Econstudentlog

Alcohol and Aging (II)

I gave the book 3 stars on goodreads.

As is usual for publications of this nature, the book includes many chapters that cover similar topics and so the coverage can get a bit repetitive if you’re reading it from cover to cover the way I did; most of the various chapter authors obviously didn’t read the other contributions included in the book, and as each chapter is meant to stand on its own you end up with a lot of chapter introductions which cover very similar topics. If you can disregard such aspects it’s a decent book, which covers a wide variety of topics.

Below I have added some observations from some of the chapters of the book which I did not cover in my first post.

It is widely accepted that consuming heavy amounts of alcohol and binge drinking are detrimental to the brain. Animal studies that have examined the anatomical changes that occur to the brain as a consequence of consuming alcohol indicate that heavy alcohol consumption and binge drinking leads to the death of existing neurons [10, 11] and prevents production of new neurons [12, 13]. […] While animal studies indicate that consuming even moderate amounts of alcohol is detrimental to the brain, the evidence from epidemiological studies is less clear. […] Epidemiological studies that have examined the relationship between late life alcohol consumption and cognition have frequently reported that older adults who consume light to moderate amounts of alcohol are less likely to develop dementia and have higher cognitive functioning compared to older adults who do not consume alcohol. […] In a meta-analysis of 15 prospective cohort studies, consuming light to moderate amounts of alcohol was associated with significantly lower relative risk (RR) for Alzheimer’s disease (RR=0.72, 95% CI=0.61–0.86), vascular dementia (RR=0.75, 95% CI=0.57–0.98), and any type of dementia (RR=0.74, 95% CI=0.61–0.91), but not cognitive decline (RR=0.28, 95 % CI=0.03–2.83) [31]. These findings are consistent with a previous meta-analysis by Peters et al. [33] in which light to moderate alcohol consumption was associated with a decreased risk for dementia (RR=0.63, 95 % CI=0.53–0.75) and Alzheimer’s disease (RR=0.57, 95 % CI=0.44–0.74), but not vascular dementia (RR=0.82, 95% CI=0.50–1.35) or cognitive decline RR=0.89, 95% CI=0.67–1.17). […] Mild cognitive impairment (MCI) has been used to describe the prodromal stage of Alzheimer’s disease […]. There is no strong evidence to suggest that consuming alcohol is protective against MCI [39, 40] and several studies have reported non-significant findings [41–43].”

The majority of research on the relationship between alcohol consumption and cognitive outcomes has focused on the amount of alcohol consumed during old age, but there is a growing body of research that has examined the relationship between alcohol consumption during middle age and cognitive outcomes several years or decades later. The evidence from this area of research is mixed with some studies not detecting a significant relationship [17, 58, 59], while others have reported that light to moderate alcohol consumption is associated with preserved cognition [60] and decreased risk for cognitive impairment [31, 61, 62]. […] Several epidemiological studies have reported that light to moderate alcohol consumption is associated with a decreased risk for stroke, diabetes, and heart disease [36, 84, 85]. Similar to the U-shaped relationship between alcohol consumption and dementia, heavy alcohol consumption has been associated with poor health [86, 87]. The decreased risk for several metabolic and vascular health conditions for alcohol consumers has been attributed to antioxidants [54], greater concentrations of high-density lipoprotein cholesterol in the bloodstream [88], and reduced blood clot formation [89]. Stroke, diabetes, heart disease, and related conditions have all been associated with lower cognitive functioning during old age [90, 91]. The reduced prevalence of metabolic and vascular health conditions among light to moderate alcohol consumers may contribute to the decreased risk for dementia and cognitive decline for older adults who consume alcohol. A limitation of the hypothesis that the reduced risk for dementia among light and moderate alcohol consumers is conferred through the reduced prevalence of adverse health conditions associated with dementia is the possibility that this relationship is confounded by reverse causality. Alcohol consumption decreases with advancing age and adults may reduce their alcohol consumption in response to the onset of adverse health conditions […] the higher prevalence of dementia and lower cognitive functioning among abstainers may be due in part to their worse health rather than their alcohol consumption.”

A limitation of large cohort studies is that subjects who choose not to participate or are unable to participate are often less healthy than those who do participate. Non-response bias becomes more pronounced with age because only subjects who have survived to old age and are healthy enough to participate are observed. Studies on alcohol consumption and cognition are sensitive to non-response bias because light and moderate drinkers who are not healthy enough to participate in the study will not be observed. Adults who survive to old age despite consuming very high amounts of alcohol represent an even more select segment of the general population because they may have genetic, behavioral, health, social, or other factors that protect them against the negative effects of heavy alcohol consumption. As a result, the analytic sample of epidemiological studies is more likely to be comprised of “healthy” drinkers, which biases results in favor of finding a positive effect of light to moderate alcohol consumption for cognition and health in general. […] The incidence of Alzheimer’s disease doubles every 5 years after 65 years of age [94] and nearly 40% of older adults aged 85 and over are diagnosed with Alzheimer’s disease [7]. The relatively old age of onset for most dementia cases means the observed protective effect of light to moderate alcohol consumption for dementia may be due to alcohol consumers being more likely to die or drop out of a study as a result of their alcohol consumption before they develop dementia. This bias may be especially strong for heavy alcohol consumers. Not properly accounting for death as a competing outcome has been observed to artificially increase the risk of dementia among older adults with diabetes [95] and the effect that death and other competing outcomes may have on the relationship between alcohol consumption and dementia risk is unclear. […] The majority of epidemiological studies that have studied the relationship between alcohol consumption and cognition treat abstainers as the reference category. This can be problematic because often times the abstainer or non-drinking category includes older adults who stopped consuming alcohol because of poor health […] Not differentiating former alcohol consumers from lifelong abstainers has been found to explain some but not all of the benefit of alcohol consumption for preventing mortality from cardiovascular causes [96].”

“It is common for people to engage in other behaviors while consuming alcohol. This complicates the relationship between alcohol consumption and cognition because many of the behaviors associated with alcohol consumption are positively and negatively associated with cognitive functioning. For example, alcohol consumers are more likely to smoke than non-drinkers [104] and smoking has been associated with an increased risk for dementia and cognitive decline [105]. […] The relationship between alcohol consumption and cognition may also differ between people with or without a history of mental illness. Depression reduces the volume of the hippocampus [106] and there is growing evidence that depression plays an important role in dementia. Depression during middle age is recognized as a risk factor for dementia [107], and high depressive symptoms during old age may be an early symptom of dementia [108]. Middle aged adults with depression or other mental illness who self-medicate with alcohol may be at especially high risk for dementia later in life because of synergistic effects that alcohol and depression has on the brain. […] While current evidence from epidemiological studies indicates that consuming light to moderate amounts of alcohol, in particular wine, does not negatively affect cognition and in many cases is associated with cognitive health, adults who do not consume alcohol should not be encouraged to increase their alcohol consumption until further research clarifies these relationships. Inconsistencies between studies on how alcohol consumption categories are defined make it difficult to determine the “optimal” amount of alcohol consumption to prevent dementia. It is likely that the optimal amount of alcohol varies according to a person’s gender, as well as genetic, physiological, behavioral, and health characteristics, making the issue extremely complex.”

Falls are the leading cause of both fatal and nonfatal injuries among older adults, with one in three older adults falling each year, and 20–30% of people who fall suffer moderate to severe injuries such as lacerations, hip fractures, and head traumas. In fact, falls are the foremost cause of both fractures and traumatic brain injury (TBI) among older adults […] In 2013, 2.5 million nonfatal falls among older adults were treated in ED and more than 734,000 of these patients were hospitalized. […] Our analysis of the 2012 Nationwide Emergency Department Sample (NEDS) data set show that fall-related injury was a presenting problem among 12% of all ED visits by those aged 65+, with significant differences among age groups: 9% among the 65–74 age group, 12 % among the 75–84 age group, and 18 % among the 85+ age group [4]. […] heavy alcohol use predicts fractures. For example, among those 55+ years old in a health survey in England, men who consumed more than 8 units of alcohol and women who consumed more than 6 units on their heaviest drinking day in the past week had significantly increased odds of fractures (OR =1.65, 95% CI =1.37–1.98 for men and OR=2.07, 95% CI =1.28–3.35 for women) [63]. […] The 2008–2009 Canadian Community Health Survey-Healthy Aging also showed that consumption of at least one alcoholic drink per week increased the odds of falling by 40 % among those 65+ years [57].”

I at first was not much impressed by the effect sizes mentioned above because there are surely 100 relevant variables they didn’t account for/couldn’t account for, but then I thought a bit more about it. An important observation here – they don’t mention it in the coverage, but it sprang to mind – is that if sick or frail elderly people consume less alcohol than their more healthy counterparts, and are more likely to not consume alcohol (which they do, and which they are, we know this), and if frail or sick(er) elderly people are more likely to suffer a fall/fracture than are people who are relatively healthy (they are, again, we know this), well, then you’d expect consumption of alcohol to be found to have a ‘protective effect’ simply due to confounding by (reverse) indication (unless the researchers were really careful about adjusting for such things, but no such adjustments are mentioned in the coverage, which makes sense as these are just raw numbers being reported). The point is that the null here should not be that ‘these groups should be expected to have the same fall rate/fracture rate’, but rather ‘people who drink alcohol should be expected to be doing better, all else equal’ – but they aren’t, quite the reverse. So ‘the true effect size’ here may be larger than what you’d think.

I’m reasonably sure things are a lot more complicated than the above makes it appear (because of those 100 relevant variables we were talking about…), but I find it interesting anyway. Two more things to note: 1. Have another look at the numbers above if they didn’t sink in the first time. This is more than 10% of emergency department visits for that age group. Falls are a really big deal. 2. Fractures in the elderly are also a potentially really big deal. Here’s a sample quote: “One-fifth of hip fracture victims will die within 6 months of the injury, and only 50% will return to their previous level of independence.” (link). In some contexts, a fall is worse news than a cancer diagnosis, and they are very common events in the elderly. This also means that even relatively small effect sizes here can translate into quite large public health effects, because baseline incidence is so high.

The older adult population is a disproportionate consumer of prescription and over-the-counter medications. In a nationally representative sample of community-dwelling adults aged 57–84 years from the National Social Life, Health, and Aging Project (NSHAP) in 2005–2006, 81 % regularly used at least one prescription medication on a regular basis and 29% used at least five prescription medications. Forty-two percent used at least one nonprescription medication and concurrent use with a prescription medication was common, with 46% of prescription medication users also using OTC medications [2]. Prescription drug use by older adults in the U.S. is also growing. The percentage of older adults taking at least one prescription drug in the last 30 days increased from 73.6% in 1988–1994 to 89.7 % in 2007–2010 and the percentage taking five or more prescription drugs in the last 30 days increased from 13.8% in 1988–1994 to 39.7 % in 2007–2010 [3].”

The aging process can affect the response to a medication by altering its pharmacokinetics and pharmacodynamics [9, 10]. Reduced gastrointestinal motility and gastric acidity can alter the rate or extent of drug absorption. Changes in body composition, including decreased total body water and increased body fat can alter drug distribution. For alcohol, changes in body composition result in higher blood alcohol levels in older adults compared to younger adults after the same dose or quantity  of alcohol consumed. Decreased size of the liver, hepatic blood flow, and function of Phase I (oxidation, reduction, and hydrolysis) metabolic pathways result in reduced drug metabolism and increased drug exposure for drugs that undergo Phase I metabolism. Phase II hepatic metabolic pathways are generally preserved with aging. Decreased size of the kidney, renal blood flow, and glomerular filtration result in slower elimination of medications and metabolites by the kidney and increased drug exposure for medications that undergo renal elimination. Age-related impairment of homeostatic mechanisms and changes in receptor number and function can result in changes in pharmacodynamics as well. Older adults are generally more sensitive to the effects of medications and alcohol which act on the central nervous system for example. The consequences of these physiologic changes with aging are that older adults often experience increased drug exposure for the same dose (higher drug concentrations over time) and increased sensitivity to medications (greater response at a given drug concentration) than their younger counterparts.”

“Aging-related changes in physiology are not the only sources of variability in pharmacokinetics and pharmacodynamics that must be considered for an individual person. Older adults experience more chronic diseases that may decrease drug metabolism and renal elimination than younger cohorts. Frailty may result in further decline in drug metabolism, including Phase II metabolic pathways in the liver […] Drug interactions must also be considered […] A drug interaction is defined as a clinically meaningful change in the effect of one drug when coadministered with another drug [12]. Many drugs, including alcohol, have the potential for a drug interaction when administered concurrently, but whether a clinically meaningful change in effect occurs for a specific person depends on patient-specifc factors including age. Drug interactions are generally classified as pharmacokinetic interactions, where one drug alters the absorption, distribution, metabolism, or elimination of another drug resulting in increased or decreased drug exposure, or pharmacodynamic interactions, where one drug alters the response to another medication through additive or antagonistic pharmacologic effects [13]. An adverse drug event occurs when a pharmacokinetic or pharmacodynamic interaction or combination of both results in changes in drug exposure or response that lead to negative clinical outcomes. The adverse drug event could be a therapeutic failure if drug exposure is decreased or the pharmacologic response is antagonistic. The adverse drug event could be drug toxicity if the drug exposure is increased or the pharmacologic response is additive or synergistic. The threshold for experiencing an adverse event is often lower in older adults due to physiologic changes with aging and medical comorbidities, increasing their risk of experiencing an adverse drug event when medications are taken concurrently.”

“A large number of potential medication–alcohol interactions have been reported in the literature. Mechanisms of these interactions range from pharmacokinetic interactions affecting either alcohol or medication exposure to pharmacodynamics interactions resulting in exaggerated response. […] Epidemiologic evidence suggests that concurrent use of alcohol and medications among older adults is common. […] In a nationally representative U.S. sample of community-dwelling older adults in the National Social Life, Health and Aging Project (NSHAP) 2005–2006, 41% of participants reported consuming alcohol at least once per week and 20% were at risk for an alcohol–medication interaction because they were using both alcohol and alcohol-interacting medications on a regular basis [17]. […] Among participants in the Pennsylvania Assistance Contract for the Elderly program (aged 65–106 years) taking at least one prescription medication, 77% were taking an alcohol-interacting medication and 19% of the alcohol-interacting medication users reported concurrent use of alcohol [18]. […] Although these studies do not document adverse outcomes associated with alcohol–medication interactions, they do document that the potential exists for many older adults. […] High prevalence of concurrent use of alcohol and alcohol-interacting medications have also been reported in Australian men (43% of sedative or anxiolytic users were daily drinkers) [19], in older adults in Finland (42% of at-risk alcohol users were also taking alcohol-interacting medications) [20], and in older Irish adults (72% of participants were exposed to alcohol-interacting medications and 60% of these reported concurrent alcohol use) [21]. Drinking and medication use patterns in older adults may differ across countries, but alcohol–medication interactions appear to be a worldwide concern. […] Polypharmacy in general, and psychotropic burden specifically, has been associated with an increased risk of experiencing a geriatric syndrome such as falls or delirium, in older adults [26, 27]. Based on its pharmacology, alcohol can be considered as a psychotropic drug, and alcohol use should be assessed as part of the medication regimen evaluation to support efforts to prevent or manage geriatric syndromes. […] Combining alcohol and CNS active medications can be particularly problematic […] Older adults suffering from sleep problems or pain may be a particular risk for alcohol–medication interaction-related adverse events.”

In general, alcohol use in younger couples has been found to be highly concordant, that is, individuals in a relationship tend to engage in similar drinking behaviors [67,68]. Less is known, however, about alcohol use concordance between older couples. Graham and Braun [69] examined similarities in drinking behavior between spouses in a study of 826 community-dwelling older adults in Ontario, Canada. Results showed high concordance of drinking between spouses — whether they drank at all, how much they drank, and how frequently. […] Social learning theory suggests that alcohol use trajectories are strongly influenced by attitudes and behaviors of an individual’s social networks, particularly family and friends. When individuals engage in social activities with family and friends who approve of and engage in drinking, alcohol use, and misuse are reinforced [58, 59]. Evidence shows that among older adults, participation in social activities is correlated with higher levels of alcohol consumption [34, 60]. […] Brennan and Moos [29] […] found that older adults who reported less empathy and support from friends drank more alcohol, were more depressed, and were less self-confident. More stressors involving friends were associated with more drinking problems. Similar to the findings on marital conflict […], conflict in close friendships can prompt alcohol-use problems; conversely, these relationships can suffer as a result of alcohol-related problems. […] As opposed to social network theory […], social selection theory proposes that alcohol consumption changes an individual’s social context [33]. Studies among younger adults have shown that heavier drinkers chose partners and friends who approve of heavier drinking [70] and that excessive drinking can alienate social networks. The Moos study supports the idea that social selection also has a strong influence on drinking behavior among older adults.”

Traditionally, treatment studies in addiction have excluded patients over the age of 65. This bias has left a tremendous gap in knowledge regarding treatment outcomes and an understanding of the neurobiology of addiction in older adults.

Alcohol use causes well-established changes in sleep patterns, such as decreased sleep latency, decreased stage IV sleep, and precipitation or aggravation of sleep apnea [101]. There are also age-associated changes in sleep patterns including increased REM episodes, a decrease in REM length, a decrease in stage III and IV sleep, and increased awakenings. Age-associated changes in sleep can all be worsened by alcohol use and depression. Moeller and colleagues [102] demonstrated in younger subjects that alcohol and depression had additive effects upon sleep disturbances when they occurred together [102]. Wagman and colleagues [101] also have demonstrated that abstinent alcoholics did not sleep well because of insomnia, frequent awakenings, and REM fragmentation [101]; however, when these subjects ingested alcohol, sleep periodicity normalized and REM sleep was temporarily suppressed, suggesting that alcohol use could be used to self-medicate for sleep disturbances. A common anecdote from patients is that alcohol is used to help with sleep problems. […] The use of alcohol to self-medicate is considered maladaptive [34] and is associated with a host of negative outcomes. […] The use of alcohol to aid with sleep has been found to disrupt sleep architecture and cause sleep-related problems and daytime sleepiness [35, 36, 46]. Though alcohol is commonly used to aid with sleep initiation, it can worsen sleep-related breathing disorders and cause snoring and obstructive sleep apnea [36].”

Epidemiologic studies have clearly demonstrated that comorbidity between alcohol use and other psychiatric symptoms is common in younger age groups. Less is known about comorbidity between alcohol use and psychiatric illness in late life [88]. […] Blow et al. [90] reviewed the diagnosis of 3,986 VA patients between ages 60 and 69 presenting for alcohol treatment [90]. The most common comorbid psychiatric disorder was an affective disorder found in 21 % of the patients. […] Blazer et al. [91] studied 997 community dwelling elderly of whom only 4.5% had a history of alcohol use problems [91]; […] of these subjects, almost half had a comorbid diagnosis of depression or dysthymia. Comorbid depressive symptoms are not only common in late life but are also an important factor in the course and prognosis of psychiatric disorders. Depressed alcoholics have been shown to have a more complicated clinical course of depression with an increased risk of suicide and more social dysfunction than non-depressed alcoholics [9296]. […]  Alcohol use prior to late life has also been shown to influence treatment of late life depression. Cook and colleagues [94] found that a prior history of alcohol use problems predicted a more severe and chronic course for depression [94]. […] The effect of past heavy alcohol use is [also] highlighted in the findings from the Liverpool Longitudinal Study demonstrating a fivefold increase in psychiatric illness among elderly men who had a lifetime history of 5 or more years of heavy drinking [24]. The association between heavy alcohol consumption in earlier years and psychiatric morbidity in later life was not explained by current drinking habits. […] While Wernicke-Korsakoff’s syndrome is well described and often caused by alcohol use disorders, alcohol-related dementia may be difficult to differentiate from Alzheimer’s disease. Clinical diagnostic criteria for alcohol-related dementia (ARD) have been proposed and now validated in at least one trial, suggesting a method for distinguishing ARD, including Wernicke-Korsakoff’s syndrome, from other types of dementia [97, 98]. […] Finlayson et al. [100] found that 49 of 216 (23%) elderly patients presenting for alcohol treatment had dementia associated with alcohol use disorders [100].”

 

Advertisements

May 24, 2018 - Posted by | Books, Demographics, Epidemiology, Medicine, Neurology, Pharmacology, Psychiatry, Statistics

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: