during and after pregnancy. Antibiotic prescription during pregnancy was obtained from the Danish National Prescription Registry (anatomical therapeutic chemical code J01) [it is important to note that: “In Denmark, purchasing antibiotics requires a prescription, and all purchases are registered at the Danish National Prescription Registry”], and type 1 diabetes diagnoses (diagnostic codes DE10 and DE14) during childhood and adolescence were obtained from the Danish National Patient Register. The children were followed until 2014 (mean follow-up time 14.3 years [range 11.5–18.4 years, SD 1.4]).”

“A total of 336 children developed type 1 diabetes during follow-up. Neither overall exposure (hazard ratio [HR] 0.90; 95% CI 0.68–1.18), number of courses (HR 0.36–0.97[…]), nor trimester-specific exposure (HR 0.81–0.89 […]) of antibiotics in utero was associated with childhood diabetes. Moreover, exposure to specific types of antibiotics in utero did not change the risk of childhood type 1 diabetes […] This large prospective Danish cohort study demonstrated that maternal use of antibiotics during pregnancy was not associated with childhood type 1 diabetes. Thus, the results from this study do not support a revision of the clinical recommendations on treatment with antibiotics during pregnancy.”

v. Decreasing Cumulative Incidence of End-Stage Renal Disease in Young Patients With Type 1 Diabetes in Sweden: A 38-Year Prospective Nationwide Study.

“Diabetic nephropathy is a devastating complication to diabetes. It can lead to end-stage renal disease (ESRD), which demands renal replacement therapy (RRT) with dialysis or kidney transplantation. In addition, diabetic nephropathy is associated with increased risk of cardiovascular morbidity and mortality (1,2). As a nation, Sweden, next to Finland, has the highest incidence of type 1 diabetes in the world (3), and the incidence of childhood-onset diabetes is increasing globally (4,5). The incidence of ESRD caused by diabetic nephropathy in these Nordic countries is fairly low as shown in recent studies, 3–8% at maximum 30 years’ of diabetes duration (6,7). This is to be compared with studies from Denmark in the 1980s that showed a cumulative incidence of diabetic nephropathy of 41% at 40 years of diabetes duration. Older, hospital-based cohort studies found that the incidence of persistent proteinuria seemed to peak at 25 years of diabetes duration; after that, the incidence levels off (8,9). This implies the importance of genetic susceptibility as a risk factor for diabetic nephropathy, which has also been indicated in recent genome-wide scan studies (10,11). Still, modifiable factors such as metabolic control are clearly of major importance in the development of diabetic nephropathy (1215). Already in 1994, a decreasing incidence of diabetic nephropathy was seen in a hospital-based study in Sweden, and the authors concluded that this was mainly driven by better metabolic control (16). Young age at onset of diabetes has previously been found to protect, or postpone, the development of ESRD caused by diabetic nephropathy, while diabetes onset at older ages is associated with increased risk (7,9,17). In a previous study, we found that age at onset of diabetes affects men and women differently (7). Earlier studies have indicated a male predominance (8,18), while our previous study showed that the incidence of ESRD was similar in men and women with diabetes onset before 20 years of age, but with diabetes onset after 20 years of age, men had increased risk of developing ESRD compared with women. The current study analyzes the incidence of ESRD due to type 1 diabetes, and changes over time, in a large Swedish population-based cohort with a maximum follow-up of 38 years.”

“Earlier studies have shown that it takes ∼15 years to develop persistent proteinuria and another 10 to proceed to ESRD (9,25). In the current study population, no patients developed ESRD because of type 1 diabetes at a duration <14 years; thus only patients with diabetes duration of ≥14 years were included in the study. […] A total of 18,760 unique patients were included in the study: 10,560 (56%) men and 8,200 (44%) women. The mean age at the end of the study was somewhat lower for women, 38.9 years, compared with 40.2 years for men. Women tend to develop type 1 diabetes about a year earlier than men: mean age 15.0 years for women compared with 16.5 years for men. There was no difference regarding mean diabetes duration between men and women in the study (23.8 years for women and 23.7 years for men). A total of 317 patients had developed ESRD due to diabetes. The maximum diabetes duration was 38.1 years for patients in the SCDR and 32.6 years for the NDR and the DISS. The median time from onset of diabetes to ESRD was 22.9 years (minimum 14.1 and maximum 36.6). […] At follow-up, 77 patients with ESRD and 379 without ESRD had died […]. The risk of dying during the course of the study was almost 12 times higher among the ESRD patients (HR 11.9 [95% CI 9.3–15.2]) when adjusted for sex and age. Males had almost twice as high a risk of dying as female patients (HR 1.7 [95% CI 1.4–2.1]), adjusted for ESRD and age.”

“The overall incidence rate of ESRD during 445,483 person-years of follow-up was 0.71 per 1,000 person-years. […] The incidence rate increases with diabetes duration. For patients with diabetes onset at 0–9 and 10–19 years of age, there was an increase in incidence up to 36 years of duration; at longer durations, the number of cases is too small and results must be interpreted with caution. With diabetes onset at 20–34 years of age the incidence rate increases until 25 years of diabetes duration, and then a decrease can be observed […] In comparison of different time periods, the risk of developing ESRD was lower in patients with diabetes onset in 1991–2001 compared with onset in 1977–1984 (HR 3.5 [95% CI 2.3–5.3]) and 1985–1990 (HR 2.6 [95% CI 1.7–3.8]), adjusted for age at follow-up and sex. […] The lowest risk of developing ESRD was found in the group with onset of diabetes before the age of 10 years — both for males and females […]. With this group as reference, males diagnosed with diabetes at 10–19 or 20–34 years of age had increased risk of ESRD (HR 2.4 [95% CI 1.6–3.5] and HR 2.2 [95% CI 1.4–3.3]), respectively. For females, the risk of developing ESRD was also increased with diabetes onset at 10–19 years of age (HR 2.4 [95% CI 1.5–3.6]); however, when diabetes was diagnosed after the age of 20 years, the risk of developing ESRD was not increased compared with an early onset of diabetes (HR 1.4 [95% CI 0.8–3.4]).”

“By combining data from the SCDR, DISS, and NDR registers and identifying ESRD cases via the SRR, we have included close to all patients with type 1 diabetes in Sweden with diabetes duration >14 years who developed ESRD since 1991. The cumulative incidence of ESRD in this study is low: 5.6% (5.9% and 5.3% for males and females, respectively) at maximum 38 years of diabetes duration. For the first time, we could see a clear decrease in ESRD incidence in Sweden by calendar year of diabetes onset. The results are in line with a recent study from Norway that reported a modest incidence of 5.3% after 40 years of diabetes duration (27). In the current study, we found a decrease in the incidence rate after 25 years of diabetes duration in the group with diabetes onset at 20–34 years. With age at onset of diabetes 0–9 or 10–19 years, the ESRD incidence rate increases until 35 years of diabetes duration, but owing to the limited number of patients with longer duration we cannot determine whether the peak incidence has been reached or not. We can, however, conclude that the onset of ESRD has been postponed at least 10 years compared with that in older prospective cohort studies (8,9). […] In conclusion, this large population-based study shows a low incidence of ESRD in Swedish patients with onset of type 1 diabetes after 1977 and an encouraging decrease in risk of ESRD, which is probably an effect of improved diabetes care. We confirm that young age at onset of diabetes protects against, or prolongs, the time until development of severe complications.”

vi. Hypoglycemia and Incident Cognitive Dysfunction: A Post Hoc Analysis From the ORIGIN Trial. Another potentially important negative result, this one related to the link between hypoglycemia and cognitive impairment:

“Epidemiological studies have reported a relationship between severe hypoglycemia, cognitive dysfunction, and dementia in middle-aged and older people with type 2 diabetes. However, whether severe or nonsevere hypoglycemia precedes cognitive dysfunction is unclear. Thus, the aim of this study was to analyze the relationship between hypoglycemia and incident cognitive dysfunction in a group of carefully followed patients using prospectively collected data in the Outcome Reduction with Initial Glargine Intervention (ORIGIN) trial.”

“This prospective cohort analysis of data from a randomized controlled trial included individuals with dysglycemia who had additional cardiovascular risk factors and a Mini-Mental State Examination (MMSE) score ≥24 (N = 11,495). Severe and nonsevere hypoglycemic events were collected prospectively during a median follow-up time of 6.2 years. Incident cognitive dysfunction was defined as either reported dementia or an MMSE score of <24. The hazard of at least one episode of severe or nonsevere hypoglycemia for incident cognitive dysfunction (i.e., the dependent variable) from the time of randomization was estimated using a Cox proportional hazards model after adjusting for baseline cardiovascular disease, diabetes status, treatment allocation, and a propensity score for either form of hypoglycemia.

RESULTS This analysis did not demonstrate an association between severe hypoglycemia and incident cognitive impairment either before (hazard ratio [HR] 1.16; 95% CI 0.89, 1.52) or after (HR 1.00; 95% CI 0.76, 1.31) adjusting for the severe hypoglycemia propensities. Conversely, nonsevere hypoglycemia was inversely related to incident cognitive impairment both before (HR 0.59; 95% CI 0.52, 0.68) and after (HR 0.58; 95% CI 0.51, 0.67) adjustment.

CONCLUSIONS Hypoglycemia did not increase the risk of incident cognitive dysfunction in 11,495 middle-aged individuals with dysglycemia. […] These findings provide no support for the hypothesis that hypoglycemia causes long-term cognitive decline and are therefore reassuring for patients and their health care providers.”

vii. Effects of Severe Hypoglycemia on Cardiovascular Outcomes and Death in the Veterans Affairs Diabetes Trial.

“The VADT was a large randomized controlled trial aimed at determining the effects of intensive treatment of T2DM in U.S. veterans (9). In the current study, we examine predictors and consequences of severe hypoglycemia within the VADT and report several key findings. First, we identified risk factors for severe hypoglycemia that included intensive therapy, insulin use, proteinuria, and autonomic neuropathy. Consistent with prior reports in glucose-lowering studies, severe hypoglycemia occurred at a threefold significantly greater rate in those assigned to intensive glucose lowering. Second, severe hypoglycemia was associated with an increased risk of cardiovascular events, cardiovascular mortality, and all-cause mortality in both the standard and the intensive treatment groups. Of importance, however, severe hypoglycemia was associated with an even greater risk of all-cause mortality in the standard compared with the intensive treatment group. Third, the association between severe hypoglycemia and serious cardiovascular events was greater in individuals with an elevated risk for CVD at baseline.”

“Mean participant characteristics were as follows: age, 60.4 years; duration of diabetes, 11.5 years; BMI, 31.3 kg/m2; and HbA1c, 9.4%. Seventy-two percent had hypertension, 40% had a previous cardiovascular event, 62% had a microvascular complication, and 52% had baseline insulin use. The standard and intensive treatment groups included 899 and 892 participants, respectively. […] During the study, the standard treatment group averaged 3.7 severe hypoglycemic events per 100 patient-years versus 10.3 events per 100 patient-years in the intensive treatment group (P < 0.001). Overall, the combined rate of severe hypoglycemia during follow-up in the VADT from both study arms was 7.0 per 100 patient-years. […] Severe hypoglycemia within the prior 3 months was associated with an increased risk for composite cardiovascular outcome (HR 1.9 [95% CI 1.1, 3.5]; P = 0.03), cardiovascular mortality (3.7 [1.3, 10.4]; P = 0.01), and all-cause mortality (2.4 [1.1, 5.1]; P = 0.02) […]. More distant hypoglycemia (4–6 months prior) had no independently associated increased risk with adverse events or death. The association of severe hypoglycemia with cardiovascular events or cardiovascular mortality were not significantly different between the intensive and standard treatment groups […]. In contrast, the association of severe hypoglycemia with all-cause mortality was significantly greater in the standard versus the intensive treatment group (6.7 [2.7, 16.6] vs. 0.92 [0.2, 3.8], respectively; P = 0.019 for interaction). Because of the relative paucity of repeated severe hypoglycemic events in either study group, there was insufficient power to determine whether more than one episode of severe hypoglycemia increased the risk of subsequent outcomes.”

“Although recent severe hypoglycemia increased the risk of major cardiovascular events for those with a 10-year cardiovascular risk score of 35% (HR 2.88 [95% CI 1.57, 5.29]; absolute risk increase per 10 episodes = 0.252; number needed to harm = 4), hypoglycemia was not significantly associated with increased major cardiovascular events for those with a risk score of ≤7.5%. The absolute associated risk of major adverse cardiovascular events, cardiovascular mortality, and all-cause mortality increased with higher CVD risk for all three outcomes […]. We were not able to identify, however, any group of patients in either treatment arm in which severe hypoglycemia did not increase the risk of CVD events and mortality at least to some degree.”

“Although the explanation for the relatively greater risk of serious adverse events after severe hypoglycemia in the standard treatment group is unknown, we agree with previous reports that milder episodes of hypoglycemia, which are more frequent in the intensive treatment group, may quantitatively blunt the release of neuroendocrine and autonomic nervous system responses and their resultant metabolic and cardiovascular responses to hypoglycemia, thereby lessening the impact of subsequent severe hypoglycemic episodes (18,19). Episodes of prior hypoglycemia have rapid and significant effects on reducing (i.e., blunting) subsequent counterregulatory responses to a falling plasma glucose level (20,21). Thus, if one of the homeostatic counterregulatory responses (e.g., epinephrine) also can initiate unwanted intravascular atherothrombotic consequences, it may follow that severe hypoglycemia in a more intensively treated and metabolically well-controlled individual would provoke a reduced counterregulatory response. Although hypoglycemia frequency may be increased in these individuals, this may also lower unwanted and deleterious effects on the vasculature from counterregulatory responses. On the other hand, an isolated severe hypoglycemic event in a less well-controlled individual could provoke a relatively greater counterregulatory response with a proportionally attendant elevated risk for adverse vascular effects (22). In support of this, we previously reported in a subset of VADT participants that despite more frequent serious hypoglycemia in the intensive therapy group, progression of coronary artery calcium scores after severe hypoglycemia only occurred in the standard treatment group (23).”

“In the current study, we demonstrate that the association of severe hypoglycemia with subsequent serious adverse cardiovascular events and death occurred within the preceding 3 months but not beyond. The temporal relationship and proximity of severe hypoglycemia to a subsequent serious cardiovascular event and/or death has been investigated in a number of recent clinical trials in T2DM (25,13,14). All these trials consistently reported an association between severe hypoglycemic and subsequent serious adverse events. However, the proximity of severe hypoglycemic events to subsequent adverse events and death varies. In ADVANCE, a severe hypoglycemic episode increased the risk of major cardiovascular events for both the next 3 months and the following 6 months. In A Trial Comparing Cardiovascular Safety of Insulin Degludec Versus Insulin Glargine in Subjects With Type 2 Diabetes at High Risk of Cardiovascular Events (DEVOTE) and the Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER) trial, there was an increased risk of either serious cardiovascular events or all-cause mortality starting 15 days and extending (albeit with decreasing risk) up to 1 year after severe hypoglycemia (13,14).”

June 15, 2019 - Posted by | Cardiology, Diabetes, Epidemiology, Genetics, Nephrology, Neurology, Ophthalmology, Studies

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: