Econstudentlog

Viruses

This book is not great, but it’s also not bad – I ended up giving it three stars on goodreads, being much closer to 2 stars than 4. It’s a decent introduction to the field of virology, but not more than that. Below some quotes and links related to the book’s coverage.

“[I]t was not until the invention of the electron microscope in 1939 that viruses were first visualized and their structure elucidated, showing them to be a unique class of microbes. Viruses are not cells but particles. They consist of a protein coat which surrounds and protects their genetic material, or, as the famous immunologist Sir Peter Medawar (1915–87) termed it, ‘a piece of bad news wrapped up in protein’. The whole structure is called a virion and the outer coat is called the capsid. Capsids come in various shapes and sizes, each characteristic of the virus family to which it belongs. They are built up of protein subunits called capsomeres and it is the arrangement of these around the central genetic material that determines the shape of the virion. For example, pox viruses are brick-shaped, herpes viruses are icosahedral (twenty-sided spheres), the rabies virus is bullet-shaped, and the tobacco mosaic virus is long and thin like a rod […]. Some viruses have an outer layer surrounding the capsid called an envelope. […] Most viruses are too small to be seen under a light microscope. In general, they are around 100 to 500 times smaller than bacteria, varying in size from 20 to 300 nanometres in diameter […] Inside the virus capsid is its genetic material, or genome, which is either RNA or DNA depending on the type of virus […] Viruses usually have between 4 and 200 genes […] Cells of free-living organisms, including bacteria, contain a variety of organelles essential for life such as ribosomes that manufacture proteins, mitochondria, or other structures that generate energy, and complex membranes for transporting molecules within the cell, and also across the cell wall. Viruses, not being cells, have none of these and are therefore inert until they infect a living cell. Then they hijack a cell’s organelles and use what they need, often killing the cell in the process. Thus viruses are obliged to obtain essential components from other living things to complete their life cycle and are therefore called obligate parasites.”

“Plant viruses either enter cells through a break in the cell wall or are injected by a sap-sucking insect vector like aphids. They then spread very efficiently from cell to cell via plasmodesmata, pores that transport molecules between cells. In contrast, animal viruses infect cells by binding to specific cell surface receptor molecules. […] Once a virus has bound to its cellular receptor, the capsid penetrates the cell and its genome (DNA or RNA) is released into the cell cytoplasm. The main ‘aim’ of a virus is to reproduce successfully, and to do this its genetic material must download the information it carries. Mostly, this will take place in the cell’s nucleus where the virus can access the molecules it needs to begin manufacturing its own proteins. Some large viruses, like pox viruses, carry genes for the enzymes they need to make their proteins and so are more self-sufficient and can complete the whole life cycle in the cytoplasm. Once inside a cell, DNA viruses simply masquerade as pieces of cellular DNA, and their genes are transcribed and translated using as much of the cell’s machinery as they require. […] Because viruses have a high mutation rate, significant evolutionary change, estimated at around 1 per cent per year for HIV, can be measured over a short timescale. […] RNA viruses have no proof-reading system so they have a higher mutation rate than DNA viruses. […] By constantly evolving, […] viruses appear to have honed their skills for spreading from one host to another to reach an amazing degree of sophistication. For instance, the common cold virus (rhinovirus), while infecting cells lining the nasal cavities, tickles nerve endings to cause sneezing. During these ‘explosions’, huge clouds of virus-carrying mucus droplets are forcefully ejected, then float in the air until inhaled by other susceptible hosts. Similarly, by wiping out sheets of cells lining the intestine, rotavirus prevents the absorption of fluids from the gut cavity. This causes severe diarrhea and vomiting that effectively extrudes the virus’s offspring back into the environment to reach new hosts. Other highly successful viruses hitch a ride from one host to another with insects. […] As a virus’s generation time is so much shorter than ours, the evolution of genetic resistance to a new human virus is painfully slow, and constantly leaves viruses with the advantage.”

“The phytoplankton is a group of organisms that uses solar energy and carbon dioxide to generate energy by photosynthesis. As a by-product of this reaction, they produce almost half of the world’s oxygen and are therefore of vital importance to the chemical stability of the planet. Phytoplankton forms the base of the whole marine food-web, being grazed upon by zooplankton and young marine animals which in turn fall prey to fish and higher marine carnivores. By infecting and killing plankton microbes, marine viruses control the dynamics of all these essential populations and their interactions. For example, the common and rather beautiful phytoplankton Emiliania huxleyi regularly undergoes blooms that turn the ocean surface an opaque blue over areas so vast that they can be detected from space by satellites. These blooms disappear as quickly as they arise, and this boom-and-bust cycle is orchestrated by the viruses in the community that specifically infect E. huxleyi. Because they can produce thousands of offspring from every infected cell, virus numbers amplify in a matter of hours and so act as a rapid-response team, killing most of the bloom microbes in just a few days. […] Overall, marine viruses kill an estimated 20-40 per cent of marine bacteria every day, and as the major killer of marine microbes, they profoundly affect the carbon cycle by the so-called ‘viral shunt‘.”

“By the end of 2015 WHO reported 36.7 million people living with HIV globally, 70 per cent of whom are in sub-Saharan Africa. Since the first identification of HIV-induced acquired immunodeficiency syndrome (AIDS) approximately 78 million people have been infected with HIV, causing around 35 million deaths […] Antiviral drugs are key in curtailing HIV spread and are being rolled out worldwide, with present coverage of around 46 per cent of those in need. […] The HIVs are most closely related to primate retroviruses called simian immunodeficiency viruses (SIVs) and it is now clear that these HIV-like viruses have jumped from primates to humans in central Africa on several occasions in the past giving rise to human infections with HIV-1 types M, N, O, and P as well as HIV-2. Yet only one of these viruses, HIV-1 type M, has succeeded in spreading globally. The ancestor of this virus has been traced to a subspecies of chimpanzees (Pan troglodytes troglodytes), among whom it can cause an AIDS-like disease. Since these animals are hunted for bush meat, it is most likely that human infection occurred by blood contamination during the killing and butchering process. This event probably took place in south-east Cameroon where chimpanzees carrying an SIV most closely related to HIV-1 type M live.”

Flu viruses are paramyxoviruses with an RNA genome with eight genes that are segmented, meaning that instead of being a continuous RNA chain, each gene forms a separate strand. The H (haemaglutinin) and N (neuraminidase) genes are the most important in stimulating protective host immunity. There are sixteen different H and nine different N genes, all of which can be found in all combinations in bird flu viruses. Because these genes are separate RNA strands, on occasions they become mixed up, or recombined. So if two flu A viruses with different H and/or N genes infect a single cell, the offspring will carry varying combinations of genes from the two parent viruses. Most of these viruses will be unable to infect humans, but occasionally a new virus strain is produced that can jump directly to humans and cause a pandemic. […] The emergence of almost all recent novel flu viruses has been traced to China where they circulate freely among animals kept in cramped conditions in farms and live bird markets. […] once established in humans their spread has been much enhanced by travel, particularly air travel that can take a virus inside a traveller across the globe before they even realize they are infected. […] With over a billion people worldwide boarding international flights every year, novel viruses have an efficient mechanism for rapid spread.”

“Once an acute emerging virus such as a new strain of flu is successfully established in a population, it generally settles into a mode of cyclical epidemics during which many susceptible people are infected and become immune to further attack. When most are immune, the virus moves on, only returning when a new susceptible population has emerged, which generally consists of those born since the last epidemic. Before vaccination programmes became widespread, young children suffered from a series of well-recognized infectious diseases called the ‘childhood infections’. These included measles, mumps, rubella, and chickenpox, all caused by viruses […] following the introduction of vaccine programmes these have become a rarity, particularly in the developed world. […] Of the three viruses, measles is the most infectious and produces the severest disease. It killed millions of children each year before vaccination was introduced in the mid-20th century. Even today, this virus kills over 70,000 children annually in countries with low vaccine coverage. […] In developing countries, measles kills 1-5 per cent of those it infects”.

Smallpox virus is in a class of its own as the world’s worst killer virus. It first infected humans at least 5,000 years ago and killed around 300 million in the 20th century alone. The virus killed up to 30 per cent of those it infected, scarring and blinding many of the survivors. […] Worldwide, eradication of smallpox was declared in 1980.”

“Viruses spread between hosts in many different ways, but those that cause acute epidemics generally utilize fast and efficient methods, such as the airborne or faecal-oral routes. […] Broadly speaking, virus infections are distinguished by the organs they affect, with airborne viruses mainly causing respiratory illnesses, […] and those transmitted by faecal-oral contamination causing intestinal upsets, with nausea, vomiting, and diarrhoea. There are literally thousands of viruses capable of causing human epidemics […] worldwide, acute respiratory infections, mostly viral, cause an estimated four million deaths a year in children under 5. […] Most people get two or three colds a year, suggesting that the immune system, which is so good at protecting us against a second attack of measles, mumps, or rubella, is defeated by the common cold virus. But this is not the case. In fact, there are so many viruses that cause the typical symptoms of blocked nose, headache, malaise, sore throat, sneezing, coughing, and sometimes fever, that even if we live for a hundred years, we will not experience them all. The common cold virus, or rhinovirus, alone has over one hundred different types, and there are many other viruses that infect the cells lining the nose and throat and cause similar symptoms, often with subtle variations. […] Viruses that target the gut are just as diverse as respiratory viruses […] Rotaviruses are a major cause of gastroenteritis globally, particularly targeting children under 5. The disease varies in severity […] rotaviruses cause over 600,000 infant deaths a year worldwide […] Noroviruses are the second most common cause of viral gastroenteritis after rotaviruses, producing a milder disease of shorter duration. These viruses account for around 23 million cases of gastroenteritis every year […] Many virus families such as rotaviruses that rely on faecal-oral transmission and cause gastroenteritis in humans produce the same symptoms in animals, resulting in great economic loss to the farming industry. […] over the centuries, Rinderpest virus, the cause of cattle plague, has probably been responsible for more loss and hardship than any other. […] Rinderpest is classically described by the three Ds: discharge, diarrhoea, and death, the latter being caused by fluid loss with rapid dehydration. The disease kills around 90 per cent of animals infected. Rinderpest used to be a major problem in Europe and Asia, and when it was introduced into Africa in the late 19th century it killed over 90 per cent of cattle, with devastating economic loss. The Global Rinderpest Eradication Programme was set up in the 1980s aiming to use the effective vaccine to rid the world of the virus by 2010. This was successful, and in October 2010 the disease was officially declared eradicated, the first animal disease and second infectious disease ever to be eliminated.”

“At present, 1.8 million virus-associated cancers are diagnosed worldwide annually. This accounts for 18 per cent of all cancers, but since these human tumour viruses were only identified fairly recently, it is probable that there are several more out there waiting to be discovered. […] Primary liver cancer is a major global health problem, being one of the ten most common cancers worldwide, with over 250,000 cases diagnosed every year and only 5 per cent of sufferers surviving five years. The tumour is more common in men than women and is most prevalent in sub-Saharan Africa and South East Asia where the incidence reaches over 30 per 100,000 population per year, compared to fewer than 5 per 100,000 in the USA and Europe. Up to 80 per cent of these tumours are caused by a hepatitis virus, the remainder being related to liver damage from toxic agents such as alcohol. […] hepatitis B and C viruses cause liver cancer. […] a large study carried out on 22,000 men in Taiwan in the 1990s showed that those persistently infected with HBV were over 200 times more likely than non-carriers to develop liver cancer, and that over half the deaths in this group were due to liver cancer or cirrhosis. […] A vaccine against HBV is available, and its use has already caused a decline in HBV-related liver cancer in Taiwan, where a vaccination programme was implemented in the 1980s”.

“Most persistent viruses have evolved to cause mild or even asymptomatic infections, since a life-threatening disease would not only be detrimental to the host but also deprive the virus of its home. Indeed, some viruses apparently cause no ill effects at all, and have been discovered only by chance. One example is TTV, a tiny DNA virus found in 1997 during the search for the cause of hepatitis and named after the initials (TT) of the patient from whom it was first isolated. We now know that TTV, and its relative TTV-like mini virus, represent a whole spectrum of similar viruses that are carried by almost all humans, non-human primates, and a variety of other vertebrates, but so far they have not been associated with any disease. With modern, highly sensitive molecular techniques for identifying non-pathogenic viruses, we can expect to find more of these silent passengers in the future. […] Historically, diagnosis and treatment of virus infections have lagged far behind those of bacterial diseases and are only now catching up. […] Diagnostic laboratories are still unable to find a culprit virus in many so-called ‘viral’ meningitis, encephalitis, and respiratory infections. This strongly suggests that there are many pathogenic viruses waiting to be discovered”.

“There is no doubt that although vaccines are expensive to prepare and test, they are the safest, easiest, and most cost-effective way of controlling infectious diseases worldwide.”

Virology. Virus. RNA virus. DNA virus. Retrovirus. Reverse transcriptase. Integrase. Provirus.
Germ theory of disease.
Antonie van Leeuwenhoek. Louis Pasteur. Robert Koch. Adolf Mayer. Dmitri Ivanovsky. Martinus Beijerinck.
Tobacco mosaic virus.
Mimivirus.
Viral evolution – origins.
White spot syndrome.
Fibropapillomatosis.
Acyrthosiphon pisum.
Vibrio_cholerae#Genome (Vibrio cholerae are bacteria, but viruses play a very important role here regarding the toxin-producing genes – “Only cholera bacteria infected with the toxigenic phage are pathogenic to humans”).
Yellow fever.
Dengue fever.
CCR5.
Immune system. Cytokine. Interferon. Macrophage. Lymphocyte. Antigen. CD4++ T cells. CD8+ T-cell. Antibody. Regulatory T cell. Autoimmunity.
Zoonoses.
Arbovirus. Coronavirus. SARS-CoV. MERS-CoV. Ebolavirus. Henipavirus. Influenza virus. H5N1. HPAI. H7N9. Foot-and-mouth disease. Monkeypox virus. Chikungunya virus. Schmallenberg virus. Zika virus. Rift valley fever. Bluetongue disease. Arthrogryposis. West Nile fever. Chickenpox. Polio. Bocavirus.
Sylvatic cycle.
Nosocomial infections.
Subacute sclerosing panencephalitis.
Herpesviridae. CMV. Herpes simplex virus. Epstein–Barr virus. Human herpesvirus 6. Human betaherpesvirus 7. Kaposi’s sarcoma-associated herpesvirus (KSHV). Varicella-zoster virus (VZV). Infectious mononucleosis. Hepatitis. Rous sarcoma virus. Human T-lymphotropic virus. Adult t cell leukemia. HPV. Cervical cancer.
Oncovirus. Myc.
Variolation. Edward Jenner. Mary Wortley Montagu. Benjamin Jesty. James Phipps. Joseph Meister. Jonas Salk. Albert Sabin.
Marek’s disease. Rabies. Post-exposure prophylaxis.
Vaccine.
Aciclovir. Oseltamivir.
PCR.

 

June 10, 2019 Posted by | Biology, Books, Cancer/oncology, Immunology, Infectious disease, Medicine, Microbiology, Molecular biology | Leave a comment

100 cases in emergency medicine and critical care (II)

In this post I’ve added some links to topics covered in the second half of the book, as well as some quotes.

Flexor tenosynovitis. Kanavel’s cardinal signs.
Pelvic Fracture in Emergency Medicine. (“Pelvic injuries may be associated with significant haemorrhage. […] The definitive management of pelvic fractures is surgical.”)
Femur fracture. Girdlestone-Taylor procedure. (“A fall from standing can result in occult cervical spine fractures. If there is any doubt, then the patient should be immobilized and imaged to exclude injury.”)
Anterior Cruciate Ligament Injury. Anterior drawer test. Segond fracture. (“[R]upture of the anterior cruciate ligament (ACL) […] is often seen in younger patients and is associated with high-energy sports such as skiing, football or cycling. […] Take a careful history of all knee injuries including the mechanism of injury and the timing of swelling.”)
Tibial plateau fracture. Schatzker classification of tibial plateau fractures. (“When assessing the older patient with minor trauma resulting in fracture, always investigate the possibility that this may be a pathological fracture (e.g. osteoporosis, malignancy.”))
Ankle Fracture. Maisonneuve fracture.
Acute cholecystitis. Murphy’s sign. Mirizzi syndrome. (“Most patients with gallstones are asymptomatic. However, complications of gallstones range from biliary colic, whereby gallstones irritate or temporarily block the biliary tract, to acute cholecystitis, which is an infection of the gallbladder sometimes due to obstruction of the cystic duct. Gallstones can also become trapped in the common bile duct (choledocholithiasis) causing jaundice and potential ascending cholangitis, which refers to infection of the biliary tree. Ascending cholangitis classically presents with Charcot’s triad of fever, right upper quadrant (RUQ) pain and jaundice. It can be life-threatening. […] Acute cholecystitis requires antibiotic therapy and admission under general surgery, who should decide whether to perform a ‘hot’ emergency cholecystectomy within 24-72 hours of admission. This shortens the hospital stay but can be associated with more surgical complications.”)
Small-Bowel Obstruction. (“SBO is defined as a mechanical obstruction to the passage of contents in the bowel lumen. There can be complete or incomplete obstruction. […] There are many causes of SBO. […] The commonest cause of SBO worldwide is incarcerated herniae, whereas the commonest cause in the Western world is adhesion secondary to previous abdominal surgery. […] A strangulated hernia is […] a surgical emergency associated with a high mortality.”)
Pneumothorax. Flail chest.
Perforated peptic ulcer. (“Immediate onset pain usually signifies a rupture or occlusion of an organ, whereas more insidious onset tends to be infective or inflammatory in origin.” […] A perforated peptic ulcer is a surgical emergency that presents with upper abdominal pain, decreased or absent bowel sounds and signs of septic shock.”)
Diverticulitis.
Acute appendicitisMcBurney’s point. Rovsing’s sign. Psoas signObturator sign. (“The lifetime risk of developing appendicitis is 5-10%, and it is the commonest cause of emergency abdominal surgery in the Western world. […] in appendicitis, pain classically precedes vomiting, whereas the opposite occurs in gastroenteritis. […] Appendicitis is the commonest general surgical emergency in pregnant women and may have an atypical presentation with pain anywhere in the right side of the abdomen […] It is estimated that 25% of appendicitis will perforate 24 hours from the onset of symptoms, and 75% by 48 hours.”)
Abdominal aortic aneurysm. (“A ruptured AAA is a surgical emergency with 100% mortality if not immediately repaired. It classically presents with abdominal pain, pulsatile abdominal mass and hypotension. It should be ruled out in all patients over 65 years of age presenting with abdominal, loin or groin pain, especially if they have risk factors including smoking, hypertension, COPD or peripheral vascular disease. […] Do not be lured into a diagnosis of renal colic in an older patient, without definitive imaging to rule out an AAA rupture.”)
Nephrolithiasis. (“up to 30% of patients with kidney stones have a recurrence within 5 years”)
Acute Otitis Media. Mastoiditis. Bezold’s abscess.
Malignant otitis externa. (“Despite the term ‘malignant’, this is not a cancerous process. Rather, it refers to temporal bone (skull base) osteomyelitis. This is an ENT emergency associated with serious morbidity and mortality including cranial nerve palsies. […] The defining features of MOE are severe otalgia, often exceeding oral analgesics, in the older diabetic patient. Other symptoms such as hearing loss, otorrhoea, vertigo and tinnitus may also be present”)
Post-tonsillectomy hemorrhage. (Post-tonsillectomy bleeding (PTB) is a common but potentially serious complication occurring in around 5%-10% of patients undergoing tonsillectomy. The majority are self-limiting but around 1% require a return to theatre to stop the bleeding. All patients must be assessed immediately and admitted for observation as a self-limiting bleed can preclude a larger bleed within 24 hours. […] [PTB] should be treated as an airway emergency due to the possibility of obstruction.”)
Acute rhinosinusitis. (“Periorbital cellulitis is a potentially sight-threatening emergency. It is often precipitated by an upper respiratory tract infection, rhinosinusitis or local trauma (injury, insect bite).”)
Corneal Foreign Body. Seidel test. (“Pain with photosensitivity, watery discharge and foreign body sensation are cardinal features of corneal irritation. […] Abnormal pupil shape, iris defect and shallow anterior chamber are red flags for possible ocular perforation or penetrating ocular injury. […] Most conjunctival foreign bodies can be removed by simply irrigating the eye […] Removing a corneal foreign body […] requires more skill and an experienced operator should be sought. […] Iron, steel, copper and wood are known to cause severe ocular reactions”)
Acanthamoeba Keratitis. Bacterial Keratitis. Fungal keratitis. (“In patients with red eyes, reduced vision with severe to moderate pain should be prompted to an early ophthalmology review. Pre-existing ocular surface disease and contact lens wear are high risk factors for microbial keratitis.”)
Globe ruptureAcute orbital compartment syndromeLateral Canthotomy and Cantholysis. (Thirty percent of all facial fractures involve the orbit […] In open globe injuries with visible penetrating objects, it may be tempting to remove the object; however, avoid this as it may cause the globe to collapse.”)
Mandibular fracture. Guardsman fracture. (“Jaw pain, altered bite, numbness of lower lip, trismus or difficulty moving the jaw are the cardinal symptoms of possible mandibular fracture or dislocation.”)
Bronchiolitis. (“This is an acute respiratory condition, resulting in inflammation of the bronchioles. […] Bronchiolitis occurs in children under 2 years of age and most commonly presents in infants aged 3 to 6 months. […] Around 3% of all infants under 1 year old are admitted to hospital with bronchiolitis. […] Not all patients require hospital admission.”)
Fever of Unknown Origin. (“Fever is a very common presentation in the Emergency Department, and in the immunocompetent child is usually caused by a simple infection […] it is important to look for concerning features. Tachycardia is a particular feature that should not be ignored […] red-flag signs for serious illness [include:] • Grunting, tachypneoa or other signs of respiratory distress • Mottled, pale skin with cool peripheries […] Irritability […] not responding to social cues • Difficulty to rouse […] Consider Kawasaki disease in fever lasting more than 5 days.”)
Pediatric gastroenteritis. Rotavirus.
Acute Pyelonephritis. (“Female infants have a two- to-fourfold higher prevalence of UTI than male infants”)
Gastroesophageal Reflux Disease. (“Reflux describes the passage of gastric contents into the oesophagus with or without regurgitation and vomiting. This is a very common, normal, physiological process and occurs in 5% of babies up to six times per day. GORD presents when reflux causes troublesome symptoms or complications. This has a prevalence of 10%– 20% […] No investigations are required in the Emergency Department if there is a suspicion of GORD; this is usually a clinical diagnosis alone.”)
Head injury. (“Head injuries are common in children […] Clinical features of concern in head injuries include multiple episodes of vomiting […] significant scalp haematoma, prolonged loss of consciousness, confusion and seizures.”)
Pertussis. (“In the twentieth century, pertussis was one of the most common childhood diseases and a major cause of childhood mortality. Since use of the immunisation began, incidence has decreased more than 75%.”)
Hyperemesis gravidarum. ([HG] is defined as severe or long-lasting nausea and vomiting, appearing for the first time within the first trimester of pregnancy, and is so severe that weight loss, dehydration and electrolyte imbalance may occur. It affects less than 4% of pregnant women, although up to 80% of women suffer from some degree of nausea and vomiting throughout their pregnancy. […] Classically, patents present with a long history of nausea and vomiting that becomes progressively worse, despite treatment with simple antiemetics.”)
Ectopic pregnancy. (“Abdominal pain and collapse with a positive pregnancy test must be treated as a ruptured ectopic pregnancy until proven otherwise. […] In cases where the patient is stable and an intact ectopic is suspected, this is not an emergency and patients can be brought back the next day […] if seen out of hours”)
Recurrent miscarriage. Antiphospholipid syndrome. (“Bleeding in early pregnancy is common and does not necessarily lead to miscarriage.”)
Ovarian torsion. (“Torsion of the ovary and/ or fallopian tube account for between 2.4% and 7.4% of all gynaecological emergencies, and rapid intervention is required in order to preserve ovarian function. […] Ovarian torsion is unfortunately often misdiagnosed due to its non-specific symptoms and lack of diagnostic tools. […] Suspect ovarian torsion in women with severe sudden onset unilateral pelvic pain.”)
Pelvic Inflammatory Disease. Fitz-Hugh–Curtis syndrome.
Ovarian hyperstimulation syndrome. (“OHSS is an iatrogenic complication of fertility treatment with exogenous gonadotrophins to promote oocyte formation. Hyperstimulation of the ovaries leads to ovarian enlargement, and subsequent exposure to human chorionic gonadotrophin (hCG) causes production of proinflammatory mediators, primarily vascular endothelial growth factor (VEGF). The effects of proinflammatory mediators lead to increased vascular permeability and a loss of fluid from intravascular to third space compartments. This gives rise to ascites, pleural effusions and in some cases pericardial effusions. Women with severe OHSS can typically lose up to 20% of their circulating volume in the acute phase […] OHSS patients are also at high risk of developing a thromboembolism […] In conventional IVF, around one-third of cycles are affected by mild OHSS. The combined incidence of moderate or severe OHSS is reported as between 3.1% and 8%.”)
Pulmonary embolism. (“The overall prevalence of PE in pregnancy is between 2% and 6%. Pregnancy increases the risk of developing a venous thromboembolism by four to five times, compared to non-pregnant women of the same age.”)
Postpartum psychosis.
Informed consent. Gillick competency and Fraser guidelines.
Duty of candour. Never events.

May 8, 2018 Posted by | Books, Gastroenterology, Infectious disease, Medicine, Nephrology, Ophthalmology | Leave a comment

100 cases in emergency medicine and critical care (I)

“This book has been written for medical students, doctors and nurse practitioners. One of the best methods of learning is case-based learning. This book presents a hundred such ‘cases’ or ‘patients’ which have been arranged by system. Each case has been written to stand alone […] the focus of each case is to recognise the initial presentation, the underlying pathophysiology, and to understand broad treatment principles.”

I really liked the book; as was also the case for the surgery book I recently read the cases included in these publications are slightly longer than they were in some of the previous publications in the series I’ve read, and I think this makes a big difference in terms of how much you actually get out of each case.

Below I have added some links and quotes related to the first half of the book’s coverage.

Tracheostomy.
Malnutrition (“it is estimated that around a quarter of hospital inpatients are inadequately nourished. This may be due to increased nutritional requirements […], nutritional losses (e.g. malabsorption, vomiting, diarrhoea) or reduced intake […] A patient’s basal energy expenditure is doubled in head injuries and burns.”)
Acute Adult Supraglottitis. (“It is important to appreciate that halving the radius of the airway will increase its resistance by 16 times (Poiseuille’s equation), and hearing stridor means there is around 75% airway obstruction.”)
Out-of-hospital cardiac arrest. (“After successful resuscitation from an OHCA, only 10% of patients will survive to discharge, and many of these individuals will have significant neurologic disability.”)
Bacterial meningitis. (“Meningococcal meningitis has a high mortality, with 10%-15% of patients dying of the disease despite appropriate therapy.”)
Diabetic ketoacidosis.
Anaphylaxis (“Always think of anaphylaxis when seeing patients with skin/mucosal symptoms, respiratory difficulty and/or hypotension, especially after exposure to a potential allergen.”)
Early goal-directed therapy. (“While randomised evidence on the benefit of [this approach] is conflicting, it is standard practice in most centres.” I’m not sure I’d agree with the authors that the evidence is ‘conflicting’, it looks to me like it’s reasonably clear at this point: “In this meta-analysis of individual patient data, EGDT did not result in better outcomes than usual care and was associated with higher hospitalization costs across a broad range of patient and hospital characteristics.”)
Cardiac tamponade. Hypovolaemic shock. Permissive hypotensionFocused Assessment with Sonography in Trauma (FAST). (“Shock refers to inadequate tissue perfusion and tissue oxygenation. The commonest cause in an injured patient is hypovolaemic shock due to blood loss, but other causes include cardiogenic shock due to myocardial dysfunction, neurogenic shock due to sympathetic dysfunction or obstructive shock due to obstruction of the great vessels or heart. […] tachycardia, cool skin and reduced pulse pressure are early signs of shock until proven otherwise.”)
Intravenous therapy. A Comparison of Albumin and Saline for Fluid Resuscitation in the Intensive Care Unit.
Thermal burns. Curling’s ulcer. Escharotomy. Wallace rule of nines. Fluid management in major burn injuries. (“Alkali burns are more harmful than acidic. […] Electrical burns cause more destruction than the external burn may suggest. They are associated with internal destruction, as the path of least resistance is nerves and blood vessels. They can also cause arrhythmias and an electrocardiogram should be performed.”)
Steven Johnson syndrome. Nikolsky’s sign. SCORTEN scale.
Cardiac arrest. (“The mantra in the ED is that ‘you are not dead until you are warm and dead'”).
Myocardial infarction. (“The most important goal of the acute management of STEMI is coronary reperfusion, which may be achieved either by percutaneous coronary intervention (PCI) or use of fibrinolytic agents (thrombolysis). PCI is the preferred strategy if it can be delivered within 120 minutes of first medical contact (and ideally within 90 minutes) […] several randomised trials have shown that PCI provides improved short- and long-term survival outcomes compared to fibrinolysis, providing it can be performed within the appropriate time frame.”)
Asthma exacerbation. (“the prognosis for asthmatics admitted to the Intensive Care Unit is guarded, with an in-hospital mortality of 7% in those who are mechanically ventilated.”)
Acute exacerbation of COPD. Respiratory Failure.
Pulmonary embolism. CT pulmonary angiography. (“Obstructive cardiopulmonary disease is the main diagnosis to exclude in patients presenting with shortness of breath and syncope.”)
Sepsis. Sepsis Six. qSOFA. (“The main clinical features of sepsis include hypotension […], tachycardia […], a high (>38.3°C) or low (<36°C) temperature, altered mental status and signs of peripheral shutdown (cool skin, prolonged capillary refill, cyanosis) in severe cases. […] Sepsis is associated with substantial in-hospital morbidity and mortality, and an increased risk of death and re-admission to hospital even if the patient survives until discharge. Prognostic factors in sepsis include patient factors (increasing age, higher comorbidity), site of infection (urosepsis is associated with better outcomes compared to other sources), type of pathogen (nosocomial infections have higher mortality), early administration of antibiotics (which may reduce mortality by 50%) and restoration of perfusion.”)
Acute kidney injury. (“Classically there are three major causative categories of AKI: (i) pre-renal (i.e. hypoperfusion), (ii) renal (i.e. an intrinsic process with the kidneys) and (iii) post-renal (i.e. urinary tract obstruction). The initial evaluation should attempt to determine which of these are leading to AKI in the patient. […] two main complications that arise with AKI [are] volume and electrolyte issues.”)
Acute chest syndrome.
Thrombotic thrombocytopenic purpura. Schistocyte. Plasmapheresis.
Lower gastrointestinal bleeding. WarfarinProthrombin complex concentrate. (“Warfarin is associated with a 1%-3% risk of bleeding each year in patients with atrial fibrillation, and the main risk factors for this include presence of comorbities, interacting medications, poor patient compliance, acute illness and dietary variation in vitamin K intake.”)
Acute back pain. Malignant spinal cord compression (-MSCC). (“Acute back pain is not an uncommon reason for presentation to the Emergency Department […] Although the majority of such presentations represent benign pathology, it is important to exclude more serious pathology such as cord or cauda equina compression, infection or abscess. Features in the history warranting greater concern include a prior history of cancer, recent infection or steroid use, fever, pain in the thoracic region, pain that improves with rest and the presence of urinary symptoms. Similarly, ‘red flag’ examination findings include gait ataxia, generalized weakness, upper motor neurone signs (clonus, hyper-reflexia, extensor plantars), a palpable bladder, saddle anaesthesia and reduced anal tone. […] MSCC affects up to 5% of all cancer patients and is the first manifestation of cancer in a fifth of patients.”)
Neutropenic sepsis. (“Neutropaenic sepsis […] arises as a result of cytotoxic chemotherapy suppressing the bone marrow, leading to depletion of white blood cells and leaving the individual vulnerable to infection. It is one of the most common complications of cancer therapy, carrying a significant mortality rate of ~5%-10%, and should be regarded as a medical emergency. Any patient receiving chemotherapy and presenting with a fever should be assumed to have neutropaenic sepsis until proven otherwise.”)
Bacterial Pneumonia. CURB-65 Pneumonia Severity Score.
Peptic ulcer diseaseUpper gastrointestinal bleeding. Glasgow-Blatchford score. Rockall score.
Generalised tonic-clonic seizure. Status Epilepticus.
“Chest pain is an extremely common presentation in the ED […] Key features that may help point towards particular diagnoses include • Location and radiation – Central chest pain that radiates to the face, neck or arms is classic for MI, whereas the pain may be more posterior (between should blades) in aortic dissection and unilateral in lung disease. • Onset – Sudden or acute onset pain usually indicates a vascular cause (e.g. PE or aortic dissection), whereas cardiac chest pain is typically more subacute in onset and increases over time. • Character – Cardiac pain is usually described as crushing but may often be a gnawing discomfort, whereas pain associated with aortic dissection and gastrointestinal disorders is usually tearing/ripping and burning, respectively. • Exacerbation/alleviation […] myocardial ischaemia will manifest as pain brought on by exercise and relieved by rest, which is a good discriminator between cardiac and non-cardiac pain.”
Syncope. Mobitz type II AV block. (The differential diagnosis for syncope is seizure, and the two may be distinguished by the absence of a quick or spontaneous recovery with a seizure, where a post-ictal state (sleepiness, confusion, lethargy) is present.”)
Atrial Fibrillation. CHADSVASC and HASBLED risk scores. (“AF with rapid ventricular rates is generally managed with control of heart rates through use of beta-blockers or calcium-channel blockers. • Unstable patients with AF may require electrical cardioversion to restore sinus rhythm.”)
Typhoid fever. Dysentery.
Alcohol toxicity. (“Differentials which may mimic acute alcohol intoxication include • Hypoglycemia • Electrolyte disturbance • Vitamin depletion (B12/folate) • Head trauma • Sepsis • Other toxins or drug overdose • Other causes for CNS depression”)
Tricyclic Antidepressant Toxicity. (“Over 50% of suicidal overdoses involve more than one medication and are often taken with alcohol.”)
Suicide. SADPERSONS scale. (“Intentional self-harm results in around 150,000 attendances to the ED [presumably ‘every year’ – US]. These patients are 100 times more likely to commit suicide within the next year compared to the general population. Self-harm and suicide are often used interchangeably, but are in fact two separate entities. Suicide is a self-inflicted intentional act to cause death, whereas self-harm is a complex behaviour to inflict harm but not associated with the thought of dying – a method to relieve mental stress by inflicting physical pain.”)
Cauda equina syndrome (-CES). (“signs and symptoms of lower extremity weakness and pain developing acutely after heavy lifting should raise suspicion for a herniated intervertebral disc, which is the commonest cause of CES. […] CES is a neurosurgical emergency. The goal is to prevent irreversible loss of bowel and bladder function and motor function of the lower extremities. […] A multitude of alternative diagnoses may masquerade as CES – stroke, vascular claudication, deep venous thrombosis, muscle cramps and peripheral neuropathy.”)
Concussion.
Subarachnoid hemorrhage. Arteriovenous malformation.
Ischemic Stroke. AlteplaseMechanical thrombectomy for acute ischemic stroke. (“evaluation and treatment should be based on the understanding that the damage that is done (infarcted brain) is likely to be permanent, and the goal is to prevent further damage (ischaemic brain) and treat reversible causes (secondary prevention). Along those lines, time is critical to the outcome of the patient.”)
Mechanical back pain. Sciatica.
Dislocated shoulder. Bankart lesion. Hill-Sachs lesion. Kocher’s method.
Supracondylar Humerus Fractures. (“Supracondular fractures in the adult are relatively uncommon but are seen in major trauma or in elderly patients where bone quality may be compromised. Elbow fractures need careful neurovascular evaluation […] There are three major nerves that pass through the region: 1. The median nerve […] 2. The radial nerve […] 3. The ulnar nerve […] It is important to assess these three nerves and to document their function individually. The brachial artery passes through the cubital fossa and may be directly injured by bone fragments or suffer intimal damage. […] This is a true orthopaedic and vascular emergency as the upper limb can only tolerate an ischaemia time of around 90 minutes before irreparable damage is sustained.”)
Boxer’s fracture.

May 2, 2018 Posted by | Books, Cancer/oncology, Cardiology, Infectious disease, Medicine, Nephrology, Neurology, Psychiatry, Studies | Leave a comment

100 cases in surgery (II)

Below I have added some links and quotes related to the last half of the book’s coverage.

Ischemic rest pain. (“Rest pain indicates inadequate tissue perfusion. *Urgent investigation and treatment is required to salvage the limb. […] The material of choice for bypass grafting is autogenous vein. […] The long-term patency of prosthetic grafts is inferior compared with autogenous vein.”)
Deep vein thrombosis.
Lymphedema. (“In lymphoedema, the vast majority of patients (>90 per cent) are treated conservatively. […] Debulking operations […] are only considered for a selected few patients where the function of the limb is impaired or those with recurrent attacks of severe cellulitis.”)
Varicose veins. Trendelenburg Test. (“Surgery on the superficial venous system should be avoided in patients with an incompetent deep venous system.”)
Testicular Torsion.
Benign Prostatic Hyperplasia.
Acute pyelonephritis. (“In patients with recurrent infection in the urinary system, significant pathology needs excluding such as malignancy, urinary tract stone disease and abnormal urinary tract anatomy.”)
Renal cell carcinomavon Hippel-Lindau syndrome. (“Approximately one-quarter to one-third of patients with renal cell carcinomas have metastases at presentation. […] The classic presenting triad of loin pain, a mass and haematuria only occurs in about 10 per cent of patients. More commonly, one of these features appears in isolation.”)
Haematuria. (“When taking the history, it is important to elicit the following: •Visible or non-visible: duration of haematuria • Age: cancers are more common with increasing age •Sex: females more likely to have urinary tract infections• Location: during micturition, was the haematuria always present (indicative of renal, ureteric or bladder pathology) or was it only present initially (suggestive of anterior urethral pathology) or present at the end of the stream (posterior urethra, bladder neck)? •Pain: more often associated with infection/inflammation/calculi, whereas malignancy tends to be painless •Associated lower urinary tract symptoms that will be helpful in determining aetiology •History of trauma Travel abroad […] •Previous urological surgery/history/recent instrumentation/prostatic biopsy •Medication, e.g. anticoagulants •Family history •Occupational history, e.g. rubber/dye occupational hazards are risk factors for developing transitional carcinoma of the bladder […] •Smoking status: increased risk, particularly of bladder cancer •General status, e.g. weight loss, reduced appetite […] Anticoagulation can often unmask other pathology in the urinary tract. […] Patients on oral anticoagulation who develop haematuria still require investigation.”)
Urinary retention. (“Acute and chronic retention are usually differentiated by the presence or absence of pain. Acute retention is painful, unlike chronic retention, when the bladder accommodates the increase in volume over time.”)
Colles’ fracture/Distal Radius Fractures. (“In all fractures the distal neurological and vascular status should be assessed.”)
Osteoarthritis. (“Radiological evidence of osteoarthritis is common, with 80 per cent of individuals over 80 years demonstrating some evidence of the condition. […] The commonest symptoms are pain, a reduction in mobility, and deformity of the affected joint.”)
Simmonds’ test.
Patella fracture.
Dislocated shoulder.
Femur fracture. (“Fractured neck of the femur is a relatively common injury following a fall in the elderly population. The rate of hip fracture doubles every decade from the age of 50 years. There is a female preponderance of three to one. […] it is important to take a comprehensive history, concentrating on the mechanism of injury. It is incorrect to assume that all falls are mechanical; it is not uncommon to find that the cause of the fall is actually due to a urinary or chest infection or even a silent myocardial infarction.”)
The Ottawa Ankle Rules.
Septic arthritis.
Carpal tunnel syndrome. Tinel’s test. Phalen’s Test. (“It is important, when examining a patient with suspected carpal tunnel syndrome, to carefully examine their neck, shoulder, and axilla. […] the source of the neurological compression may be proximal to the carpal tunnel”)
Acute Compartment Syndrome. (“Within the limbs there are a number of myofascial compartments. These consist of muscles contained within a relatively fixed-volume structure, bounded by fascial layers and bone. After trauma the pressure in the myofascial compartment increases. This pressure may exceed the venous capillary pressure, resulting in a loss of venous outflow from the compartment. The failure to clear metabolites also leads to the accumulation of fluid as a result of osmosis. If left untreated, the pressure will eventually exceed arterial pressure, leading to significant tissue ischaemia. The damage is irreversible after 4–6 h. Tibial fractures are the commonest cause of an acute compartment syndrome, which is thought to complicate up to 20 per cent of these injuries. […] The classical description of ‘pain out of proportion to the injury’ may [unfortunately] be difficult to determine if the clinician is inexperienced.”)
Hemarthrosis. (“Most knee injuries result in swelling which develops over hours rather than minutes. [A] history of immediate knee swelling suggests that there is a haemarthrosis.”)
Sickle cell crisis.
Cervical Spine Fracture. Neurogenic shock. NEXUS Criteria for C-Spine Imaging.
Slipped Capital Femoral Epiphysis. Trethowan sign. (“At any age, a limp in a child should always be taken seriously.”)

ATLS guidelines. (“The ATLS protocol should be followed even in the presence of obvious limb deformity, to ensure a potentially life-threatening injury is not missed.”)
Peritonsillar Abscess.
Epistaxis. Little’s area.
Croup. Acute epiglottitis. (“Acute epiglottitis is an absolute emergency and is usually caused by Haemophilus influenzae. There is significant swelling, and any attempt to examine the throat may result in airway obstruction. […] In adults it tends to cause a supraglottitis. It has a rapid progression and can lead to total airway obstruction. […] Stridor is an ominous sign and needs to be taken seriously.”)
Bell’s palsy.
Subarachnoid hemorrhageInternational subarachnoid aneurysm trial.
Chronic subdural hematoma. (“This condition is twice as common in men as women. Risk factors include chronic alcoholism, epilepsy, anticoagulant therapy (including aspirin) and thrombocytopenia. CSDH is more common in elderly patients due to cerebral atrophy. […] Initial misdiagnosis is, unfortunately, quite common. […] a chronic subdural haematoma should be suspected in confused patients with a history of a fall.”)
Extradural Haematoma. Cushing response. (“A direct blow to the temporo-parietal area is the commonest cause of an extradural haematoma. The bleed is normally arterial in origin. In 85 per cent of cases there is an associated skull fracture that causes damage to the middle meningeal artery. […] This situation represents a neurosurgical emergency. Without urgent decompression the patient will die. Unlike the chronic subdural, which can be treated with Burr hole drainage, the more dense acute arterial haematoma requires a craniotomy in order to evacuate it.”)
Cauda equina syndromeNeurosurgery for Cauda Equina Syndrome.
ASA classification. (“Patients having an operation within 3 months of a myocardial infarction carry a 30 per cent risk of reinfarction or cardiac death. This drops to 5 per cent after 6 months. […] Patients with COPD have difficulty clearing secretions from the lungs during the postoperative period. They also have a higher risk of basal atelectasis and are more prone to chest infections. These factors in combination with postoperative pain (especially in thoracic or abdominal major surgery) make them prone to respiratory complications. […] Patients with diabetes have an increased risk of postoperative complications because of the presence of microvascular and macrovascular disease: •Atherosclerosis: ischaemic heart disease/peripheral vascular disease/cerebrovascular disease •Nephropathy: renal insufficiency […] •Autonomic neuropathy: gastroparesis, decreased bladder tone •Peripheral neuropathy: lower-extremity ulceration, infection, gangrene •Poor wound healingIncreased risk of infection Tight glycaemic control (6–10 mmol/L) and the prevention of hypoglycaemia are critical in preventing perioperative and postoperative complications. The patient with diabetes should be placed first on the operating list to avoid prolonged fasting.
“)
MalnutritionHartmann’s procedure. (“Malnutrition leads to delayed wound healing, reduced ventilatory capacity, reduced immunity and an increased risk of infection. […] The two main methods of feeding are either by the enteral route or the parenteral route. Enteral feeding is via the gastrointestinal tract. It is less expensive and is associated with fewer complications than feeding by the parenteral route. […] The parenteral route should only be used if there is an inability to ingest, digest, absorb or propulse nutrients through the gastrointestinal tract. It can be administered by either a peripheral or central line. Peripheral parenteral nutrition can cause thrombophlebitis […] Sepsis is the most frequent and serious complication of centrally administered parenteral nutrition.”)
Acute Kidney Injury. (“The aetiology of acute renal failure can be thought of in three main categories: •Pre-renal: the glomerular filtration is reduced because of poor renal perfusion. This is usually caused by hypovolaemia as a result of acute blood loss, fluid depletion or hypotension. […] • Renal: this is the result of damage directly to the glomerulus or tubule. The use of drugs such as NSAIDs, contrast agents or aminoglycosides all have direct nephrotoxic effects. Acute tubular necrosis can occur as a result of prolonged hypoperfusion […]. Pre-existing renal disease such as diabetic nephropathy or glomerulonephritis makes patients more susceptible to further renal injury. •Post-renal: this can be simply the result of a blocked catheter. […] Calculi, blood clots, ureteric ligation and prostatic hypertrophy can also all lead to obstruction of urinary flow.”)
Post-operative ileus.

Pulmonary embolism.

April 18, 2018 Posted by | Books, Cancer/oncology, Cardiology, Gastroenterology, Infectious disease, Medicine, Nephrology, Neurology | Leave a comment

Peripheral Neuropathy (II)

Chapter 3 included a great new (…new to me, that is…) chemical formula which I can’t not share here: (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanonemesylate. It’s a cannabinoid receptor agonist, the properties of which are briefly discussed in the book‘s chapter 3.

Anyway, some more observations from the book below:

Injuries affecting either the peripheral or the central nervous system (PNS, CNS) leads to neuropathic pain characterized by spontaneous pain and distortion or exaggeration of pain sensation. Peripheral nerve pathologies are considered generally easier to treat compared to those affecting the CNS, however peripheral neuropathies still remain a challenge to therapeutic treatment. […] Although first being thought as a disease of purely neuronal nature, several pre-clinical studies indicate that the mechanisms at the basis of the development and maintenance of neuropathic pain involve substantial contributions from the nonneuronal cells of both the PNS and CNS [22]. After peripheral nerve injury, microglia in the normal conditions (usually defined ‘‘resting’’ microglia) in the spinal dorsal horn proliferate and change their phenotype to an “activated” state through a series of cellular and molecular changes. Microglia shift their phenotype to the hypertrophic “activated” form following altered expression of several molecules including cell surface receptors, intracellular signalling molecules and diffusible factors. The activation process consists of distinct cellular functions aimed at repairing damaged neural cells and eliminating debris from the damaged area [23]. Damaged cells release chemo-attractant molecules that both increase the motility (i.e. chemo‐kinesis) and stimulate the migration (i.e. chemotaxis) of microglia, the combination of which recruits the microglia much closer to the damaged cells […] Once microglia become activated, they can exert both proinflammatory or anti-inflammatory/neuroprotective functions depending on the combination of the stimulation of several receptors and the expression of specific genes [31]. Thus, the activation of microglia following a peripheral injury can be considered as an adaptation to tissue stress and malfunction [32] that contribute to the development and subsequent maintenance of chronic pain [33, 34]. […] The signals responsible for neuron-microglia and/or astrocyte communication are being extensively investigated since they may represent new targets for chronic pain management.”

“In the past two decades a notable increase in the incidence of [upper extremity compression neuropathies] has occurred. […] it is mandatory to achieve a prompt diagnosis because they can produce important motor and sensory deficiencies that need to be treated before the development of complications, since, despite the capacity for regeneration bestowed on the peripheral nervous system, functions lost as a result of denervation are never fully restored. […] There are many different situations that may be a direct cause of nerve compression. Anatomically, nerves can be compressed when traversing fibro-osseous tunnels, passing between muscle layers, through traction as they cross joints or buckling during certain movements of the wrist and elbow. Other causes include trauma, direct pressure and space-occupying lesions at any level in the upper extremity. There are other situations that are not a direct cause of nerve compression, but may increase the risk and may predispose the nerve to be compressed specially when the soft tissues are swollen like synovitis, pregnancy, hypothyroidism, diabetes or alcoholism [1]. […] When nerve fibers undergo compression, the response depends on the force applied at the site and the duration. Acute, brief compression results in a focal conduction block as a result of local ischemia, being reversible if the duration of compression is transient. On the other hand, if the focal compression is prolonged, ischemic changes appear, followed by endoneurial edema and secondary perineurial thickening. These histological alterations will aggravate the changes in the microneural circulation and will increase the sensitivity of the neuron sheath to ischemia. If the compression continues, we will find focal demyelination, which typically results in a greater involvement of motor than sensory nerve fibers. […] As the duration of compression increases beyond several hours, more diffuse demyelination will appear […] This process begins at the distal end of compression or injury, a process termed wallerian degeneration. These neural changes may not appear at a uniform fashion among the whole neural sheath depending on the distribution of the compressive forces, causing mixed demyelinating and axonal injury resulting from a combination of mechanical distortion of the nerve, ischemic injury, and impaired axonal flow [2].”

Electrophysiologic testing is part of the evaluation [of compression neuropathies], but it never substitutes a complete history and a thorough physical examination. These tests can detect physiologic abnormalities in the course of motor and sensory axons. There are two main electrophysiologic tests: needle electromyography and nerve conduction […] The electromyography detects the voluntary or spontaneous generated electrical activity. The registry of this activity is made through the needle insertion, at rest and during muscular activity to assess duration, amplitude, configuration and recruitment after injury. […] Nerve conduction assesses for both sensory and motor nerves. This study consists in applying a voltage simulator to the skin over different points of the nerve in order to record the muscular action potential, analyzing the amplitude, duration, area, latency and conduction velocity. The amplitude indicates the number of available nerve fibers.”

There are three well-described entrapment syndromes involving the median nerve or its branches, namely pronator teres syndrome, anterior interosseous syndrome and carpal tunnel syndrome according to the level of entrapment. Each one of these syndromes presents with different clinical signs and symptoms, electrophysiologic results and requires different techniques for their release. […] [In pronator teres syndrome] [t]he onset is insidious and is suggested when the early sensory disturbances are greater on the thumb and index finger, mainly tingling, numbness and dysaesthesia in the median nerve distribution. Patients will also complain of increased pain in the proximal forearm and greater hand numbness with sustained power gripping or rotation […] Surgical decompression is the definitive treatment. […] [Anterior interosseous syndrome] presents principally as weakness of the index finger and thumb, and the patient may complain of diffuse pain in the proximal forearm, which may be exacerbated during exercise and diminished with rest. The vast majority of patients begin with pain in the upper arm, elbow and forearm, often preceding the motor symptoms. […] During physical exam, the patient will be unable to bend the tip of the thumb and tip of index finger. The typical symptom is the inability to form an “O” with the thumb and index finger. […] If the onset was spontaneous and there is no evident lesion on MRI, supportive care and corticosteroid injections with observation for 4 to 6 weeks is usually accepted management. The degree of recovery is unpredictable.”

“[Carpal tunnel syndrome] is the most frequently encountered compression neuropathy in the upper limb. It is a mechanical compression of the median nerve through the fixed space of the rigid carpal tunnel. The incidence in the United States has been estimated at 1 to 3 cases per 1,000 subjects per year, with a prevalence of 50 cases per 1,000 subjects per year. [10] It is more common in women than in men (2:1), perhaps because the carpal tunnel itself may be smaller in women than in men. The dominant hand is usually affected first and produces the most severe pain. It usually occurs in adults […] Abnormalities on electrophysiologic testing, in association with specific symptoms and signs, are considered the criterion standard for carpal tunnel syndrome diagnosis. Electrophysiologic testing also can provide an accurate assessment of how severe the damage to the nerve is, thereby directing management and providing objective criteria for the determination of prognosis. Carpal tunnel syndrome is usually divided into mild, moderate and severe. In general, patients with mild carpal tunnel syndrome have sensory abnormalities alone on electrophysiologic testing, and patients with sensory plus motor abnormalities have moderate carpal tunnel syndrome. However, any evidence of axonal loss is classified as severe carpal tunnel syndrome. […] No imaging studies are considered routine in the diagnosis of carpal tunnel syndrome. […] nonoperative treatment is based in splintage of the wrist in a neutral position for three weeks and steroid injections. This therapy has variable results, with a success rate up to 76% during one year, but with a recurrence rate as high as 94%. Non-operative treatment is indicated in patients with intermittent symptoms, initial stages and during pregnancy [17]. The only definitive treatment for carpal tunnel syndrome is surgical expansion of the carpal tunnel by transection of the transverse carpal ligament.”

Postural control can be defined as the control of the body’s position in space for the purposes of balance and orientation. Balance is the ability to maintain or return the body’s centre of gravity within the limits of stability that are determined by the base of support. Spatial orientation defines our natural ability to maintain our body orientation in relation to the surrounding environment, in static and dynamic conditions. The representation of the body’s static and dynamic geometry may be largely based on muscle proprioceptive inputs that continuously inform the central nervous system about the position of each part of the body in relation to the others. Posture is built up by the sum of several basic mechanisms. […] Postural balance is dependent upon integration of signals from the somatosensory, visual and vestibular systems, to generate motor responses, with cognitive demands that vary according to the task, the age of the individuals and their ability to balance. Descending postural commands are multivariate in nature, and the motion at each joint is affected uniquely by input from multiple sensors.
The proprioceptive system provides information on joint angles, changes in joint angles, joint position and muscle length and tension; while the tactile system is associated mainly with sensations of touch, pressure and vibration. Visual influence on postural control results from a complex synergy that receives multimodal inputs. Vestibular inputs tonically activate the anti-gravity leg muscles and, during dynamic tasks, vestibular information contributes to head stabilization to enable successful gaze control, providing a stable reference frame from which to generate postural responses. In order to assess instability or walking difficulty, it is essential to identify the affected movements and circumstances in which they occur (i.e. uneven surfaces, environmental light, activity) as well as any other associated clinical manifestation that could be related
to balance, postural control, motor control, muscular force, movement limitations or sensory deficiency. The clinical evaluation should include neurological examination; special care should be taken to identify visual and vestibular disorders, and to assess static and dynamic postural control and gait.”

Polyneuropathy modify the amount and the quality of the sensorial information that is necessary for motor control, with increased instability during both, upright stance and gait. Patients with peripheral neuropathy may have decreased stability while standing and when subjected to dynamic balance conditions. […] Balance and gait difficulties are the most frequently cited cause of falling […] Patients with polyneuropathy who have ankle weakness are more likely to experience multiple and injurious falls than are those without specific muscle weakness. […] During upright stance, compared to healthy subjects, recordings of the centre of pressure in patients with diabetic neuropathy have shown larger sway [95-96, 102], as well as increased oscillation […] Compared to healthy subjects, diabetic patients may have poorer balance during standing in diminished light compared to full light and no light conditions [105] […] compared to patients with diabetes but no peripheral neuropathy, patients with diabetic peripheral neuropathy are more likely to report an injury during walking or standing, which may be more frequent when walking on irregular surfaces [110]. Epidemiological surveys have established that a reduction of leg proprioception is a risk factor for falls in the elderly [111-112]. Symptoms and signs of peripheral neuropathy are frequently found during physical examination of older subjects. These clinical manifestations may be related to diabetes mellitus, alcoholism, nutritional deficiencies, autoimmune diseases, among other causes. In this group of patients, loss of plantar sensation may be an important contributor to the dynamic balance deficits and increased risk of falls [34, 109]. […] Apart from sensorymotor compromise, fear of falling may relate to restriction and avoidance of activities, which results in loss of strength especially in the lower extremities, and may also be predictive for future falls [117-119].”

“In patients with various forms of peripheral neuropathy, the use of a cane, ankle orthoses or touching a wall [has been shown to improve] spatial and temporal measures of gait regularity while walking under challenging conditions. Additional hand contact of external objects may reduce postural instability caused by a deficiency of one or more senses. […] Contact of the index finger with a stationary surface can greatly attenuate postural instability during upright stance, even when the level of force applied is far below that necessary to provide mechanical support [42]. […] haptic information about postural sway derived from contact with other parts of the body can also increase stability […] Studies evaluating preventive and treatment strategies through excercise [sic – US] that could improve balance in patients with polyneuropathy are scarce. However, evidence support that physical activity interventions that increase activity probably do not increase the risk of falling in patients with diabetic peripheral neuropathy, and in this group of patients, specific training may improve gait speed, balance, muscle strength and joint mobility.”

“Postherpetic neuralgia (PHN) is a form of refractory chronic neuralgia that […] currently lacks any effective prophylaxis. […] PHN has a variety of symptoms and significantly affects patient quality of life [3-12]. Various studies have statistically analyzed predictive factors for PHN [13-23], but neither obvious pathogenesis nor established treatment has been clarified or established. We designed and conducted a study on the premise that statistical identification of significant predictors for PHN would contribute to the establishment of an evidence-based medicine approach to the optimal treatment of PHN. […] Previous studies have shown that older age, female sex, presence of a prodrome, greater rash severity, and greater acute pain severity are predictors of increased PHN [14-18, 25]. Some other potential predictors (ophthalmic localization, presence of anxiety and depression, presence of allodynia, and serological/virological factors) have also been studied [14, 18]. […] The participants were 73 patients with herpes zoster who had been treated at the pain clinic of our hospital between January 2008 and June 2010. […] Multivariate ordered logistic regression analysis was performed to identify predictive factors for PHN. […] advanced age and deep pain at first visit were identified as predictive factors for PHN. DM [diabetes mellitus – US] and pain reduced by bathing should also be considered as potential predictors of PHN [24].”

February 14, 2018 Posted by | Books, Diabetes, Infectious disease, Medicine, Neurology | Leave a comment

Occupational Epidemiology (I)

Below some observations from the first chapters of the book, which I called ‘very decent’ on goodreads.

“Coal workers were amongst the first occupational groups to be systematically studied in well-designed epidemiological research programmes. As a result, the causes and spectrum of non-malignant respiratory disease among coal workers have been rigorously explored and characterized.1,2 While respirable silica (quartz) in mining has long been accepted as a cause of lung disease, the important contributing role of coal mine dust was questioned until the middle of the twentieth century.3 Occupational exposure to coal mine dust has now been shown unequivocally to cause excess mortality and morbidity from non-malignant respiratory disease, including coal workers’ pneumoconiosis (CWP) and chronic obstructive pulmonary disease (COPD). The presence of respirable quartz, often a component of coal mine dust, contributes to disease incidence and severity, increasing the risk of morbidity and mortality in exposed workers.”

Coal is classified into three major coal ranks: lignite, bituminous, and anthracite from lowest to highest carbon content and heating value. […] In the US, the Bureau of Mines and the Public Health Service actively studied anthracite and bituminous coal mines and miners throughout the mid-1900s.3 These studies showed significant disease among workers with minimal silica exposure, suggesting that coal dust itself was toxic; however, these results were suppressed and not widely distributed. It was not until the 1960s that a popular movement of striking coal miners and their advocates demanded legislation to prevent, study, and compensate miners for respiratory diseases caused by coal dust exposure. […] CWP [Coal Workers’ Pneumoconiosis] is an interstitial lung disease resulting from the accumulation of coal mine dust in miners’ lungs and the tissue reaction to its presence. […] It is classified […] as simple or complicated; the latter is also known as progressive massive fibrosis (PMF) […] PMF is a progressive, debilitating disease which is predictive of disability and mortality […] A causal exposure-response relationship has been established between cumulative coal mine dust exposure and risk of developing both CWP and PMF,27-31 and with mortality from pneumoconiosis and PMF.23-26, 30 Incidence, the stage of CWP, and progression to PMF, as well as mortality, are positively associated with increasing proportion of respirable silica in the coal mine dust32 and higher coal rank. […] Not only do coal workers experience occupational mortality from CWP and PMF,12, 23-26 they also have excess mortality from COPD compared to the general population. Cross-sectional and longitudinal studies […] have demonstrated an exposure-response relationship between cumulative coal mine dust exposure and chronic bronchitis,36-40 respiratory symptoms,41 and pulmonary function even in the presence of normal radiographic findings.42 The relationship between the rate of decline of lung function and coal mine dust exposure is not linear, the greatest reduction occurring in the first few years of exposure.43

“Like most occupational cohort studies, those of coal workers are affected by the healthy worker effect. A strength of the PFR and NCS studies is the ability to use internal analysis (i.e. comparing workers by exposure level) which controls for selection bias at hire, one component of the effect.59 However, internal analyses may not fully control for ongoing selection bias if symptoms of adverse health effects are related to exposure (referred to as the healthy worker survivor effect) […] Work status is a key component of the healthy worker survivor effect, as are length of time since entering the industry and employment duration.61 Both the PFR and NCS studies have consistently found higher rates of symptoms and disease among former miners compared with current miners, consistent with a healthy worker survivor effect.62,63″

“Coal mining is rapidly expanding in the developing world. From 2007 to 2010 coal production declined in the US by 6% and Europe by 10% but increased in Eurasia by 9%, in Africa by 3%, and in Asia and Oceania by 19%.71 China saw a dramatic increase of 39% from 2007 to 2011. There have been few epidemiological studies published that characterize the disease burden among coal workers during this expansion but, in one study conducted among miners in Liaoning Province, China, rates of CWP were high.72 There are an estimated six million underground miners in China at present;73 hence even low disease rates will cause a high burden of illness and excess premature mortality.”

“Colonization with S. aureus may occur on mucous membranes of the respiratory or intestinal tract, or on other body surfaces, and is usually asymptomatic. Nasal colonization with S. aureus in the human population occurs among around 30% of individuals. Methicillin-resistant S. aureus (MRSA) are strains that have developed resistance to beta-lactam antibiotics […] and, as a result, may cause difficult-to-treat infections in humans. Nasal colonization with MRSA in the general population is low; the highest rate reported in a population-based survey was 1.5%.2,3 Infections with MRSA are associated with treatment failure and increased severity of disease.4,5 […] In 2004 a case of, at that time non-typeable, MRSA was reported in a 6-month-old girl admitted to a hospital in the Netherlands. […] Later on, this strain and some related strains appeared strongly associated with livestock production, and were labelled livestock-associated MRSA (LA-MRSA) and are nowadays referred to as MRSA ST398. […] It is common knowledge that the use of antimicrobial agents in humans, animals, and plants promotes the selection and spread of antimicrobial-resistant bacteria and resistance genes through genetic mutations and gene transfer.15 Antimicrobial agents are widely used in veterinary medicine and modern food animal production depends on the use of large amounts of antimicrobials for disease control. Use of antimicrobials probably played an important role in the emergence of MRSA ST398.”

MRSA was rarely isolated from animals before 2000. […] Since 2005 onwards, LA-MRSA has been increasingly frequently reported in different food production animals, including cattle, pigs, and poultry […] The MRSA case illustrates the rapid emergence, and transmission from animals to humans, of a new strain of resistant micro-organisms from an animal reservoir, creating risks for different occupational groups. […] High animal-to-human transmission of ST398 has been reported in pig farming, leading to an elevated prevalence of nasal MRSA carriage ranging from a few per cent in Ireland up to 86% in German pig farmers […]. One study showed a clear association between the prevalence of MRSA carriage among participants from farms with MRSA colonized pigs (50%) versus 3% on farms without colonized pigs […] MRSA prevalence is low among animals from alternative breeding systems with low use of antimicrobials, also leading to low carriage rates in farmers.71 […] Veterinarians are […] frequently in direct contact with livestock, and are clearly at elevated risk of LA-MRSA carriage when compared to the general population. […] Of all LA-MRSA carrying individuals, a fraction appear to be persistent carriers. […] Few studies have examined transmission from humans to humans. Generally, studies among family members of livestock farmers show a considerably lower prevalence than among the farmers with more intense animal contact. […] Individuals who are ST398 carriers in the general population usually have direct animal contact.43,44 On the other hand, the emergence of ST398 isolates without known risk factors for acquisition and without a link to livestock has been reported.45 In addition, a human-specific ST398 clone has recently been identified and thus the spread of LA-MRSA from occupational populations to the general population cannot be ruled out.46 Transmission dynamics, especially between humans not directly exposed to animals, remain unclear and might be changing.”

“Enterobacteriaceae that produce ESBLs are an emerging concern in public health. ESBLs inactivate beta-lactam antimicrobials by hydrolysis and therefore cause resistance to various beta-lactam antimicrobials, including penicillins and cephalosporins.54 […] The genes encoding for ESBLs are often located on plasmids which can be transferred between different bacterial species. Also, coexistence with other types of antimicrobial resistance occurs. In humans, infections with ESBL-producing Enterobacteriaceae are associated with increased burden of disease and costs.58 A variety of ESBLs have been identified in bacteria derived from food-producing animals worldwide. The occurrence of different ESBL types depends on the animal species and the geographical area. […] High use of antimicrobials and inappropriate use of cephalosporins in livestock production are considered to be associated with the emergence and high prevalence of ESBL-producers in the animals.59-60 Food-producing animals can serve as a reservoir for ESBL producing Enterobacteriaceae and ESBL genes. […] recent findings suggest that transmission from animals to humans may occur through (in)direct contact with livestock during work. This may thus pose an occupational health risk for farmers and potentially for other humans with regular contact with this working population. […] Compared to MRSA, the dynamics of ESBLs seem more complex. […] The variety of potential ESBL transmission routes makes it complex to determine the role of direct contact with livestock as an occupational risk for ESBL carriage. However, the increasing occurrence of ESBLs in livestock worldwide and the emerging insight into transmission through direct contact suggests that farmers have a higher risk of becoming a carrier of ESBLs. Until now, there have not been sufficient data available to quantify the relevant importance of this route of transmission.”

“Welders die more often from pneumonia than do their social class peers. This much has been revealed by successive analyses of occupational mortality for England and Wales. The pattern can now be traced back more than seven decades. During 1930–32, 285 deaths were observed with 171 expected;3 in 1949–53, 70 deaths versus 31 expected;4 in 1959–63, 101 deaths as compared with 54.9 expected;5 and in 1970–72, 66 deaths with 42.0 expected.6 […] The finding that risks decline after retirement is an argument against confounding by lifestyle variables such as smoking, as is the specificity of effect to lobar rather than bronchopneumonia. […] Analyses of death certificates […] support a case for a hazard that is reversible when exposure stops. […] In line with the mortality data, hospitalized pneumonia [has also] prove[n] to be more common among welders and other workers with exposure to metal fume than in workers from non-exposed jobs. Moreover, risks were confined to exposures in the previous 12 months […] Recently, inhalation experiments have confirmed that welding fume can promote bacterial growth in animals. […] A coherent body of evidence thus indicates that metal fume is a hazard for pneumonia. […] Presently, knowledge is lacking on the exposure-response relationship and what constitutes a ‘safe’ or ‘unsafe’ level or pattern of exposure to metal fume. […]  The pattern of epidemiological evidence […] is generally compatible with a hazard from iron in metal fume. Iron could promote infective risk in at least one of two ways: by acting as a growth nutrient for microorganisms, or as a cause of free radical injury. […] the Joint Committee on Vaccination and Immunisation, on behalf of the Department of Health in England, decided in November 2011 to recommend that ‘welders who have not received the pneumococcal polysaccharide vaccine (PPV23) previously should be offered a single dose of 0.5ml of PPV23 vaccine’ and that ‘employers should ensure that provision is in place for workers to receive PPV23’.”

December 2, 2017 Posted by | Books, Epidemiology, Infectious disease, Medicine | Leave a comment

Infectious Disease Surveillance (IV)

I have added some more observations from the second half of the book below.

“The surveillance systems for all stages of HIV infection, including stage 3 (AIDS), are the most highly developed, complex, labor-intensive, and expensive of all routine infectious disease surveillance systems. […] Although some behaviorally based prevention interventions (e.g., individual counseling and testing) are relatively inexpensive and simple to implement, others are expensive and difficult to maintain. Consequently, HIV control programs have added more treatment-based methods in recent years. These consist primarily of routine and, in some populations, repeated and frequent testing for HIV with an emphasis on diagnosing every infected person as quickly as possible, linking them to clinical care, prescribing ART, monitoring for retention in care, and maintaining an undetectable viral load. This approach is referred to as “treatment as prevention.” […] Prior to the advent of HAART in the mid-1990s, surveillance consisted primarily of collecting initial HIV diagnosis, followed by monitoring of progression to AIDS and death. The current need to monitor adherence to treatment and care has led to surveillance to collect results of all CD4 count and viral load tests conducted on HIV-infected persons. Treatment guidelines recommend such testing quarterly [11], leading to dozens of laboratory tests being reported for each HIV-infected person in care; hence, the need to receive laboratory results electronically and efficiently has increased. […] The standard set by CDC for completeness is that at least 85% of diagnosed cases are reported to public health within the year of diagnosis. […] As HIV-infected persons live longer as a consequence of ART, the scope of HIV surveillance has expanded […] A critical part of collecting HIV data is maintaining the database.”

“The World Health Organization (WHO) estimates that 8.7 million new cases of TB and 1.4 million deaths from TB occurred in 2011 worldwide [2]. […] WHO estimates that one of every three individuals worldwide is infected with TB [6]. An estimated 5–10% of persons with LTBI [latent TB infection] in the general population will eventually develop active TB disease. Persons with latent infection who are immune suppressed for any reason are more likely to develop active disease. It is estimated that people infected with human immunodeficiency virus (HIV) are 21–34 times more likely to progress from latent to active TB disease […] By 2010, the percentage of all TB cases tested for HIV was 65% and the prevalence of coinfection was 6% [in the United States] [4]. […] From a global perspective, the United States is considered a low morbidity and mortality country for TB. In 2010, the national annual incidence rate for TB was 3.6 per 100,000 persons with 11,182 reported cases of TB  […] In 1953, 113,531 tuberculosis cases were reported in the United States […] Tuberculosis surveillance in the United States has changed a great deal in depth and quality since its inception more than a century ago. […] To assure uniformity and standardization of surveillance data, all TB programs in the United States report verified TB cases via the Report of Verified Case of Tuberculosis (RVCT) [43]. The RVCT collects demographic, diagnostic, clinical, and risk-factor information on incident TB cases […] A companion form, the Follow-up 1 (FU-1), records the date of specimen collection and results of the initial drug susceptibility test at the time of diagnosis for all culture-confirmed TB cases. […]  The Follow-up 2 (FU-2) form collects outcome data on patient treatment and additional clinical and laboratory information. […] Since 1993, the RVCT, FU-1, and FU-2 have been used to collect demographic and clinical information, as well as laboratory results for all reported TB cases in the United States […] The RVCT collects information about known risk factors for TB disease; and in an effort to more effectively monitor TB caused by drug-resistant strains, CDC also gathers information regarding drug susceptibility testing for culture-confirmed cases on the FU-2.”

“Surveillance data may come from widely different systems with different specific purposes. It is essential that the purpose and context of any specific system be understood before attempting to analyze and interpret the surveillance data produced by that system. It is also essential to understand the methodology by which the surveillance system collects data. […] The most fundamental challenge for analysis and interpretation of surveillance data is the identification of a baseline. […] For infections characterized by seasonal outbreaks, the baseline range will vary by season in a generally predictable manner […] The comparison of observations to the baseline range allows characterization of the impact of intentional interventions or natural phenomenon and determination of the direction of change. […] Resource investment in surveillance often occurs in response to a newly recognized disease […] a suspected change in the frequency, virulence, geography, or risk population of a familiar disease […] or following a natural disaster […] In these situations, no baseline data are available against which to judge the significance of data collected under newly implemented surveillance.”

“Differences in data collection methods may result in apparent differences in disease occurrence between geographic regions or over time that are merely artifacts resulting from variations in surveillance methodology. Data should be analyzed using standard periods of observation […] It may be helpful to examine the same data by varied time frames. An outbreak of short duration may be recognizable through hourly, daily, or weekly grouping of data but obscured if data are examined only on an annual basis. Conversely, meaningful longer-term trends may be recognized more efficiently by examining data on an annual basis or at multiyear intervals. […] An early approach to analysis of infectious disease surveillance data was to convert observation of numbers into observations of rates. Describing surveillance observations as rates […] standardizes the data in a way that allows comparisons of the impact of disease across time and geography and among different populations”.

“Understanding the sensitivity and specificity of surveillance systems is important. […] Statistical methods based on tests of randomness have been applied to infectious disease surveillance data for the purpose of analysis of aberrations. Methods include adaptations of quality control charts from industry; Bayesian, cluster, regression, time series, and bootstrap analyses; and application of smoothing algorithms, simulation, and spatial statistics [1,14].[…] Time series forecasting and regression methods have been fitted to mortality data series to forecast future epidemics of seasonal diseases, most commonly influenza, and to estimate the excess associated mortality. […] While statistical analysis can be applied to surveillance data, the use of statistics for this purpose is often limited by the nature of surveillance data. Populations under surveillance are often not random samples of a general population, and may not be broadly representative, complicating efforts to use statistics to estimate morbidity and mortality impacts on populations. […] The more information an epidemiologist has about the purpose of the surveillance system, the people who perform the reporting, and the circumstances under which the data are collected and conveyed through the system, the more likely it is that the epidemiologist will interpret the data correctly. […] In the context of public health practice, a key value of surveillance data is not just in the observations from the surveillance system but also in the fact that these data often stimulate action to collect better data, usually through field investigations. Field investigations may improve understanding of risk factors that were suggested by the surveillance data itself. Often, field investigations triggered by surveillance observations lead to research studies such as case control comparisons that identify and better define the strength of risk factors.”

“The increasing frequency of disease outbreaks that have spread across national borders has led to the development of multicountry surveillance networks. […] Countries that participate in surveillance networks typically agree to share disease outbreak information and to collaborate in efforts to control disease spread. […] Multicountry disease surveillance networks now exist in many parts of the world, such as the Middle East, Southeast Asia, Southern Africa, Southeastern Europe, and East Africa. […] Development of accurate and reliable diagnoses of illnesses is a fundamental challenge in global surveillance. Clinical specimen collection, analysis, and laboratory confirmation of the etiology of disease outbreaks are important components of any disease surveillance system [37]. In many areas of the world, however, insufficient diagnostic capacity leads to no or faulty diagnoses, inappropriate treatments, and disease misreporting. For example, surveillance for malaria is challenged by a common reliance on clinical symptoms for diagnosis, which has been shown to be a poor predictor of actual infection [38,39]. […] A WHO report indicates that more than 60% of laboratory equipment in countries with limited resources is outdated or not functioning [46]. Even when there is sufficient laboratory capacity, laboratory-based diagnosis of disease can also be slow, delaying detection of outbreaks. For example, it can take more than a month to determine whether a patient is infected with drug-resistant strains of tuberculosis. […] The International Health Regulations (IHR) codify the measures that countries must take to limit the international spread of disease while ensuring minimum interference with trade and travel. […] From the perspective of an individual nation, there are few incentives to report an outbreak of a disease to the international community. Rather, the decision to report diseases may result in adverse consequences — significant drops in tourism and trade, closings of borders, and other measures that the IHR are supposed to prevent.”

“Concerns about biological terrorism have raised the profile of infectious disease surveillance in the United States and around the globe [14]. […] Improving global surveillance for biological terrorism and emerging infectious diseases is now a major focus of the U.S. Department of Defense’s (DoD) threat reduction programs [17]. DoD spends more on global health surveillance than any other U.S. governmental agency [18].”

“Zoonoses, or diseases that can transmit between humans and animals, have been responsible for nearly two-thirds of infectious disease outbreaks that have occurred since 1950 and more than $200 billion in worldwide economic losses in the last 10 years [52]. Despite the significant economic and health threats caused by these diseases, worldwide capacity for surveillance of zoonotic diseases is insufficient [52]. […] Over the last few decades, there have been significant changes in the way in which infectious disease surveillance is practiced. New regulations and goals for infectious disease surveillance have given rise to the development of new surveillance approaches and methods and have resulted in participation by nontraditional sectors, including the security community. Though most of these developments have positively shaped global surveillance, there remain key challenges that stand in the way of continued improvements. These include insufficient diagnostic capabilities and lack of trained staff, lack of integration between human and animal-health surveillance efforts, disincentives for countries to report disease outbreaks, and lack of information exchange between public health agencies and other sectors that are critical for surveillance.

“The biggest limitations to the development and sustainment of electronic disease surveillance systems, particularly in resource-limited countries, are the ease with which data are collected, accessed, and used by public health officials. Systems that require large amounts of resources, whether that is in the form of the workforce or information technology (IT) infrastructure, will not be successful in the long term. Successful systems run on existing hardware that can be maintained by modestly trained IT professionals and are easy to use by end users in public health [20].”

October 20, 2017 Posted by | Books, Epidemiology, Infectious disease, Medicine, Statistics | Leave a comment

A few diabetes papers of interest

i. Impact of Parental Socioeconomic Status on Excess Mortality in a Population-Based Cohort of Subjects With Childhood-Onset Type 1 Diabetes.

“Numerous reports have shown that individuals with lower SES during childhood have increased morbidity and all-cause mortality at all ages (10–14). Although recent epidemiological studies have shown that all-cause mortality in patients with T1D increases with lower SES in the individuals themselves (15,16), the association between parental SES and mortality among patients with childhood-onset T1D has not been reported to the best of our knowledge. Our hypothesis was that low parental SES additionally increases mortality in subjects with childhood-onset T1D. In this study, we used large population-based Swedish databases to 1) explore in a population-based study how parental SES affects mortality in a patient with childhood-onset T1D, 2) describe and compare how the effect differs among various age-at-death strata, and 3) assess whether the adult patient’s own SES affects mortality independently of parental SES.”

“The Swedish Childhood Diabetes Registry (SCDR) is a dynamic population-based cohort reporting incident cases of T1D since 1 July 1977, which to date has collected >16,000 prospective cases. […] All patients recorded in the SCDR from 1 January 1978 to 31 December 2008 were followed until death or 31 December 2010. The cohort was subjected to crude analyses and stratified analyses by age-at-death groups (0–17, 18–24, and ≥25 years). Time at risk was calculated from date of birth until death or 31 December 2010. Kaplan-Meier analyses and log-rank tests were performed to compare the effect of low maternal educational level, low paternal educational level, and family income support (any/none). Cox regression analyses were performed to estimate and compare the hazard ratios (HRs) for the socioeconomic variables and to adjust for the potential confounding variables age at onset and sex.”

“The study included 14,647 patients with childhood-onset T1D. A total of 238 deaths (male 154, female 84) occurred in 349,762 person-years at risk. The majority of mortalities occurred among the oldest age-group (≥25 years of age), and most of the deceased subjects had onset of T1D at the ages of 10–14.99 years […]. Mean follow-up was 23.9 years and maximum 46.5 years. The overall standardized mortality ratio up to the age of 47 years was 2.3 (95% CI 1.35–3.63); for females, it was 2.6 (1.28–4.66) and for males, 2.1 (1.27–3.49). […] Analyses on the effect of low maternal educational level showed an increased mortality for male patients (HR 1.43 [95% CI 1.01–2.04], P = 0.048) and a nonsignificant increased mortality for female patients (1.21 [0.722–2.018], P = 0.472). Paternal educational level had no significant effect on mortality […] Having parents who ever received income support was associated with an increased risk of death in both males (HR 1.89 [95% CI 1.36–2.64], P < 0.001) and females (2.30 [1.43–3.67], P = 0.001) […] Excluding the 10% of patients with the highest accumulated income support to parents during follow-up showed that having parents who ever received income support still was a risk factor for mortality.”

“A Cox model including maternal educational level together with parental income support, adjusting for age at onset and sex, showed that having parents who received income support was associated with a doubled mortality risk (HR 1.96 [95% CI 1.49–2.58], P < 0.001) […] In a Cox model including the adult patient’s own SES, having parents who received income support was still an independent risk factor in the younger age-at-death group (18–24 years). Among those who died at age ≥25 years of age, the patient’s own SES was a stronger predictor for mortality (HR 2.46 [95% CI 1.54–3.93], P < 0.001)”

“Despite a well-developed health-care system in Sweden, overall mortality up to the age of 47 years is doubled in both males and females with childhood-onset T1D. These results are in accordance with previous Swedish studies and reports from other comparable countries […] Previous studies indicated that low SES during childhood is associated with low glycemic control and diabetes-related morbidity in patients with T1D (8,9), and the current study implies that mortality in adulthood is also affected by parental SES. […] The findings, when stratified by age-at-death group, show that adult patients’ own need of income support independently predicted mortality in those who died at ≥25 years of age, whereas among those who died in the younger age-group (18–24 years), parental requirement of income support was still a strong independent risk factor. None of the present SES measures seem to predict mortality in the ages 0–17 years perhaps due to low numbers and, thus, power.”

ii. Exercise Training Improves but Does Not Normalize Left Ventricular Systolic and Diastolic Function in Adolescents With Type 1 Diabetes.

“Adults and adolescents with type 1 diabetes have reduced exercise capacity (810), which increases their risk for cardiovascular morbidity and mortality (11). The causes for this reduced exercise capacity are unclear. However, recent studies have shown that adolescents with type 1 diabetes have lower stroke volume during exercise, which has been attributed to alterations in left ventricular function (9,10). Reduced left ventricular compliance resulting in an inability to fill the left ventricle appropriately during exercise has been shown to contribute to the lower stroke volume during exercise in both adults and adolescents with type 1 diabetes (12).

Exercise training is recommended as part of the management of type 1 diabetes. However, the effects of exercise training on left ventricular function at rest and during exercise in adolescents with type 1 diabetes have not been investigated. In particular, it is unclear whether exercise training improves cardiac hemodynamics during exercise in adolescents with diabetes. Therefore, we aimed to assess left ventricular volumes at rest and during exercise in a group of adolescents with type 1 diabetes compared with adolescents without diabetes before and after a 20-week exercise-training program. We hypothesized that exercise training would improve exercise capacity and exercise stroke volume in adolescents with diabetes.”

RESEARCH DESIGN AND METHODS Fifty-three adolescents with type 1 diabetes (aged 15.6 years) were divided into two groups: exercise training (n = 38) and nontraining (n = 15). Twenty-two healthy adolescents without diabetes (aged 16.7 years) were included and, with the 38 participants with type 1 diabetes, participated in a 20-week exercise-training intervention. Assessments included VO2max and body composition. Left ventricular parameters were obtained at rest and during acute exercise using MRI.

RESULTS Exercise training improved aerobic capacity (10%) and stroke volume (6%) in both trained groups, but the increase in the group with type 1 diabetes remained lower than trained control subjects. […]

CONCLUSIONS These data demonstrate that in adolescents, the impairment in left ventricular function seen with type 1 diabetes can be improved, although not normalized, with regular intense physical activity. Importantly, diastolic dysfunction, a common mechanism causing heart failure in older subjects with diabetes, appears to be partially reversible in this age group.”

“This study confirms that aerobic capacity is reduced in [diabetic] adolescents and that this, at least in part, can be attributed to impaired left ventricular function and a blunted cardiac response to exercise (9). Importantly, although an aerobic exercise-training program improved the aerobic capacity and cardiac function in adolescents with type 1 diabetes, it did not normalize them to the levels seen in the training group without diabetes. Both left ventricular filling and contractility improved after exercise training in adolescents with diabetes, suggesting that aerobic fitness may prevent or delay the well-described impairment in left ventricular function in diabetes (9,10).

The increase in peak aerobic capacity (∼12%) seen in this study was consistent with previous exercise interventions in adults and adolescents with diabetes (14). However, the baseline peak aerobic capacity was lower in the participants with diabetes and improved with training to a level similar to the baseline observed in the participants without diabetes; therefore, trained adolescents with diabetes remained less fit than equally trained adolescents without diabetes. This suggests there are persistent differences in the cardiovascular function in adolescents with diabetes that are not overcome by exercise training.”

“Although regular exercise potentially could improve HbA1c, the majority of studies have failed to show this (3134). Exercise training improved aerobic capacity in this study without affecting glucose control in the participants with diabetes, suggesting that the effects of glycemic status and exercise training may work independently to improve aerobic capacity.”

….

iii. Change in Medical Spending Attributable to Diabetes: National Data From 1987 to 2011.

“Diabetes care has changed substantially in the past 2 decades. We examined the change in medical spending and use related to diabetes between 1987 and 2011. […] Using the 1987 National Medical Expenditure Survey and the Medical Expenditure Panel Surveys in 2000–2001 and 2010–2011, we compared per person medical expenditures and uses among adults ≥18 years of age with or without diabetes at the three time points. Types of medical services included inpatient care, emergency room (ER) visits, outpatient visits, prescription drugs, and others. We also examined the changes in unit cost, defined by the expenditure per encounter for medical services.”

RESULTS The excess medical spending attributed to diabetes was $2,588 (95% CI, $2,265 to $3,104), $4,205 ($3,746 to $4,920), and $5,378 ($5,129 to $5,688) per person, respectively, in 1987, 2000–2001, and 2010–2011. Of the $2,790 increase, prescription medication accounted for 55%; inpatient visits accounted for 24%; outpatient visits accounted for 15%; and ER visits and other medical spending accounted for 6%. The growth in prescription medication spending was due to the increase in both the volume of use and unit cost, whereas the increase in outpatient expenditure was almost entirely driven by more visits. In contrast, the increase in inpatient and ER expenditures was caused by the rise of unit costs. […] The increase was observed across all components of medical spending, with the greatest absolute increase in the spending on prescription medications ($1,528 increase), followed by inpatient visits ($680 increase) and outpatient visits ($430 increase). The absolute change in the spending on ER and other medical services use was relatively small. In relative terms, the spending on ER visits grew more than five times, faster than that of prescription medication and other medical components. […] Among the total annual diabetes-attributable medical spending, the spending on inpatient and outpatient visits dropped from 40% and 23% to 31% and 19%, respectively, between 1987 and 2011, whereas spending on prescription medication increased from 27% to 41%.”

“The unit costs rose universally in all five measures of medical care in adults with and without diabetes. For each hospital admission, diabetes patients spent significantly more than persons without diabetes. The gap increased from $1,028 to $1,605 per hospital admission between 1987 and 2001, and dropped slightly to $1,360 per hospital admission in 2011. Diabetes patients also had higher spending per ER visit and per purchase of prescription medications.”

“From 1999 to 2011, national data suggest that growth in the use and price of prescription medications in the general population is 2.6% and 3.6% per year, respectively; and the growth has decelerated in recent years (22). Our analysis suggests that the growth rates in the use and prices of prescription medications for diabetes patients are considerably higher. The higher rate of growth is likely, in part, due to the growing emphasis on achieving glycemic targets, the use of newer medications, and the use of multidrug treatment strategies in modern diabetes care practice (23,24). In addition, the growth of medication spending is fueled by the rising prices per drug, particularly the drugs that are newly introduced in the market. For example, the prices for newer drug classes such as glitazones, dipeptidyl peptidase-4 inhibitors, and incretins have been 8 to 10 times those of sulfonylureas and 5 to 7 times those of metformin (9).”

“Between 1987 and 2011, medical spending increased both in persons with and in persons without diabetes; and the increase was substantially greater among persons with diabetes. As a result, the medical spending associated with diabetes nearly doubled. The growth was primarily driven by the spending in prescription medications. Further studies are needed to assess the cost-effectiveness of increased spending on drugs.”

iv. Determinants of Adherence to Diabetes Medications: Findings From a Large Pharmacy Claims Database.

“Adults with type 2 diabetes are often prescribed multiple medications to treat hyperglycemia, diabetes-associated conditions such as hypertension and dyslipidemia, and other comorbidities. Medication adherence is an important determinant of outcomes in patients with chronic diseases. For those with diabetes, adherence to medications is associated with better control of intermediate risk factors (14), lower odds of hospitalization (3,57), lower health care costs (5,79), and lower mortality (3,7). Estimates of rates of adherence to diabetes medications vary widely depending on the population studied and how adherence is defined. One review found that adherence to oral antidiabetic agents ranged from 36 to 93% across studies and that adherence to insulin was ∼63% (10).”

“Using a large pharmacy claims database, we assessed determinants of adherence to oral antidiabetic medications in >200,000 U.S. adults with type 2 diabetes. […] We selected a cohort of members treated for diabetes with noninsulin medications (oral agents or GLP-1 agonists) in the second half of 2010 who had continuous prescription benefits eligibility through 2011. Each patient was followed for 12 months from their index diabetes claim date identified during the 6-month targeting period. From each patient’s prescription history, we collected the date the prescription was filled, how many days the supply would last, the National Drug Code number, and the drug name. […] Given the difficulty in assessing insulin adherence with measures such as medication possession ratio (MPR), we excluded patients using insulin when defining the cohort.”

“We looked at a wide range of variables […] Predictor variables were defined a priori and grouped into three categories: 1) patient factors including age, sex, education, income, region, past exposure to therapy (new to diabetes therapy vs. continuing therapy), and concurrent chronic conditions; 2) prescription factors including refill channel (retail vs. mail order), total pill burden per day, and out of pocket costs; and 3) prescriber factors including age, sex, and specialty. […] Our primary outcome of interest was adherence to noninsulin antidiabetic medications. To assess adherence, we calculated an MPR for each patient. The ratio captures how often patients refill their medications and is a standard metric that is consistent with the National Quality Forum’s measure of adherence to medications for chronic conditions. MPR was defined as the proportion of days a patient had a supply of medication during a calendar year or equivalent period. We considered patients to be adherent if their MPR was 0.8 or higher, implying that they had their medication supplies for at least 80% of the days. An MPR of 0.8 or above is a well-recognized index of adherence (11,12). Studies have suggested that patients with chronic diseases need to achieve at least 80% adherence to derive the full benefits of their medications (13). […] [W]e [also] determined whether a patient was persistent, that is whether they had not discontinued or had at least a 45-day gap in their targeted therapy.”

“Previous exposure to diabetes therapy had a significant impact on adherence. Patients new to therapy were 61% less likely to be adherent to their diabetes medication. There was also a clear age effect. Patients 25–44 years of age were 49% less likely to be adherent when compared with patients 45–64 years of age. Patients aged 65–74 years were 27% more likely to be adherent, and those aged 75 years and above were 41% more likely to be adherent when compared with the 45–64 year age-group. Men were significantly more likely to be adherent than women […I dislike the use of the word ‘significant’ in such contexts; there is a difference in the level of adherence, but it is not large in absolute terms; the male vs female OR is 1.14 (CI 1.12-1.16) – US]. Education level and household income were both associated with adherence. The higher the estimated academic achievement, the more likely the patient was to be adherent. Patients completing graduate school were 41% more likely to be adherent when compared with patients with a high school equivalent education. Patients with an annual income >$60,000 were also more likely to be adherent when compared with patients with a household income <$30,000.”

“The largest effect size was observed for patients obtaining their prescription antidiabetic medications by mail. Patients using the mail channel were more than twice as likely to be adherent to their antidiabetic medications when compared with patients filling their prescriptions at retail pharmacies. Total daily pill burden was positively associated with antidiabetic medication adherence. For each additional pill a patient took per day, adherence to antidiabetic medications increased by 22%. Patient out-of-pocket costs were negatively associated with adherence. For each additional $15 in out-of-pocket costs per month, diabetes medication adherence decreased by 11%. […] We found few meaningful differences in patient adherence according to prescriber factors.”

“In our study, characteristics that suggest a “healthier” patient (being younger, new to diabetes therapy, and taking few other medications) were all associated with lower odds of adherence to antidiabetic medications. This suggests that acceptance of a chronic illness diagnosis and the potential consequences may be an important, but perhaps overlooked, determinant of medication-taking behavior. […] Our findings regarding income and costs are important reminders that prescribers should consider the impact of medication costs on patients with diabetes. Out-of-pocket costs are an important determinant of adherence to statins (26) and a self-reported cause of underuse of medications in one in seven insured patients with diabetes (27). Lower income has previously been shown to be associated with poor adherence to diabetes medications (15) and a self-reported cause of cost-related medication underuse (27).”

v. The Effect of Alcohol Consumption on Insulin Sensitivity and Glycemic Status: A Systematic Review and Meta-analysis of Intervention Studies.

“Moderate alcohol consumption, compared with abstaining and heavy drinking, is related to a reduced risk of type 2 diabetes (1,2). Although the risk is reduced with moderate alcohol consumption in both men and women, the association may differ for men and women. In a meta-analysis, consumption of 24 g alcohol/day reduced the risk of type 2 diabetes by 40% among women, whereas consumption of 22 g alcohol/day reduced the risk by 13% among men (1).

The association of alcohol consumption with type 2 diabetes may be explained by increased insulin sensitivity, anti-inflammatory effects, or effects of adiponectin (3). Several intervention studies have examined the effect of moderate alcohol consumption on these potential underlying pathways. A meta-analysis of intervention studies by Brien et al. (4) showed that alcohol consumption significantly increased adiponectin levels but did not affect inflammatory factors. Unfortunately, the effect of alcohol consumption on insulin sensitivity has not been summarized quantitatively. A review of cross-sectional studies by Hulthe and Fagerberg (5) suggested a positive association between moderate alcohol consumption and insulin sensitivity, although the three intervention studies included in their review did not show an effect (68). Several other intervention studies also reported inconsistent results (9,10). Consequently, consensus is lacking about the effect of moderate alcohol consumption on insulin sensitivity. Therefore, we aimed to conduct a systematic review and meta-analysis of intervention studies investigating the effect of alcohol consumption on insulin sensitivity and other relevant glycemic measures.”

“22 articles met criteria for inclusion in the qualitative synthesis. […] Of the 22 studies, 15 used a crossover design and 7 a parallel design. The intervention duration of the studies ranged from 2 to 12 weeks […] Of the 22 studies, 2 were excluded from the meta-analysis because they did not include an alcohol-free control group (14,19), and 4 were excluded because they did not have a randomized design […] Overall, 14 studies were included in the meta-analysis”

“A random-effects model was used because heterogeneity was present (P < 0.01, I2 = 91%). […] For HbA1c, a random-effects model was used because the I2 statistic indicated evidence for some heterogeneity (I2 = 30%).” [Cough, you’re not supposed to make these decisions that way, coughUS. This is not the first time I’ve seen this approach applied, and I don’t like it; it’s bad practice to allow the results of (frequently under-powered) heterogeneity tests to influence model selection decisions. As Bohrenstein and Hedges point out in their book, “A report should state the computational model used in the analysis and explain why this model was selected. A common mistake is to use the fixed-effect model on the basis that there is no evidence of heterogeneity. As [already] explained […], the decision to use one model or the other should depend on the nature of the studies, and not on the significance of this test”]

“This meta-analysis shows that moderate alcohol consumption did not affect estimates of insulin sensitivity or fasting glucose levels, but it decreased fasting insulin concentrations and HbA1c. Sex-stratified analysis suggested that moderate alcohol consumption may improve insulin sensitivity and decrease fasting insulin concentrations in women but not in men. The meta-regression suggested no influence of dosage and duration on the results. However, the number of studies may have been too low to detect influences by dosage and duration. […] The primary finding that alcohol consumption does not influence insulin sensitivity concords with the intervention studies included in the review of Hulthe and Fagerberg (5). This is in contrast with observational studies suggesting a significant association between moderate alcohol consumption and improved insulin sensitivity (34,35). […] We observed lower levels of HbA1c in subjects consuming moderate amounts of alcohol compared with abstainers. This has also been shown in several observational studies (39,43,44). Alcohol may decrease HbA1c by suppressing the acute rise in blood glucose after a meal and increasing the early insulin response (45). This would result in lower glucose concentrations over time and, thus, lower HbA1c concentrations. Unfortunately, the underlying mechanism of glycemic control by alcohol is not clearly understood.”

vi. Predictors of Lower-Extremity Amputation in Patients With an Infected Diabetic Foot Ulcer.

“Infection is a frequent complication of diabetic foot ulcers, with up to 58% of ulcers being infected at initial presentation at a diabetic foot clinic, increasing to 82% in patients hospitalized for a diabetic foot ulcer (1). These diabetic foot infections (DFIs) are associated with poor clinical outcomes for the patient and high costs for both the patient and the health care system (2). Patients with a DFI have a 50-fold increased risk of hospitalization and 150-fold increased risk of lower-extremity amputation compared with patients with diabetes and no foot infection (3). Among patients with a DFI, ∼5% will undergo a major amputation and 20–30% a minor amputation, with the presence of peripheral arterial disease (PAD) greatly increasing amputation risk (46).”

“As infection of a diabetic foot wound heralds a poor outcome, early diagnosis and treatment are important. Unfortunately, systemic signs of inflammation such as fever and leukocytosis are often absent even with a serious foot infection (10,11). As local signs and symptoms of infection are also often diminished, because of concomitant peripheral neuropathy and ischemia (12), diagnosing and defining resolution of infection can be difficult.”

“The system developed by the International Working Group on the Diabetic Foot (IWGDF) and the Infectious Diseases Society of America (IDSA) provides criteria for the diagnosis of infection of ulcers and classifies it into three categories: mild, moderate, or severe. The system was validated in three relatively small cohorts of patients […] The European Study Group on Diabetes and the Lower Extremity (Eurodiale) prospectively studied a large cohort of patients with a diabetic foot ulcer (17), enabling us to determine the prognostic value of the IWGDF system for clinically relevant lower-extremity amputations. […] We prospectively studied 575 patients with an infected diabetic foot ulcer presenting to 1 of 14 diabetic foot clinics in 10 European countries. […] Among these patients, 159 (28%) underwent an amputation. […] Patients were followed monthly until healing of the foot ulcer(s), major amputation, or death — up to a maximum of 1 year.”

“One hundred and ninety-nine patients had a grade 2 (mild) infection, 338 a grade 3 (moderate), and 38 a grade 4 (severe). Amputations were performed on 159 (28%) patients (126 minor and 33 major) within the year of follow-up; 103 patients (18%) underwent amputations proximal to and including the hallux. […] The independent predictors of any amputation were as follows: periwound edema, HR 2.01 (95% CI 1.33–3.03); foul smell, HR 1.74 (1.17–2.57); purulent and nonpurulent exudate, HR 1.67 (1.17–2.37) and 1.49 (1.02–2.18), respectively; deep ulcer, HR 3.49 (1.84–6.60); positive probe-to-bone test, HR 6.78 (3.79–12.15); pretibial edema, HR 1.53 (1.02–2.31); fever, HR 2.00 (1.15–3.48); elevated CRP levels but less than three times the upper limit of normal, HR 2.74 (1.40–5.34); and elevated CRP levels more than three times the upper limit, HR 3.84 (2.07–7.12). […] In comparison with mild infection, the presence of a moderate infection increased the hazard for any amputation by a factor of 2.15 (95% CI 1.25–3.71) and 3.01 (1.51–6.01) for amputations excluding the lesser toes. For severe infection, the hazard for any amputation increased by a factor of 4.12 (1.99–8.51) and for amputations excluding the lesser toes by a factor of 5.40 (2.20–13.26). Larger ulcer size and presence of PAD were also independent predictors of both any amputation and amputations excluding the lesser toes, with HRs between 1.81 and 3 (and 95% CIs between 1.05 and 6.6).”

“Previously published studies that have aimed to identify independent risk factors for lower-extremity amputation in patients with a DFI have noted an association with older age (5,22), the presence of fever (5), elevated acute-phase reactants (5,22,23), higher HbA1c levels (24), and renal insufficiency (5,22).”

“The new risk scores we developed for any amputation, and amputations excluding the lesser toes had higher prognostic capability, based on the area under the ROC curve (0.80 and 0.78, respectively), than the IWGDF system (0.67) […] which is currently the only one in use for infected diabetic foot ulcers. […] these Eurodiale scores were developed based on the available data of our cohort, and they will need to be validated in other populations before any firm conclusions can be drawn. The advantage of these newly developed scores is that they are easier for clinicians to perform […] These newly developed risk scores can be readily used in daily clinical practice without the necessity of obtaining additional laboratory testing.”

September 12, 2017 Posted by | Cardiology, Diabetes, Economics, Epidemiology, Health Economics, Infectious disease, Medicine, Microbiology, Statistics | Leave a comment

A few diabetes papers of interest

i. Eating Disorders in Girls and Women With Type 1 Diabetes: A Longitudinal Study of Prevalence, Onset, Remission, and Recurrence.

If these results can be trusted, then the prevalence of eating disorders in young female diabetics is disturbingly high. Some quotes:

“The prevalence, clinical characteristics, and medical consequences of disturbed eating behavior (DEB) and eating disorders (EDs) in individuals with type 1 diabetes has received increasing attention since case reports of this dangerous combination were first published in the 1980s (1,2). Although the specificity of this association was initially unclear, systematic research has demonstrated that teenage girls and women with type 1 diabetes are at significantly increased risk of DEB compared with their nondiabetic peers (3). Such DEB includes dieting, fasting, binge-eating, and a range of compensatory and purging behaviors that can directly interfere with optimal diabetes management. […] Deliberately underdosing or omitting insulin to induce hyperglycemia and loss of glucose in the urine, and thereby control weight, is a unique purging behavior to control weight that is available to individuals with type 1 diabetes (4). This is an important mediator of the association of DEB and EDs with poorer metabolic control (5,6) and contributes to an increased risk of a range of short-term and long-term diabetes-related medical complications. These include abnormal lipid profiles (7), diabetic ketoacidosis (6), retinopathy (8), neuropathy (9), and nephropathy (10), as well as higher than expected mortality (11).”

“Bryden et al. (13) assessed a group of individuals with type 1 diabetes in adolescence and then again in early adulthood. […] They found EDs or other significant eating problems in 26% of participants, as well as significant associations between eating problems, insulin misuse, and microvascular complications (14). Goebel-Fabbri et al. (15) assessed 234 adult women with type 1 diabetes twice over an 11-year period. They found insulin omission for weight control to be very common (reported by 30% at baseline). Insulin omission frequently persisted over the lengthy follow-up period and was associated with higher rates of diabetes-related medical complications and tripled risk of mortality.”

“This study describes the longitudinal course of disturbed eating behavior (DEB) and EDs in a cohort with type 1 diabetes. […] A total of 126 girls with type 1 diabetes receiving care for diabetes at The Hospital for Sick Children in Toronto participated in a series of seven interview-based assessments of ED behavior and psychopathology over a 14-year period, beginning in late childhood. […] Mean age was 11.8 ± 1.5 years at time 1 and 23.7 ± 2.1 years at time 7. At time 7, 32.4% (23/71) met the criteria for a current ED, and an additional 8.5% (6/71) had a subthreshold ED. Mean age at ED onset (full syndrome or below the threshold) was 22.6 years (95% CI 21.6–23.5), and the cumulative probability of onset was 60% by age 25 years. […] The average time between remission of ED and subsequent recurrence was 6.5 years (95% CI 4.4–8.6), and the cumulative probability of recurrence was 53% by 6 years after remission.”

“In this longitudinal study, EDs were common and persistent, and new onset of ED was documented well into adulthood. […] [The] rates provide evidence that disordered eating is a common and serious concern among girls and young women with type 1 diabetes. Although adolescent and adult women in the general population also frequently report dieting, rates of more extreme weight loss behaviors and clinical eating disorders tend to be lower than those that occurred in this study (22,2830). […] The point prevalence for DEB and ED continued to increase across the study, largely because of marked increases in reported insulin omission for weight loss. Of particular concern, insulin omission as a weight control method was reported by 27% of participants at time 7. This dangerous method of purging directly compromises metabolic control and confers both short-term and long-term medical risk. Other researchers found it to be highly persistent among adult women with type 1 diabetes and associated with increased morbidity and mortality (10,15). […] In this study, both DEB and EDs tended to be persistent, with a mean time from observed onset to detected remission of 6.0 and 4.3 years, respectively, and significant estimated risk of recurrence among those whose eating disturbances initially remitted. […] The high prevalence of DEB and EDs among women with type 1 diabetes, in addition to high incidence of new ED cases continuing into the young adult years, suggests that sustained efforts at prevention, detection, and treatment of eating disturbances are needed across the adolescent and young adult years among women with type 1 diabetes.”

ii. Excess Risk of Dying From Infectious Causes in Those With Type 1 and Type 2 Diabetes.

“Individuals with type 1 and type 2 diabetes are widely considered to be more prone to infections than those without diabetes (1). […] The underlying pathology for an increased risk of infections among people with diabetes is not fully elucidated and is probably multifactorial. However, there are some data to suggest that it could, in part, relate to a compromised immune system. Short- and long-term hyperglycemia may disturb immune functions such as neutrophil bactericidal function (13), cellular immunity (14), and complement activation (15). These defects in the immune system, along with vascular insufficiency, render patients with diabetes at higher risk for a variety of severe or invasive infections compared with those without diabetes (16).”

“While there is a reasonably good understanding of the biological link between diabetes and infection, there are few data quantifying the excess risk of acquiring an infection or dying from infections associated with diabetes. […] the objective of this study was to examine the excess risk of death from several infectious causes in those with type 1 and type 2 diabetes compared with the general population and to see if this excess risk differs by age and over time. […] A total of 1,108,982 individuals with diabetes who were registered with the Australian Diabetes register between 2000 and 2010 were linked to the National Death Index. Mortality outcomes were defined as infection-relatedA-B death (ICD codes A99–B99), pneumonia (J12–J189), septicemia (A40 and A41), and osteomyelitis (M86). […] During a median follow-up of 6.7 years, there were 2,891, 2,158, 1,248, and 147 deaths from infection-relatedA-B causes, pneumonia, septicemia, or osteomyelitis, respectively. Crude mortality rates from infectionsA-B were 0.147 and 0.431 per 1,000 person-years in type 1 and type 2 diabetes, respectively. Standardized mortality ratios (SMRs) were higher in type 1 and type 2 diabetes for all outcomes after adjustment for age and sex. For infection-relatedA-B mortality, SMRs were 4.42 (95% CI 3.68–5.34) and 1.47 (1.42–1.53) for type 1 and type 2 diabetes (P < 0.001), respectively. For pneumonia in type 1 diabetes, SMRs were approximately 5 and 6 in males and females, respectively, while the excess risk was ∼20% for type 2 (both sexes). For septicemia, SMRs were approximately 10 and 2 for type 1 and type 2 diabetes, respectively, and similar by sex. For osteomyelitis in type 1 diabetes, SMRs were 16 and 58 in males and females, respectively, and ∼3 for type 2 diabetes (both sexes).”

“This prospective study of more than one million people with diabetes provides evidence that individuals with type 1 and type 2 diabetes are more likely to die of infection-related death, in particular death due to pneumonia, septicemia, and osteomyelitis, compared with the general population. These data show that infection in those with diabetes is an important cause of mortality. […] the increased risk appears to be greater for type 1 than type 2 diabetes. […] Patients with diabetes have a higher case fatality from infections than those without diabetes (17,30), which is both due to altered host immunity and due to having a higher prevalence of comorbidities, which places them at increased risk of death.”

iii. Effects of Acute Hypoglycemia on Working Memory and Language Processing in Adults With and Without Type 1 Diabetes.

“Cognitive function is impaired during acute hypoglycemia and frequently affects people with type 1 diabetes (1,2); elucidation of which cognitive domains are affected and by how much is of practical importance. Although cognitive domains do not function independently of each other, it is pertinent to design studies that investigate how everyday activities are affected by hypoglycemia as this has direct relevance to people with diabetes. Previous studies have demonstrated the effects of hypoglycemia on specific cognitive domains, including memory, attention, nonverbal intelligence, visual and auditory information processing, psychomotor function, spatial awareness, and executive functioning (314). However, the effects of hypoglycemia on language processing have seldom been explored.”

“Slurred speech and language difficulties are recognized features of hypoglycemia, but to our knowledge, the effects of hypoglycemia on linguistic processing have not been studied systematically. The current study used transient insulin-induced hypoglycemia in adults with and without type 1 diabetes to examine its effects on three aspects of language: the relationship between working memory and language (reading span), grammatical decoding (self-paced reading), and grammatical encoding (producing subject-verb agreement). Tests of these issues have been used extensively to understand the nature of language processing and its relationship to other cognitive abilities, specifically working memory (17).”

“Forty adults were studied (20 with type 1 diabetes and 20 healthy volunteers) using a hyperinsulinemic glucose clamp to lower blood glucose to 2.5 mmol/L (45 mg/dL) (hypoglycemia) for 60 min, or to maintain blood glucose at 4.5 mmol/L (81 mg/dL) (euglycemia), on separate occasions. Language tests were applied to assess the effects of hypoglycemia on the relationship between working memory and language (reading span), grammatical decoding (self-paced reading), and grammatical encoding (subject-verb agreement). […] Hypoglycemia caused a significant deterioration in reading span (P < 0.001; η2 = 0.37; Cohen d = 0.65) and a fall in correct responses (P = 0.005; η2 = 0.19; Cohen d = 0.41). On the self-paced reading test, the reading time for the first sentence fragment increased during hypoglycemia (P = 0.039; η2 = 0.11; Cohen d = 0.25). […] Hypoglycemia caused a deterioration of subject-verb agreement (correct responses: P = 0.011; η2 = 0.159; Cohen d = 0.31).”

“[We] demonstrated a significant deterioration in the accuracy of subject-verb agreement and also in reading span, a measure of working memory. This latter finding is compatible with the results of a previous study by our group (14) that used a different cognitive test battery but had an identical study design. In the current study, performance in the TMB and DST was significantly impaired during hypoglycemia, consistent with previous observations (57,1012,24) and confirming that adequate hypoglycemia had been achieved to impair cognitive function. […] Different mental functions have been shown to vary in their sensitivity to neuroglycopenia. […] higher-level skills are more vulnerable to hypoglycemia than simple cognitive tasks (1). In addition, during hypoglycemia, speed is usually killed in order to preserve accuracy (1). […] results strongly suggest that hypoglycemia induces difficulties in seemingly easy linguistic tasks such as correctly reading aloud a simple sentence fragment and its completion. Compared with other clamp studies exploring the effects of hypoglycemia on cognitive function, this was a large study that recruited both participants with and participants without diabetes. The fact that similar results were obtained in both groups suggests that these effects on language relate to acute hypoglycemia rather than to a chronic alternation of glycemic status in diabetes.” [My bold – US. These observations seem to corroborate observations I’ve made myself in the past.]

iv. Current State of Type 1 Diabetes Treatment in the U.S.: Updated Data From the T1D Exchange Clinic Registry.

Figure 1 from this paper is the sort of image which is worth a 1000 words.

Some observations from the paper:

“Data from 16,061 participants updated between 1 September 2013 and 1 December 2014 were compared with registry enrollment data collected from 1 September 2010 to 1 August 2012. […] The overall average HbA1c was 8.2% (66 mmol/mol) at enrollment and 8.4% (68 mmol/mol) at the most recent update. During childhood, mean HbA1c decreased from 8.3% (67 mmol/mol) in 2–4-year-olds to 8.1% (65 mmol/mol) at 7 years of age, followed by an increase to 9.2% (77 mmol/mol) in 19-year-olds. Subsequently, mean HbA1c values decline gradually until ∼30 years of age, plateauing at 7.5–7.8% (58–62 mmol/mol) beyond age 30 until a modest drop in HbA1c below 7.5% (58 mmol/mol) in those 65 years of age. Severe hypoglycemia (SH) and diabetic ketoacidosis (DKA) remain all too common complications of treatment, especially in older (SH) and younger patients (DKA). […] Although the T1D Exchange registry findings are not population based and could be biased, it is clear that there remains considerable room for improving outcomes of treatment of type 1 diabetes across all age-groups.”

“[M]ean HbA1c values showed a gradual decline until ∼30 years of age, plateauing at a level of 7.5–7.8% (58–62 mmol/mol) beyond age 30 until a modest drop in HbA1c below 7.5% (58 mmol/mol) after 65 years of age. The ADA HbA1c goal of <7.5% (58 mmol/mol) was achieved by only a small percentage of children and adolescents <18 years of age (17–23%), and even fewer 18–25-year-olds (14%) met the ADA goal for adults of <7.0% (53 mmol/mol); this percentage increased to ∼30% in older adults […] across all age-groups, HbA1c was highest among non-Hispanic black participants, participants with lower annual household income, and those who performed SMBG less than four times per day […] On average, participants using an insulin pump or continuous glucose monitor tended to have lower HbA1c values [….] Among the subset of 2,561 participants who completed the participant questionnaire, 6% reported having had a seizure or loss of consciousness due to hypoglycemia in the prior 3 months, with the highest occurrence being among those who were 50 years old or older.”

“The most troubling aspect of the data is that the mean HbA1c level of 9.0% (75 mmol/mol) in 13–17-year-olds in the registry is only slightly lower than the 9.5% (80 mmol/mol) seen in 13–17-year-olds at the start of the DCCT in the 1980s (15). Clearly, advances in diabetes management over the past two decades have been less successful in overcoming the special challenges in managing teenagers than adults with type 1 diabetes. Our data also indicate that the majority of “emerging adults” in their 20s do not fully emerge with regard to glycemic control until they reach 30 years of age. […] In a cross-sectional comparison, the average HbA1c at the most recent update was higher than at enrollment (8.4 vs. 8.2% [68 vs. 66 mmol/mol]), suggesting a worsening in glycemic control over time. The greatest increase in HbA1c was observed in the 13–17 (9.0 vs. 8.7% [75 vs. 72 mmol/mol]) and 18–26-year-old (8.7 vs. 8.3% [72 vs. 67 mmol/mol]) groups. Although this could reflect differences in age and type 1 diabetes duration, the results nevertheless indicate that there certainly is no indication of improving glycemic control in these age-groups.”

v. Prevention and Reversal of Type 1 Diabetes — Past Challenges and Future Opportunities.

“Over the past three decades there have been a number of clinical trials directed at interdicting the type 1 diabetes (T1D) disease process in an attempt to prevent the development of the disease in those at increased risk or to stabilize — potentially even reverse — the disease in people with T1D, usually of recent onset. Unfortunately, to date there has been no prevention trial that has resulted in delay or prevention of T1D. […] Since the completion of the early trials, particularly during the past decade, a number of additional randomized, double-masked, adequately powered, controlled clinical trials have been conducted using many different immunological strategies. For the most part, these have been disappointing, with none showing unambiguous benefit in preserving β-cell function. […] [M]ost immune intervention trials in T1D have either failed to achieve success in preserving β-cell function or have met that hurdle but have nonetheless shown only a transient effect.”

vi. Diabetic Peripheral Neuropathy Compromises Balance During Daily Activities.

“Patients with diabetic peripheral neuropathy (DPN) have an altered gait strategy (13) and a fivefold increased risk of falling (46). Falling is a major health risk in many developed countries; for example, in the general U.K. population, over a quarter of accidents that required hospital treatment were the result of a fall (7). A fall is preceded by loss of balance, which may be recoverable in some individuals, but requires rapid responses and a high level of strength from the lower-limb muscles (8,9). Nevertheless, the more likely an individual is to lose balance, the more likely they will at some point experience a fall. Therefore, quantifying balance control during every day gait activities may be considered one of the closest proxies for the risk of falling.”

“During walking activities, when an individual transfers their weight from one limb to another there are brief periods of large separation between the center of mass and the center of pressure. High levels of muscular strength are required to maintain balance during these periods. These large separations between the center of mass and center of pressure experienced during the single stance periods of dynamic gait activities may be a contributing factor toward understanding why the risk of falling during gait activities is much greater than during quiet standing. Few studies, however, have attempted to address the issue of balance during walking in patients with diabetes, and none have addressed the much more physically challenging activities of stair ascent and descent, during which the risk of falling is known to be very high (7). We therefore investigated a more “dynamic” measure of balance during stair ascent, stair descent, and level walking — three activities with the highest risk of fall-related injury (7) — with the hypothesis that individuals with peripheral neuropathy would display greater separations between their center of mass and center of pressure (i.e., poorer balance), thereby contributing to explaining why they are at high risk of falls.”

“Gait analysis during level walking and stair negotiation was performed in 22 patients with diabetic neuropathy (DPN), 39 patients with diabetes without neuropathy (D), and 28 nondiabetic control subjects (C) using a motion analysis system and embedded force plates in a staircase and level walkway. Balance was assessed by measuring the separation between the body center of mass and center of pressure during level walking, stair ascent, and stair descent. […] DPN patients demonstrated greater (P < 0.05) maximum and range of separations of their center of mass from their center of pressure in the medial-lateral plane during stair descent, stair ascent, and level walking compared with the C group, as well as increased (P < 0.05) mean separation during level walking and stair ascent. The same group also demonstrated greater (P < 0.05) maximum anterior separations (toward the staircase) during stair ascent. […] Greater separations of the center of mass from the center of pressure present a greater challenge to balance. Therefore, the higher medial-lateral separations found in patients with DPN will require greater muscular demands to control upright posture. This may contribute to explaining why patients with DPN are more likely to fall, with the higher separations placing them at a higher risk of experiencing a sideways fall than nondiabetic control subjects. […] balance is markedly impaired in patients with DPN during the gait activities of level ground walking, stair ascent, and stair descent. […] During the gait tasks, we found no significant balance impairments in patients with diabetes without DPN, clearly emphasizing that the link between diabetes and instability is a symptom of peripheral neuropathy.”

August 26, 2017 Posted by | Diabetes, Infectious disease, Language, Neurology, Studies | Leave a comment

Infectious Disease Surveillance (III)

I have added some more observations from the book below.

“Zoonotic diseases are infections transmitted between animals and humans […]. A recent survey identified more than 1,400 species of human disease–causing agents, over half (58%) of which were zoonotic [2]. Moreover, nearly three-quarters (73%) of infectious diseases considered to be emerging or reemerging were zoonotic [2]. […] In many countries there is minimal surveillance for live animal imports or imported wildlife products. Minimal surveillance prevents the identification of wildlife trade–related health risks to the public, agricultural industry, and native wildlife [36] and has led to outbreaks of zoonotic diseases […] Southeast Asia [is] a hotspot for emerging zoonotic diseases because of rapid population growth, high population density, and high biodiversity […] influenza virus in particular is of zoonotic importance as multiple human infections have resulted from animal exposure [77–79].”

“[R]abies is an important cause of death in many countries, particularly in Africa and Asia [85]. Rabies is still underreported throughout the developing world, and 100-fold underreporting of human rabies is estimated for most of Africa [44]. Reasons for underreporting include lack of public health personnel, difficulties in identifying suspect animals, and limited laboratory capacity for rabies testing. […] Brucellosis […] is transmissible to humans primarily through consumption of unpasteurized milk or dairy products […] Brucella is classified as a category B bioterrorism agent [90] because of its potential for aerosolization [I should perhaps here mention that the book coverage does overlaps a bit with that of Fong & Alibek’s book – which I covered here – but that I decided against covering those topics in much detail here – US] […] The key to preventing brucellosis in humans is to control or eliminate infections in animals [91–93]; therefore, veterinarians are crucial to the identification, prevention, and control of brucellosis [89]. […] Since 1954 [there has been] an ongoing eradication program involving surveillance testing of cattle at slaughter, testing at livestock markets, and whole-herd testing on the farm [in the US] […] Except for endemic brucellosis in wildlife in the Greater Yellowstone Area, all 50 states and territories in the United States are free of bovine brucellosis [94].”

“Because of its high mortality rate in humans in the absence of early treatment, Y. pestis is viewed as one of the most pathogenic human bacteria [101]. In the United States, plague is most often found in the Southwest where it is transmitted by fleas and maintained in rodent populations [102]. Deer mice and voles typically serve as maintenance hosts [and] these animals are often resistant to plague [102]. In contrast, in amplifying host species such as prairie dogs, ground squirrels, chipmunks, and wood rats, plague spreads rapidly and results in high mortality [103]. […] Human infections with Y. pestis can result in bubonic, pneumonic, or septicemic plague, depending on the route of exposure. Bubonic plague is most common; however, pneumonic plague poses a more serious public health risk since it can be easily transmitted person-to-person through inhalation of aerosolized bacteria […] Septicemic plague is characterized by bloodstream infection with Y. pestis and can occur secondary to pneumonic or bubonic forms of infection or as a primary infection [6,60].
Plague outbreaks are often correlated with animal die-offs in the area [104], and rodent control near human residences is important to prevent disease [103]. […] household pets can be an important route of plague transmission and flea control in dogs and cats is an important prevention measure [105]. Plague surveillance involves monitoring three populations for infection: vectors (e.g., fleas), humans, and rodents [106]. In the past 20 years, the numbers of human cases of plague reported in the United States have varied from 1 to 17 cases per year [90]. […]
Since rodent species are the main reservoirs of the bacteria, these animals can be used for sentinel surveillance to provide an early warning of the public health risk to humans [106]. […] Rodent die-offs can often be an early indicator of a plague outbreak”.

“Zoonotic disease surveillance is crucial for protection of human and animal health. An integrated, sustainable system that collects data on incidence of disease in both animals and humans is necessary to ensure prompt detection of zoonotic disease outbreaks and a timely and focused response [34]. Currently, surveillance systems for animals and humans [operate] largely independently [34]. This results in an inability to rapidly detect zoonotic diseases, particularly novel emerging diseases, that are detected in the human population only after an outbreak occurs [109]. While most industrialized countries have robust disease surveillance systems, many developing countries currently lack the resources to conduct both ongoing and real-time surveillance [34,43].”

“Acute hepatitis of any cause has similar, usually indistinguishable, signs and symptoms. Acute illness is associated with fever, fatigue, nausea, abdominal pain, followed by signs of liver dysfunction, including jaundice, light to clay-colored stool, dark urine, and easy bruising. The jaundice, dark urine, and abnormal stool are because of the diminished capacity of the inflamed liver to handle the metabolism of bilirubin, which is a breakdown product of hemoglobin released as red blood cells are normally replaced. In severe hepatitis that is associated with fulminant liver disease, the liver’s capacity to produce clotting factors and to clear potential toxic metabolic products is severely impaired, with resultant bleeding and hepatic encephalopathy. […] An effective vaccine to prevent hepatitis A has been available for more than 15 years, and incidence rates of hepatitis A are dropping wherever it is used in routine childhood immunization programs. […] Currently, hepatitis A vaccine is part of the U.S. childhood immunization schedule recommended by the Advisory Committee on Immunization Practices (ACIP) [31].”

Chronic hepatitis — persistent and ongoing inflammation that can result from chronic infection — usually has minimal to no signs or symptoms […] Hepatitis B and C viruses cause acute hepatitis as well as chronic hepatitis. The acute component is often not recognized as an episode of acute hepatitis, and the chronic infection may have little or no symptoms for many years. With hepatitis B, clearance of infection is age related, as is presentation with symptoms. Over 90% of infants exposed to HBV develop chronic infection, while <1% have symptoms; 5–10% of adults develop chronic infection, but 50% or more have symptoms associated with acute infection. Among those who acquire hepatitis C, 15–45% clear the infection; the remainder have lifelong infection unless treated specifically for hepatitis C.”

“[D]ata are only received on individuals accessing care. Asymptomatic acute infection and poor or unavailable measurements for high risk populations […] have resulted in questionable estimates of the prevalence and incidence of hepatitis B and C. Further, a lack of understanding of the different types of viral hepatitis by many medical providers [18] has led to many undiagnosed individuals living with chronic infection, who are not captured in disease surveillance systems. […] Evaluation of acute HBV and HCV surveillance has demonstrated a lack of sensitivity for identifying acute infection in injection drug users; it is likely that most cases in this population go undetected, even if they receive medical care [36]. […] Best practices for conducting surveillance for chronic hepatitis B and C are not well established. […] The role of health departments in responding to infectious diseases is typically responding to acute disease. Response to chronic HBV infection is targeted to prevention of transmission to contacts of those infected, especially in high risk situations. Because of the high risk of vertical transmission and likely development of chronic disease in exposed newborns, identification and case management of HBV-infected pregnant women and their infants is a high priority. […] For a number of reasons, states do not conduct uniform surveillance for chronic hepatitis C. There is not agreement as to the utility of surveillance for chronic HCV infection, as it is a measurement of prevalent rather than incident cases.”

“Among all nationally notifiable diseases, three STDs (chlamydia, gonorrhea, and syphilis) are consistently in the top five most commonly reported diseases annually. These three STDs made up more than 86% of all reported diseases in the United States in 2010 [2]. […] The true burden of STDs is likely to be higher, as most infections are asymptomatic [4] and are never diagnosed or reported. A synthesis of a variety of data sources estimated that in 2008 there were over 100 million prevalent STDs and nearly 20 million incident STDs in the United States [5]. […] Nationally, 72% of all reported STDs are among persons aged 15–24 years [3], and it is estimated that 1 in 4 females aged 14–19 has an STD [7]. […] In 2011, the rates of chlamydia, gonorrhea, and primary and secondary syphilis among African-­Americans were, respectively, 7.5, 16.9, and 6.7 times the rates among whites [3]. Additionally, men who have sex with men (MSM) are disproportionately infected with STDs. […] several analyses have shown risk ratios above 100 for the associations between being an MSM and having syphilis or HIV [9,10]. […] Many STDs can be transmitted congenitally during pregnancy or birth. In 2008, over 400,000 neonatal deaths and stillbirths were associated with syphilis worldwide […] untreated chlamydia and gonorrhea can cause ophthalmia neonatorum in newborns, which can result in blindness [13]. The medical and societal costs for STDs are high. […] One estimate in 2008 put national costs at $15.6 billion [15].”

“A significant challenge in STD surveillance is that the term “STD” encompasses a variety of infections. Currently, there are over 35 pathogens that can be transmitted sexually, including bacteria […] protozoa […] and ectoparasites […]. Some infections can cause clinical syndromes shortly after exposure, whereas others result in no symptoms or have a long latency period. Some STDs can be easily diagnosed using self-collected swabs, while others require a sample of blood or a physical examination by a clinician. Consequently, no one particular surveillance strategy works for all STDs. […] The asymptomatic nature of most STDs limits inferences from case­-based surveillance, since in order to be counted in this system an infection must be diagnosed and reported. Additionally, many infections never result in disease. For example, an estimated 90% of human papillomavirus (HPV) infections resolve on their own without sequelae [24]. As such, simply counting infections may not be appropriate, and sequelae must also be monitored. […] Strategies for STD surveillance include case reporting; sentinel surveillance; opportunistic surveillance, including use of administrative data and positivity in screened populations; and population-­based studies […] the choice of strategy depends on the type of STD and the population of interest.”

“Determining which diseases and conditions should be included in mandatory case reporting requires balancing the benefits to the public health system (e.g., utility of the data) with the costs and burdens of case reporting. While many epidemiologists and public health practitioners follow the mantra “the more data, the better,” the costs (in both dollars and human resources) of developing and maintaining a robust case­-based reporting system can be large. Case­-based surveillance has been mandated for chlamydia, gonorrhea, syphilis, and chancroid nationally; but expansion of state­-initiated mandatory reporting for other STDs is controversial.”

August 18, 2017 Posted by | Books, Epidemiology, Immunology, Infectious disease, Medicine | Leave a comment

Infectious Disease Surveillance (II)

Some more observation from the book below.

“There are three types of influenza viruses — A, B, and C — of which only types A and B cause widespread outbreaks in humans. Influenza A viruses are classified into subtypes based on antigenic differences between their two surface glycoproteins, hemagglutinin and neuraminidase. Seventeen hemagglutinin subtypes (H1–H17) and nine neuraminidase subtypes (N1–N9) have been identifed. […] The internationally accepted naming convention for influenza viruses contains the following elements: the type (e.g., A, B, C), geographical origin (e.g., Perth, Victoria), strain number (e.g., 361), year of isolation (e.g., 2011), for influenza A the hemagglutinin and neuraminidase antigen description (e.g., H1N1), and for nonhuman origin viruses the host of origin (e.g., swine) [4].”

“Only two antiviral drug classes are licensed for chemoprophylaxis and treatment of influenza—the adamantanes (amantadine and rimantadine) and the neuraminidase inhibitors (oseltamivir and zanamivir). […] Antiviral resistant strains arise through selection pressure in individual patients during treatment [which can lead to treatment failure]. […] they usually do not transmit further (because of impaired virus fitness) and have limited public health implications. On the other hand, primarily resistant viruses have emerged in the past decade and in some cases have completely replaced the susceptible strains. […] Surveillance of severe influenza illness is challenging because most cases remain undiagnosed. […] In addition, most of the influenza burden on the healthcare system is because of complications such as secondary bacterial infections and exacerbations of pre-existing chronic diseases, and often influenza is not suspected as an underlying cause. Even if suspected, the virus could have been already cleared from the respiratory secretions when the testing is performed, making diagnostic confirmation impossible. […] Only a small proportion of all deaths caused by influenza are classified as influenza-related on death certificates. […] mortality surveillance based only on death certificates is not useful for the rapid assessment of an influenza epidemic or pandemic severity. Detection of excess mortality in real time can be done by establishing specific monitoring systems that overcome these delays [such as sentinel surveillance systems, US].”

“Influenza vaccination programs are extremely complex and costly. More than half a billion doses of influenza vaccines are produced annually in two separate vaccine production cycles, one for the Northern Hemisphere and one for the Southern Hemisphere [54]. Because the influenza virus evolves constantly and vaccines are reformulated yearly, both vaccine effectiveness and safety need to be monitored routinely. Vaccination campaigns are also organized annually and require continuous public health efforts to maintain an acceptable level of vaccination coverage in the targeted population. […] huge efforts are made and resources spent to produce and distribute influenza vaccines annually. Despite these efforts, vaccination coverage among those at risk in many parts of the world remains low.”

“The Active Bacterial Core surveillance (ABCs) network and its predecessor have been examples of using surveillance as information for action for over 20 years. ABCs has been used to measure disease burden, to provide data for vaccine composition and recommended-use policies, and to monitor the impact of interventions. […] sites represent wide geographic diversity and approximately reflect the race and urban-to-rural mix of the U.S. population [37]. Currently, the population under surveillance is 19–42 million and varies by pathogen and project. […] ABCs has continuously evolved to address challenging questions posed by the six pathogens (H. influenzae; GAS [Group A Streptococcus], GBS [Group B Streptococcus], S.  pneumoniae, N. meningitidis, and MRSA) and other emerging infections. […] For the six core pathogens, the objectives are (1) to determine the incidence and epidemiologic characteristics of invasive disease in geographically diverse populations in the United States through active, laboratory, and population-based surveillance; (2) to determine molecular epidemiologic patterns and microbiologic characteristics of isolates collected as part of routine surveillance in order to track antimicrobial resistance; (3) to detect the emergence of new strains with new resistance patterns and/or virulence and contribute to development and evaluation of new vaccines; and (4) to provide an infrastructure for surveillance of other emerging pathogens and for conducting studies aimed at identifying risk factors for disease and evaluating prevention policies.”

“Food may become contaminated by over 250 bacterial, viral, and parasitic pathogens. Many of these agents cause diarrhea and vomiting, but there is no single clinical syndrome common to all foodborne diseases. Most of these agents can also be transmitted by nonfoodborne routes, including contact with animals or contaminated water. Therefore, for a given illness, it is often unclear whether the source of infection is foodborne or not. […] Surveillance systems for foodborne diseases provide extremely important information for prevention and control.”

“Since 1995, the Centers for Disease Control and Prevention (CDC) has routinely used an automated statistical outbreak detection algorithm that compares current reports of each Salmonella serotype with the preceding 5-year mean number of cases for the same geographic area and week of the year to look for unusual clusters of infection [5]. The sensitivity of Salmonella serotyping to detect outbreaks is greatest for rare serotypes, because a small increase is more noticeable against a rare background. The utility of serotyping has led to its widespread adoption in surveillance for food pathogens in many countries around the world [6]. […] Today, a new generation of subtyping methods […] is increasing the specificity of laboratory-based surveillance and its power to detect outbreaks […] Molecular subtyping allows comparison of the molecular “fingerprint” of bacterial strains. In the United States, the CDC coordinates a network called PulseNet that captures data from standardized molecular subtyping by PFGE [pulsed field gel electrophoresis]. By comparing new submissions and past data, public health officials can rapidly identify geographically dispersed clusters of disease that would otherwise not be apparent and evaluate them as possible foodborne-disease outbreaks [8]. The ability to identify geographically dispersed outbreaks has become increasingly important as more foods are mass-produced and widely distributed. […] Similar networks have been developed in Canada, Europe, the Asia Pacifc region, Latin America and the Caribbean region, the Middle Eastern region and, most recently, the African region”.

“Food consumption and practices have changed during the past 20 years in the United States, resulting in a shift from readily detectable, point-source outbreaks (e.g., attendance at a wedding dinner), to widespread outbreaks that occur over many communities with only a few illnesses in each community. One of the changes has been establishment of large food-producing facilities that disseminate products throughout the country. If a food product is contaminated with a low level of pathogen, contaminated food products are distributed across many states; and only a few illnesses may occur in each community. This type of outbreak is often difficult to detect. PulseNet has been critical for the detection of widely dispersed outbreaks in the United States [17]. […] The growth of the PulseNet database […] and the use of increasingly sophisticated epidemiological approaches have led to a dramatic increase in the number of multistate outbreaks detected and investigated.”

“Each year, approximately 35 million people are hospitalized in the United States, accounting for 170 million inpatient days [1,2]. There are no recent estimates of the numbers of healthcare-associated infections (HAI). However, two decades ago, HAI were estimated to affect more than 2 million hospital patients annually […] The mortality attributed to these HAI was estimated at about 100,000 deaths annually. […] Almost 85% of HAI in the United States are associated with bacterial pathogens, and 33% are thought to be preventable [4]. […] The primary purpose of surveillance [in the context of HAI] is to alert clinicians, epidemiologists, and laboratories of the need for targeted prevention activities required to reduce HAI rates. HAI surveillance data help to establish baseline rates that may be used to determine the potential need to change public health policy, to act and intervene in clinical settings, and to assess the effectiveness of microbiology methods, appropriateness of tests, and allocation of resources. […] As less than 10% of HAI in the United States occur as recognized epidemics [18], HAI surveillance should not be embarked on merely for the detection of outbreaks.”

“There are two types of rate comparisons — intrahospital and interhospital. The primary goals of intrahospital comparison are to identify areas within the hospital where HAI are more likely to occur and to measure the efficacy of interventional efforts. […] Without external comparisons, hospital infection control departments may [however] not know if the endemic rates in their respective facilities are relatively high or where to focus the limited fnancial and human resources of the infection control program. […] The CDC has been the central aggregating institution for active HAI surveillance in the United States since the 1960s.”

“Low sensitivity (i.e., missed infections) in a surveillance system is usually more common than low specificity (i.e., patients reported to have infections who did not actually have infections).”

“Among the numerous analyses of CDC hospital data carried out over the years, characteristics consistently found to be associated with higher HAI rates include affiliation with a medical school (i.e., teaching vs. nonteaching), size of the hospital and ICU categorized by the number of beds (large hospitals and larger ICUs generally had higher infection rates), type of control or ownership of the hospital (municipal, nonprofit, investor owned), and region of the country [43,44]. […] Various analyses of SENIC and NNIS/NHSN data have shown that differences in patient risk factors are largely responsible for interhospital differences in HAI rates. After controlling for patients’ risk factors, average lengths of stay, and measures of the completeness of diagnostic workups for infection (e.g., culturing rates), the differences in the average HAI rates of the various hospital groups virtually disappeared. […] For all of these reasons, an overall HAI rate, per se, gives little insight into whether the facility’s infection control efforts are effective.”

“Although a hospital’s surveillance system might aggregate accurate data and generate appropriate risk-adjusted HAI rates for both internal and external comparison, comparison may be misleading for several reasons. First, the rates may not adjust for patients’ unmeasured intrinsic risks for infection, which vary from hospital to hospital. […] Second, if surveillance techniques are not uniform among hospitals or are used inconsistently over time, variations will occur in sensitivity and specificity for HAI case finding. Third, the sample size […] must be sufficient. This issue is of concern for hospitals with fewer than 200 beds, which represent about 10% of hospital admissions in the United States. In most CDC analyses, rates from hospitals with very small denominators tend to be excluded [37,46,49]. […] Although many healthcare facilities around the country aggregate HAI surveillance data for baseline establishment and interhospital comparison, the comparison of HAI rates is complex, and the value of the aggregated data must be balanced against the burden of their collection. […] If a hospital does not devote sufficient resources to data collection, the data will be of limited value, because they will be replete with inaccuracies. No national database has successfully dealt with all the problems in collecting HAI data and each varies in its ability to address these problems. […] While comparative data can be useful as a tool for the prevention of HAI, in some instances no data might be better than bad data.”

August 10, 2017 Posted by | Books, Data, Epidemiology, Infectious disease, Medicine, Statistics | Leave a comment

Infectious Disease Surveillance (I)

Concepts and Methods in Infectious Disease Surveillance […] familiarizes the reader with basic surveillance concepts; the legal basis for surveillance in the United States and abroad; and the purposes, structures, and intended uses of surveillance at the local, state, national, and international level. […] A desire for a readily accessible, concise resource that detailed current methods and challenges in disease surveillance inspired the collaborations that resulted in this volume. […] The book covers major topics at an introductory-to-intermediate level and was designed to serve as a resource or class text for instructors. It can be used in graduate level courses in public health, human and veterinary medicine, as well as in undergraduate programs in public health–oriented disciplines. We hope that the book will be a useful primer for frontline public health practitioners, hospital epidemiologists, infection-control practitioners, laboratorians in public health settings, infectious disease researchers, and medical informatics specialists interested in a concise overview of infectious disease surveillance.”

I thought the book was sort of okay, but not really all that great. I assume part of the reason I didn’t like it as much as I might have is that someone like me don’t really need to know all the details about, say, the issues encountered in Florida while they were trying to implement electronic patient records, or whether or not the mandated reporting requirements for brucellosis in, say, Texas are different from those of, say, Florida – but the book has a lot of that kind of information. Useful knowledge if you work with this stuff, but if you don’t and you’re just curious about the topic ‘in a general way’ those kinds of details can subtract a bit from the experience. A lot of chapters cover similar topics and don’t seem all that well coordinated, in the sense that details which could easily have been left out of specific chapters without any significant information loss (because those details were covered elsewhere in the publication) are included anyway; we are probably told at least ten times what is the difference between active and passive surveillance. It probably means that the various chapters can be read more or less independently (you don’t need to read chapter 5 to understand the coverage in chapter 11), but if you’re reading the book from cover to cover the way I was that sort of approach is not ideal. However in terms of the coverage included in the individual chapters and the content in general, I feel reasonably confident that if you’re actually working in public health or related fields and so a lot of this stuff might be ‘work-relevant’ (especially if you’re from the US), it’s probably a very useful book to keep around/know about. I didn’t need to know how many ‘NBS-states’ there are, and whether or not South Carolina is such a state, but some people might.

As I’ve pointed out before, a two star goodreads rating on my part (which is the rating I gave this publication) is not an indication that I think a book is terrible, it’s an indication that the book is ‘okay’.

Below I’ve added some quotes and observations from the book. The book is an academic publication but it is not a ‘classic textbook’ with key items in bold etc.; I decided to use bold to highlight key concepts and observations below, to make the post easier to navigate later on (none of the bolded words below were in bold in the original text), but aside from that I have made no changes to the quotes included in this post. I would note that given that many of the chapters included in the book are not covered by copyright (many chapters include this observation: “Materials appearing in this chapter are prepared by individuals as part of their official duties as United States government employees and are not covered by the copyright of the book, and any views expressed herein do not necessarily represent the views of the United States government.”) I may decide to cover the book in a bit more detail than I otherwise would have.

“The methods used for infectious disease surveillance depend on the type of disease. Part of the rationale for this is that there are fundamental differences in etiology, mode of transmission, and control measures between different types of infections. […] Despite the fact that much of surveillance is practiced on a disease-specific basis, it is worth remembering that surveillance is a general tool used across all types of infectious and, noninfectious conditions, and, as such, all surveillance methods share certain core elements. We advocate the view that surveillance should not be regarded as a public health “specialty,” but rather that all public health practitioners should understand the general principles underlying surveillance.”

“Control of disease spread is achieved through public health actions. Public health actions resulting from information gained during the investigation usually go beyond what an individual physician can provide to his or her patients presenting in a clinical setting. Examples of public health actions include identifying the source of infection […] identifying persons who were in contact with the index case or any infected person who may need vaccines or antiinfectives to prevent them from developing the infection; closure of facilities implicated in disease spread; or isolation of sick individuals or, in rare circumstances, quarantining those exposed to an infected person. […] Monitoring surveillance data enables public health authorities to detect sudden changes in disease occurrence and distribution, identify changes in agents or host factors, and detect changes in healthcare practices […] The primary use of surveillance data at the local and state public health level is to identify cases or outbreaks in order to implement immediate disease control and prevention activities. […] Surveillance data are also used by states and CDC to monitor disease trends, demonstrate the need for public health interventions such as vaccines and vaccine policy, evaluate public health activities, and identify future research priorities. […] The final and most-important link in the surveillance chain is the application of […] data to disease prevention and control. A surveillance system includes a functional capacity for data collection, analysis, and dissemination linked to public health programs [6].

“The majority of reportable disease surveillance is conducted through passive surveillance methods. Passive surveillance means that public health agencies inform healthcare providers and other entities of their reporting requirements, but they do not usually conduct intensive efforts to solicit all cases; instead, the public health agency waits for the healthcare entities to submit case reports. Because passive surveillance is often incomplete, public health agencies may use hospital discharge data, laboratory testing records, mortality data, or other sources of information as checks on completeness of reporting and to identify additional cases. This is called active surveillance. Active surveillance usually includes intensive activities on the part of the public health agency to identify all cases of a specific reportable disease or group of diseases. […] Because it can be very labor intensive, active surveillance is usually conducted for a subset of reportable conditions, in a defined geographic locale and for a defined period of time.”

“Active surveillance may be conducted on a routine basis or in response to an outbreak […]. When an outbreak is suspected or identified, another type of surveillance known as enhanced passive surveillance may also be initiated. In enhanced passive surveillance methods, public health may improve communication with the healthcare community, schools, daycare centers, and other facilities and request that all suspected cases be reported to public health. […] Case-based surveillance is supplemented through laboratory-based surveillance activities. As opposed to case-based surveillance, the focus is on laboratory results themselves, independent of whether or not an individual’s result is associated with a “case” of illness meeting the surveillance case definition. Laboratory-based surveillance is conducted by state public health laboratories as well as the healthcare community (e.g., hospital, private medical office, and commercial laboratories). […] State and local public health entities participate in sentinel surveillance activities. With sentinel methods, surveillance is conducted in a sample of reporting entities, such as healthcare providers or hospitals, or in a specific population known to be an early indicator of disease activity (e.g., pediatric). However, because the goal of sentinel surveillance is not to identify every case, it is not necessarily representative of the underlying population of interest; and results should be interpreted accordingly.”

Syndromic surveillance identifies unexpected changes in prediagnostic information from a variety of sources to detect potential outbreaks [56]. Sources include work- or school-absenteeism records, pharmacy sales for over-the-counter pharmaceuticals, or emergency room admission data [51]. During the 2009 H1N1 pandemic, syndromic surveillance of emergency room visits for influenza-like illness correlated well with laboratory diagnosed cases of influenza [57]. […] According to a 2008 survey of U.S. health departments, 88% of respondents reported that they employ syndromic-based approaches as part of routine surveillance [21].

“Public health operated for many decades (and still does to some extent) using stand-alone, case-based information systems for collection of surveillance data that do not allow information sharing between systems and do not permit the ability to track the occurrences of different diseases in a specific person over time. One of the primary objectives of NEDSS [National Electronic Disease Surveillance System] is to promote person-based surveillance and integrated and interoperable surveillance systems. In an integrated person-based system, information is collected to create a public health record for a given person for different diseases over time. This enables public health to track public health conditions associated with a person over time, allowing analyses of public health events and comorbidities, as well as more robust public health interventions. An interoperable system can exchange information with other systems. For example, data are shared between surveillance systems or between other public health or clinical systems, such as an electronic health record or outbreak management system. Achieving the goal of establishing a public health record for an individual over time does not require one monolithic system that supports all needs; this can, instead, be achieved through integration and/or interoperability of systems.

“For over a decade, public health has focused on automation of reporting of laboratory results to public health from clinical laboratories and healthcare providers. Paper-based submission of laboratory results to public health for reportable conditions results in delays in receipt of information, incomplete ascertainment of possible cases, and missing information on individual reports. All of these aspects are improved through automation of the process [39–43].”

“During the pre-vaccine era, rotavirus infected nearly every unvaccinated child before their fifth birthday. In the absence of vaccine, multiple rotavirus infections may occur during infancy and childhood. Rotavirus causes severe diarrhea and vomiting (acute gastroenteritis [AGE]), which can lead to dehydration, electrolyte depletion, complications of viremia, shock, and death. Nearly one-half million children around the world die of rotavirus infections each year […] [In the US] this virus was responsible for 40–50% of hospitalizations because of acute gastroenteritis during the winter months in the era before vaccines were introduced. […] Because first infections have been shown to induce strong immunity against severe rotavirus reinfections [3] and because vaccination mimics such first infections without causing illness, vaccination was identified as the optimal strategy for decreasing the burden associated with severe and fatal rotavirus diarrhea. Any changes that may be later attributed to vaccination effects require knowledge of the pre-licensure (i.e., baseline) rates and trends in the target disease as a reference […] Efforts to obtain baseline data are necessary before a vaccine is licensed and introduced [13]. […] After the first year of widespread rotavirus vaccination coverage in 2008, very large and consistent decreases in rotavirus hospitalizations were noted around the country. Many of the decreases in childhood hospitalizations resulting from rotavirus were 90% or more, compared with the pre-licensure, baseline period.”

There is no single perfect data source for assessing any VPD [Vaccine-Preventable Disease, US]. Meaningful surveillance is achieved by the much broader approach of employing diverse datasets. The true impact of a vaccine or the accurate assessment of disease trends in a population is more likely the result of evaluating many datasets having different strengths and weaknesses. Only by understanding these strengths and weaknesses can a public health practitioner give the appropriate consideration to the findings derived from these data. […] In a Phase III clinical trial, the vaccine is typically administered to large numbers of people who have met certain inclusionary and exclusionary criteria and are then randomly selected to receive either the vaccine or a placebo. […] Phase III trials represent the “best case scenario” of vaccine protection […] Once the Phase III trials show adequate protection and safety, the vaccine may be licensed by the FDA […] When the vaccine is used in routine clinical practice, Phase IV trials (called post-licensure studies or post-marketing studies) are initiated. These are the evaluations conducted during the course of VPD surveillance that delineate additional performance information in settings where strict controls on who receives the vaccine are not present. […] Often, measuring vaccine performance in the broader population yields slightly lower protective results compared to Phase III clinical trials […] During these post-licensure Phase IV studies, it is not the vaccine’s efficacy but its effectiveness that is assessed. […] Administrative datasets may be created by research institutions, managed-care organizations, or national healthcare utilization repositories. They are not specifically created for VPD surveillance and may contain coded data […] on health events. They often do not provide laboratory confirmation of specific diseases, unlike passive and active VPD surveillance. […] administrative datasets offer huge sample sizes, which allow for powerful inferences within the confines of any data limitations.”

August 6, 2017 Posted by | Books, Epidemiology, Infectious disease, Medicine, Pharmacology | Leave a comment

Random stuff

It’s been a long time since I last posted one of these posts, so a great number of links of interest has accumulated in my bookmarks. I intended to include a large number of these in this post and this of course means that I surely won’t cover each specific link included in this post in anywhere near the amount of detail it deserves, but that can’t be helped.

i. Autism Spectrum Disorder Grown Up: A Chart Review of Adult Functioning.

“For those diagnosed with ASD in childhood, most will become adults with a significant degree of disability […] Seltzer et al […] concluded that, despite considerable heterogeneity in social outcomes, “few adults with autism live independently, marry, go to college, work in competitive jobs or develop a large network of friends”. However, the trend within individuals is for some functional improvement over time, as well as a decrease in autistic symptoms […]. Some authors suggest that a sub-group of 15–30% of adults with autism will show more positive outcomes […]. Howlin et al. (2004), and Cederlund et al. (2008) assigned global ratings of social functioning based on achieving independence, friendships/a steady relationship, and education and/or a job. These two papers described respectively 22% and 27% of groups of higher functioning (IQ above 70) ASD adults as attaining “Very Good” or “Good” outcomes.”

“[W]e evaluated the adult outcomes for 45 individuals diagnosed with ASD prior to age 18, and compared this with the functioning of 35 patients whose ASD was identified after 18 years. Concurrent mental illnesses were noted for both groups. […] Comparison of adult outcome within the group of subjects diagnosed with ASD prior to 18 years of age showed significantly poorer functioning for those with co-morbid Intellectual Disability, except in the domain of establishing intimate relationships [my emphasis. To make this point completely clear, one way to look at these results is that apparently in the domain of partner-search autistics diagnosed during childhood are doing so badly in general that being intellectually disabled on top of being autistic is apparently conferring no additional disadvantage]. Even in the normal IQ group, the mean total score, i.e. the sum of the 5 domains, was relatively low at 12.1 out of a possible 25. […] Those diagnosed as adults had achieved significantly more in the domains of education and independence […] Some authors have described a subgroup of 15–27% of adult ASD patients who attained more positive outcomes […]. Defining an arbitrary adaptive score of 20/25 as “Good” for our normal IQ patients, 8 of thirty four (25%) of those diagnosed as adults achieved this level. Only 5 of the thirty three (15%) diagnosed in childhood made the cutoff. (The cut off was consistent with a well, but not superlatively, functioning member of society […]). None of the Intellectually Disabled ASD subjects scored above 10. […] All three groups had a high rate of co-morbid psychiatric illnesses. Depression was particularly frequent in those diagnosed as adults, consistent with other reports […]. Anxiety disorders were also prevalent in the higher functioning participants, 25–27%. […] Most of the higher functioning ASD individuals, whether diagnosed before or after 18 years of age, were functioning well below the potential implied by their normal range intellect.”

Related papers: Social Outcomes in Mid- to Later Adulthood Among Individuals Diagnosed With Autism and Average Nonverbal IQ as Children, Adults With Autism Spectrum Disorders.

ii. Premature mortality in autism spectrum disorder. This is a Swedish matched case cohort study. Some observations from the paper:

“The aim of the current study was to analyse all-cause and cause-specific mortality in ASD using nationwide Swedish population-based registers. A further aim was to address the role of intellectual disability and gender as possible moderators of mortality and causes of death in ASD. […] Odds ratios (ORs) were calculated for a population-based cohort of ASD probands (n = 27 122, diagnosed between 1987 and 2009) compared with gender-, age- and county of residence-matched controls (n = 2 672 185). […] During the observed period, 24 358 (0.91%) individuals in the general population died, whereas the corresponding figure for individuals with ASD was 706 (2.60%; OR = 2.56; 95% CI 2.38–2.76). Cause-specific analyses showed elevated mortality in ASD for almost all analysed diagnostic categories. Mortality and patterns for cause-specific mortality were partly moderated by gender and general intellectual ability. […] Premature mortality was markedly increased in ASD owing to a multitude of medical conditions. […] Mortality was significantly elevated in both genders relative to the general population (males: OR = 2.87; females OR = 2.24)”.

“Individuals in the control group died at a mean age of 70.20 years (s.d. = 24.16, median = 80), whereas the corresponding figure for the entire ASD group was 53.87 years (s.d. = 24.78, median = 55), for low-functioning ASD 39.50 years (s.d. = 21.55, median = 40) and high-functioning ASD 58.39 years (s.d. = 24.01, median = 63) respectively. […] Significantly elevated mortality was noted among individuals with ASD in all analysed categories of specific causes of death except for infections […] ORs were highest in cases of mortality because of diseases of the nervous system (OR = 7.49) and because of suicide (OR = 7.55), in comparison with matched general population controls.”

iii. Adhesive capsulitis of shoulder. This one is related to a health scare I had a few months ago. A few quotes:

Adhesive capsulitis (also known as frozen shoulder) is a painful and disabling disorder of unclear cause in which the shoulder capsule, the connective tissue surrounding the glenohumeral joint of the shoulder, becomes inflamed and stiff, greatly restricting motion and causing chronic pain. Pain is usually constant, worse at night, and with cold weather. Certain movements or bumps can provoke episodes of tremendous pain and cramping. […] People who suffer from adhesive capsulitis usually experience severe pain and sleep deprivation for prolonged periods due to pain that gets worse when lying still and restricted movement/positions. The condition can lead to depression, problems in the neck and back, and severe weight loss due to long-term lack of deep sleep. People who suffer from adhesive capsulitis may have extreme difficulty concentrating, working, or performing daily life activities for extended periods of time.”

Some other related links below:

The prevalence of a diabetic condition and adhesive capsulitis of the shoulder.
“Adhesive capsulitis is characterized by a progressive and painful loss of shoulder motion of unknown etiology. Previous studies have found the prevalence of adhesive capsulitis to be slightly greater than 2% in the general population. However, the relationship between adhesive capsulitis and diabetes mellitus (DM) is well documented, with the incidence of adhesive capsulitis being two to four times higher in diabetics than in the general population. It affects about 20% of people with diabetes and has been described as the most disabling of the common musculoskeletal manifestations of diabetes.”

Adhesive Capsulitis (review article).
“Patients with type I diabetes have a 40% chance of developing a frozen shoulder in their lifetimes […] Dominant arm involvement has been shown to have a good prognosis; associated intrinsic pathology or insulin-dependent diabetes of more than 10 years are poor prognostic indicators.15 Three stages of adhesive capsulitis have been described, with each phase lasting for about 6 months. The first stage is the freezing stage in which there is an insidious onset of pain. At the end of this period, shoulder ROM [range of motion] becomes limited. The second stage is the frozen stage, in which there might be a reduction in pain; however, there is still restricted ROM. The third stage is the thawing stage, in which ROM improves, but can take between 12 and 42 months to do so. Most patients regain a full ROM; however, 10% to 15% of patients suffer from continued pain and limited ROM.”

Musculoskeletal Complications in Type 1 Diabetes.
“The development of periarticular thickening of skin on the hands and limited joint mobility (cheiroarthropathy) is associated with diabetes and can lead to significant disability. The objective of this study was to describe the prevalence of cheiroarthropathy in the well-characterized Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort and examine associated risk factors […] This cross-sectional analysis was performed in 1,217 participants (95% of the active cohort) in EDIC years 18/19 after an average of 24 years of follow-up. Cheiroarthropathy — defined as the presence of any one of the following: adhesive capsulitis, carpal tunnel syndrome, flexor tenosynovitis, Dupuytren’s contracture, or a positive prayer sign [related link] — was assessed using a targeted medical history and standardized physical examination. […] Cheiroarthropathy was present in 66% of subjects […] Cheiroarthropathy is common in people with type 1 diabetes of long duration (∼30 years) and is related to longer duration and higher levels of glycemia. Clinicians should include cheiroarthropathy in their routine history and physical examination of patients with type 1 diabetes because it causes clinically significant functional disability.”

Musculoskeletal disorders in diabetes mellitus: an update.
“Diabetes mellitus (DM) is associated with several musculoskeletal disorders. […] The exact pathophysiology of most of these musculoskeletal disorders remains obscure. Connective tissue disorders, neuropathy, vasculopathy or combinations of these problems, may underlie the increased incidence of musculoskeletal disorders in DM. The development of musculoskeletal disorders is dependent on age and on the duration of DM; however, it has been difficult to show a direct correlation with the metabolic control of DM.”

Rheumatic Manifestations of Diabetes Mellitus.

Prevalence of symptoms and signs of shoulder problems in people with diabetes mellitus.

Musculoskeletal Disorders of the Hand and Shoulder in Patients with Diabetes.
“In addition to micro- and macroangiopathic complications, diabetes mellitus is also associated with several musculoskeletal disorders of the hand and shoulder that can be debilitating (1,2). Limited joint mobility, also termed diabetic hand syndrome or cheiropathy (3), is characterized by skin thickening over the dorsum of the hands and restricted mobility of multiple joints. While this syndrome is painless and usually not disabling (2,4), other musculoskeletal problems occur with increased frequency in diabetic patients, including Dupuytren’s disease [“Dupuytren’s disease […] may be observed in up to 42% of adults with diabetes mellitus, typically in patients with long-standing T1D” – link], carpal tunnel syndrome [“The prevalence of [carpal tunnel syndrome, CTS] in patients with diabetes has been estimated at 11–30 % […], and is dependent on the duration of diabetes. […] Type I DM patients have a high prevalence of CTS with increasing duration of disease, up to 85 % after 54 years of DM” – link], palmar flexor tenosynovitis or trigger finger [“The incidence of trigger finger [/stenosing tenosynovitis] is 7–20 % of patients with diabetes comparing to only about 1–2 % in nondiabetic patients” – link], and adhesive capsulitis of the shoulder (5–10). The association of adhesive capsulitis with pain, swelling, dystrophic skin, and vasomotor instability of the hand constitutes the “shoulder-hand syndrome,” a rare but potentially disabling manifestation of diabetes (1,2).”

“The prevalence of musculoskeletal disorders was greater in diabetic patients than in control patients (36% vs. 9%, P < 0.01). Adhesive capsulitis was present in 12% of the diabetic patients and none of the control patients (P < 0.01), Dupuytren’s disease in 16% of diabetic and 3% of control patients (P < 0.01), and flexor tenosynovitis in 12% of diabetic and 2% of control patients (P < 0.04), while carpal tunnel syndrome occurred in 12% of diabetic patients and 8% of control patients (P = 0.29). Musculoskeletal disorders were more common in patients with type 1 diabetes than in those with type 2 diabetes […]. Forty-three patients [out of 100] with type 1 diabetes had either hand or shoulder disorders (37 with hand disorders, 6 with adhesive capsulitis of the shoulder, and 10 with both syndromes), compared with 28 patients [again out of 100] with type 2 diabetes (24 with hand disorders, 4 with adhesive capsulitis of the shoulder, and 3 with both syndromes, P = 0.03).”

Association of Diabetes Mellitus With the Risk of Developing Adhesive Capsulitis of the Shoulder: A Longitudinal Population-Based Followup Study.
“A total of 78,827 subjects with at least 2 ambulatory care visits with a principal diagnosis of DM in 2001 were recruited for the DM group. The non-DM group comprised 236,481 age- and sex-matched randomly sampled subjects without DM. […] During a 3-year followup period, 946 subjects (1.20%) in the DM group and 2,254 subjects (0.95%) in the non-DM group developed ACS. The crude HR of developing ACS for the DM group compared to the non-DM group was 1.333 […] the association between DM and ACS may be explained at least in part by a DM-related chronic inflammatory process with increased growth factor expression, which in turn leads to joint synovitis and subsequent capsular fibrosis.”

It is important to note when interpreting the results of the above paper that these results are based on Taiwanese population-level data, and type 1 diabetes – which is obviously the high-risk diabetes subgroup in this particular context – is rare in East Asian populations (as observed in Sperling et al., “A child in Helsinki, Finland is almost 400 times more likely to develop diabetes than a child in Sichuan, China”. Taiwanese incidence of type 1 DM in children is estimated at ~5 in 100.000).

iv. Parents who let diabetic son starve to death found guilty of first-degree murder. It’s been a while since I last saw one of these ‘boost-your-faith-in-humanity’-cases, but they in my impression do pop up every now and then. I should probably keep at hand one of these articles in case my parents ever express worry to me that they weren’t good parents; they could have done a lot worse…

v. Freedom of medicine. One quote from the conclusion of Cochran’s post:

“[I]t is surely possible to materially improve the efficacy of drug development, of medical research as a whole. We’re doing better than we did 500 years ago – although probably worse than we did 50 years ago. But I would approach it by learning as much as possible about medical history, demographics, epidemiology, evolutionary medicine, theory of senescence, genetics, etc. Read Koch, not Hayek. There is no royal road to medical progress.”

I agree, and I was considering including some related comments and observations about health economics in this post – however I ultimately decided against doing that in part because the post was growing unwieldy; I might include those observations in another post later on. Here’s another somewhat older Westhunt post I at some point decided to bookmark – I in particular like the following neat quote from the comments, which expresses a view I have of course expressed myself in the past here on this blog:

“When you think about it, falsehoods, stupid crap, make the best group identifiers, because anyone might agree with you when you’re obviously right. Signing up to clear nonsense is a better test of group loyalty. A true friend is with you when you’re wrong. Ideally, not just wrong, but barking mad, rolling around in your own vomit wrong.”

vi. Economic Costs of Diabetes in the U.S. in 2012.

“Approximately 59% of all health care expenditures attributed to diabetes are for health resources used by the population aged 65 years and older, much of which is borne by the Medicare program […]. The population 45–64 years of age incurs 33% of diabetes-attributed costs, with the remaining 8% incurred by the population under 45 years of age. The annual attributed health care cost per person with diabetes […] increases with age, primarily as a result of increased use of hospital inpatient and nursing facility resources, physician office visits, and prescription medications. Dividing the total attributed health care expenditures by the number of people with diabetes, we estimate the average annual excess expenditures for the population aged under 45 years, 45–64 years, and 65 years and above, respectively, at $4,394, $5,611, and $11,825.”

“Our logistic regression analysis with NHIS data suggests that diabetes is associated with a 2.4 percentage point increase in the likelihood of leaving the workforce for disability. This equates to approximately 541,000 working-age adults leaving the workforce prematurely and 130 million lost workdays in 2012. For the population that leaves the workforce early because of diabetes-associated disability, we estimate that their average daily earnings would have been $166 per person (with the amount varying by demographic). Presenteeism accounted for 30% of the indirect cost of diabetes. The estimate of a 6.6% annual decline in productivity attributed to diabetes (in excess of the estimated decline in the absence of diabetes) equates to 113 million lost workdays per year.”

vii. Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: a systemically searched meta-analysis of randomized controlled trials.

viii. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. Did I blog this paper at some point in the past? I could not find any coverage of it on the blog when I searched for it so I decided to include it here, even if I have a nagging suspicion I may have talked about these findings before. What did they find? The short version is this:

“A modest reduction in salt intake for four or more weeks causes significant and, from a population viewpoint, important falls in blood pressure in both hypertensive and normotensive individuals, irrespective of sex and ethnic group. Salt reduction is associated with a small physiological increase in plasma renin activity, aldosterone, and noradrenaline and no significant change in lipid concentrations. These results support a reduction in population salt intake, which will lower population blood pressure and thereby reduce cardiovascular disease.”

ix. Some wikipedia links:

Heroic Age of Antarctic Exploration (featured).

Wien’s displacement law.

Kuiper belt (featured).

Treason (one quote worth including here: “Currently, the consensus among major Islamic schools is that apostasy (leaving Islam) is considered treason and that the penalty is death; this is supported not in the Quran but in the Hadith.[42][43][44][45][46][47]“).

Lymphatic filariasis.

File:World map of countries by number of cigarettes smoked per adult per year.

Australian gold rushes.

Savant syndrome (“It is estimated that 10% of those with autism have some form of savant abilities”). A small sidenote of interest to Danish readers: The Danish Broadcasting Corporation recently featured a series about autistics with ‘special abilities’ – the show was called ‘The hidden talents’ (De skjulte talenter), and after multiple people had nagged me to watch it I ended up deciding to do so. Most of the people in that show presumably had some degree of ‘savantism’ combined with autism at the milder end of the spectrum, i.e. Asperger’s. I was somewhat conflicted about what to think about the show and did consider blogging it in detail (in Danish?), but I decided against it. However I do want to add here to Danish readers reading along who’ve seen the show that they would do well to repeatedly keep in mind that a) the great majority of autistics do not have abilities like these, b) many autistics with abilities like these presumably do quite poorly, and c) that many autistics have even greater social impairments than do people like e.g. (the very likeable, I have to add…) Louise Wille from the show).

Quark–gluon plasma.

Simo Häyhä.

Chernobyl liquidators.

Black Death (“Over 60% of Norway’s population died in 1348–1350”).

Renault FT (“among the most revolutionary and influential tank designs in history”).

Weierstrass function (“an example of a pathological real-valued function on the real line. The function has the property of being continuous everywhere but differentiable nowhere”).

W Ursae Majoris variable.

Void coefficient. (“a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor moderator or coolant. […] Reactivity is directly related to the tendency of the reactor core to change power level: if reactivity is positive, the core power tends to increase; if it is negative, the core power tends to decrease; if it is zero, the core power tends to remain stable. […] A positive void coefficient means that the reactivity increases as the void content inside the reactor increases due to increased boiling or loss of coolant; for example, if the coolant acts as a neutron absorber. If the void coefficient is large enough and control systems do not respond quickly enough, this can form a positive feedback loop which can quickly boil all the coolant in the reactor. This happened in the RBMK reactor that was destroyed in the Chernobyl disaster.”).

Gregor MacGregor (featured) (“a Scottish soldier, adventurer, and confidence trickster […] MacGregor’s Poyais scheme has been called one of the most brazen confidence tricks in history.”).

Stimming.

Irish Civil War.

March 10, 2017 Posted by | Astronomy, autism, Cardiology, Diabetes, Economics, Epidemiology, Health Economics, History, Infectious disease, Mathematics, Medicine, Papers, Physics, Psychology, Random stuff, Wikipedia | Leave a comment

The Ageing Immune System and Health (I)

as we age, we observe a greater heterogeneity of ability and health. The variation in, say, walking speed is far greater in a group of 70 year olds, than in a group on 20 year olds. This makes the study of ageing and the factors driving that heterogeneity of health and functional ability in old age vital. […] The study of the immune system across the lifespan has demonstrated that as we age the immune system undergoes a decline in function, termed immunosenescence. […] the decline in function is not universal across all aspects of the immune system, and neither is the magnitude of functional loss similar between individuals. The theory of inflammageing, which represents a chronic low grade inflammatory state in older people, has been described as a major consequence of immunosenescence, though lifestyle factors such as reduced physical activity and increased adiposity also play a major role […] In poor health, older people accumulate disease, described as multimorbidity. This in turn means traditional single system based health care becomes less valid as each system affected by disease impacts on other systems. This leads some older people to be at greater risk of adverse events such as disability and death. The syndrome of this increased vulnerability is described as frailty, and increasing fundamental evidence is emerging that suggests immunosenescence and inflammageing may underpin frailty […] Thus frailty is seen as one clinical manifestation of immunosenescence.”

The above quotes are from the book‘s preface. I gave it 3 stars on goodreads. I should probably, considering that this topic is mentioned in the preface, mention explicitly that the book doesn’t actually go into a lot of details about the downsides of ‘traditional single system based health care’; the book is mainly about immunology and related topics, and although it provides coverage of intervention studies etc., it doesn’t really provide detailed coverage about issues like the optimization of organizational structures/systems analysis etc.. The book I was currently reading while I started out writing this post – Integrated Diabetes Care – A Multidisciplinary Approach (blog coverage here) – is incidentally pretty much exclusively devoted to providing coverage of these sorts of topics (and it did a fine job).

If you have never read any sort of immunology text before the book will probably be unreadable to you – “It is aimed at fundamental scientists and clinicians with an interest in ageing or the immune system.” In my coverage below I have not made any efforts towards picking out quotes which would be particularly easy for the average reader to read and understand; this is another way of saying that the post is mainly written for my own benefit, perhaps even more so than is usually the case, not for the benefit of potential readers reading along here.

“Physiological ageing is associated with significant re-modelling of the immune system. Termed immunosenescence, age-related changes have been described in the composition, phenotype and function of both the innate and adaptive arms of the immune system. […] Neutrophils are the most abundant leukocyte in circulation […] The first step in neutrophil anti-microbial defence is their extravasation from the bloodstream and migration to the site of infection. Whilst age appears to have no effect upon the speed at which neutrophils migrate towards chemotactic signals in vitro [15], the directional accuracy of neutrophil migration to inflammatory agonists […] as well as bacterial peptides […] is significantly reduced [15]. […] neutrophils from older adults clearly exhibit defects in several key defensive mechanisms, namely chemotaxis […], phagocytosis of opsonised pathogens […] and NET formation […]. Given this near global impairment in neutrophil function, alterations to a generic signalling element rather than defects in molecules specific to each anti-microbial defence strategy is likely to explain the aberrations in neutrophil function that occur with age. In support of this idea, ageing in rodents is associated with a significant increase in neutrophil membrane fluidity, which coincides with a marked reduction in neutrophil function […] ageing results in a reduction in NK cell production and proliferation […] Numerous studies have examined the impact of age […], with the general consensus that at the single cell level, NK cell cytotoxicity (NKCC) is reduced with age […] retrospective and prospective studies have reported relationships between low NK cell activity in older adults and (1) a past history of severe infection, (2) an increased risk of future infection, (3) a reduced probability of surviving infectious episodes and (4) infectious morbidity [49–51]. Related to this increased risk of infection, reduced NKCC prior to and following influenza vaccination in older adults has been shown to be associated with reduced protective anti-hemagglutinin titres, worsened health status and an increased incidence of respiratory tract infection […] Whilst age has no effect upon the frequency or absolute number of monocytes [54, 55], the composition of the monocyte pool is markedly different in older adults, who present with an increased frequency of non-classical and intermediate monocytes, and fewer classical monocytes when compared to their younger counterparts”.

“Via their secretion of growth factors, pro-inflammatory cytokines, and proteases, senescent cells compromise tissue homeostasis and function, and their presence has been causally implicated in the development of such age-associated conditions as sarcopenia and cataracts [92]. Several studies have demonstrated a role for innate immune cells in the recognition and clearance of senescent cells […] ageing is associated with a low-grade systemic up-regulation of circulating inflammatory mediators […] Results from longitudinal-based studies suggest inflammageing is deleterious to human health with studies in older cohorts demonstrating that low-grade increases in the circulating levels of TNF-α [103], IL-6 […] and CRP [105] are associated with both all-cause […] and cause-specific […] mortality. Furthermore, inflammageing is a predictor of frailty [106] and is considered a major factor in the development of several age-related pathologies, such as atherosclerosis [107], Alzheimer’s disease [100] and sarcopenia [108].”

“Persistent viral infections, reduced vaccination responses, increased autoimmunity, and a rise in inflammatory syndromes all typify immune ageing. […] These changes can be in part attributed to the accumulation of highly differentiated senescent T cells, characterised by their decreased proliferative capacity and the activation of senescence signaling pathways, together with alterations in the functional competence of regulatory cells, allowing inflammation to go unchecked. […] Immune senescence results from defects in different leukocyte populations, however the dysfunction is most profound in T cells [6, 7]. The responses of T cells from aged individuals are typically slower and of a lower magnitude than those of young individuals […] while not all equally affected by age, the overall T cell number does decline dramatically as a result of thymic atrophy […] T cell differentiation is a highly complex process controlled not only by costimulation but also by the strength and duration of T cell receptor (TCR) signalling [34]. Nearly all TCR signalling pathways have been found altered during ageing […] two phenotypically distinct subsets of B cells […] have been demonstrated to exert immunosuppressive functions. The frequency and function of both these Breg subsets declines with age”.

“The immune impairments in patients with chronic hyperglycemia resemble those seen during ageing, namely poor control of infections and reduced vaccination response [99].” [This is hardly surprising. ‘Hyperglycemia -> accelerated ageing’ seems generally to be a good (over-)simplified model in many contexts. To give another illustrative example from Czernik & Fowlkes text, “approximately 4–6 years of diabetes exposure in some children may be sufficient to increase skin AGEs to levels that would naturally accumulate only after ~25 years of chronological aging”].

“The term “immunosenescence” is commonly taken to mean age-associated changes in immune parameters hypothesized to contribute to increased susceptibility and severity of the older adult to infectious disease, autoimmunity and cancer. In humans, it is characterized by lower numbers and frequencies of naïve T and B cells and higher numbers and frequencies of late-differentiated T cells, especially CD8+ T cells, in the peripheral blood. […] Low numbers of naïve cells render the aged highly susceptible to pathogens to which they have not been previously exposed, but are not otherwise associated with an “immune risk profile” predicting earlier mortality. […] many of the changes, or most often, differences, in immune parameters of the older adult relative to the young have not actually been shown to be detrimental. The realization that compensatory changes may be developing over time is gaining ground […] Several studies have now shown that lower percentages and absolute numbers of naïve CD8+ T cells are seen in all older subjects whereas the accumulation of very large numbers of CD8+ late-stage differentiated memory cells is seen in a majority but not in all older adults [2]. The major difference between this majority of subjects with such accumulations of memory cells and those without is that the former are infected with human herpesvirus 5 (Cytomegalovirus, CMV). Nevertheless, the question of whether CMV is associated with immunosenescence remains so far uncertain as no causal relationship has been unequivocally established [5]. Because changes are seen rapidly after primary infection in transplant patients [6] and infants [7], it is highly likely that CMV does drive the accumulation of CD8+ late-stage memory cells, but the relationship of this to senescence remains unclear. […] In CMV-seropositive people, especially older people, a remarkably high fraction of circulating CD8+ T lymphocytes is often found to be specific for CMV. However, although the proportion of naïve CD8+ T cells is lower in the old than the young whether or not they are CMV-infected, the gross accumulation of late-stage differentiated CD8+ T cells only occurs in CMV-seropositive individuals […] It is not clear whether this is adaptive or pathological […] The total CMV-specific T-cell response in seropositive subjects constitutes on average approximately 10 % of both the CD4+ and CD8+ memory compartments, and can be far greater in older people. […] there are some published data suggesting that that in young humans or young mice, CMV may improve immune responses to some antigens and to influenza virus, probably by way of increased pro-inflammatory responses […] observations suggest that the effect of CMV on the immune system may be highly dependent also on an individuals’ age and circumstances, and that what is viewed as ageing is in fact later collateral damage from immune reactivity that was beneficial in earlier life [47, 48]. This is saying nothing more than that the same immune pathology that always accompanies immune responses to acute viruses is also caused by CMV, but over a chronic time scale and usually subclinical. […] data suggest that the remodeling of the T-cell compartment in the presence of a latent infection with CMV represents a crucial adaptation of the immune system towards the chronic challenge of lifelong CMV.”

The authors take issue with using the term ‘senescence’ to describe some of the changes discussed above, because this term by definition should be employed only in the context of changes that are demonstrably deleterious to health. It should be kept in mind in this context that insufficient immunological protection against CMV in old age could easily be much worse than the secondary inflammatory effects, harmful though these may well be; CMV in the context of AIDS, organ transplantation (“CMV is the most common and single most important viral infection in solid organ transplant recipients” – medscape) and other disease states involving compromised immune systems can be really bad news (“Disease caused by human herpesviruses tends to be relatively mild and self-limited in immunocompetent persons, although severe and quite unusual disease can be seen with immunosuppression.” Holmes et al.)

“The role of CMV in the etiology of […] age-associated diseases is currently under intensive investigation […] in one powerful study, the impact of CMV infection on mortality was investigated in a cohort of 511 individuals aged at least 65 years at entry, who were then followed up for 18 years. Infection with CMV was associated with an increased mortality rate in healthy older individuals due to an excess of vascular deaths. It was estimated that those elderly who were CMV- seropositive at the beginning of the study had a near 4-year reduction in lifespan compared to those who were CMV-seronegative, a striking result with major implications for public health [59]. Other data, such as those from the large US NHANES-III survey, have shown that CMV seropositivity together with higher than median levels of the inflammatory marker CRP correlate with a significantly lower 10-year survival rate of individuals who were mostly middle-aged at the start of the study [63]. Further evidence comes from a recently published Newcastle 85+ study of the immune parameters of 751 octogenarians investigated for their power to predict survival during a 65-month follow-up. It was documented that CMV-seropositivity was associated with increased 6-year cardiovascular mortality or death from stroke and myocardial infarction. It was therefore concluded that CMV-seropositivity is linked to a higher incidence of coronary heart disease in octogenarians and that senescence in both the CD4+ and CD8+ T-cell compartments is a predictor of overall cardiovascular mortality”.

“The incidence and severity of many infections are increased in older adults. Influenza causes approximately 36,000 deaths and more than 100,000 hospitalizations in the USA every year […] Vaccine uptake differs tremendously between European countries with more than 70 % of the older population being vaccinated against influenza in The Netherlands and the United Kingdom, but below 10 % in Poland, Latvia and Estonia during the 2012–2013 season […] several systematic reviews and meta-analyses have estimated the clinical efficacy and/or effectiveness of a given influenza vaccine, taking into consideration not only randomized trials, but also cohort and case-control studies. It can be concluded that protection is lower in the old than in young adults […] [in one study including “[m]ore than 84,000 pneumococcal vaccine-naïve persons above 65 years of age”] the effect of age on vaccine efficacy was studied and the statistical model showed a decline of vaccine efficacy for vaccine-type CAP and IPD [Invasive Pneumococcal Disease] from 65 % (95 % CI 38–81) in 65-year old subjects, to 40 % (95 % CI 17–56) in 75-year old subjects […] The most effective measure to prevent infectious disease is vaccination. […] Over the last 20–30 years tremendous progress has been achieved in developing novel/improved vaccines for children, but a lot of work still needs to be done to optimize vaccines for the elderly.”

December 12, 2016 Posted by | Books, Cardiology, Diabetes, Epidemiology, Immunology, Infectious disease, Medicine, Microbiology | Leave a comment

Water Supply in Emergency Situations (I)

I didn’t think much of this book (here’s my goodreads review), but I did learn some new things from reading it. Some of the coverage in the book overlapped a little bit with stuff I’d read before, e.g. coverage provided in publications such as Rodricks and Fong and Alibek, but I read those books in 2013 and 2014 respectively (so I’ve already forgot a great deal) and most of the stuff in the book was new stuff. Below I’ve added a few observations and data from the first half of the publication.

“Mediterranean basin demands for water are high. Today, the region uses around 300 billion cubic meters per year. Two thirds of Mediterranean countries now use over 500  per year per inhabitant mainly because of heavy use of irrigation. But these per capita demands are irregular and vary across a wide range – from a little over 100 to more than 1,000 per year. Globally, demand has doubled since the beginning of the 20th century and increased by 60% over the last 25 years. […] the Middle East ecosystems […]  populate some 6% of the world population, but have only some 1% of its renewable fresh water. […] Seasonality of both supply and demand due to tourism […] aggravate water resource problems. During the summer months, water shortages become more frequent. Distribution networks left unused during the winter period face overload pressures in the summer. On the other hand, designing the system with excess capability to satisfy tourism-related summer peak demands raises construction and maintenance costs significantly.”

“There are over 30,000 km of mains within London and over 30% of these are over 150 years old, they serve 7.5 million people with 2,500 million liters of water a day.”

“A major flooding of the Seine River would have tremendous consequences and would impact very significantly the daily life of the 10 million people living in the Parisian area. A deep study of the impacts of such a catastrophic natural hazard has recently been initiated by the French authorities. […] The rise of the water level in the Seine during the last two major floods occurred slowly over several weeks which may explain their low number of fatalities: 50 deaths in 1658 and only one death in 1910. The damage and destruction to buildings and infrastructure, and the resulting effect on economic activity were, however, of major proportions […] Dams have been constructed on the rivers upstream from Paris, but their capacity to stock water is only 830 million cubic meters, which would be insufficient when compared to the volume of 4 billion cubic meters of water produced by a big flood. […] The drinkable water supply system in Paris, as well as that of the sewer network, is still constrained by the decisions and orientations taken during the second half of the 19th century during the large public works projects realized under Napoleon III. […] two of the three water plants which treat river water and supply half of Paris with drinkable water existed in 1910. Water treatment technology has radically changed, but the production sites have remained the same. New reservoirs for potable water have been added, but the principles of distribution have not changed […] The average drinking water production in Paris is 615,000 /day.”

They note in the chapter from which the above quotes are taken that a flood comparable to that which took place in 1910 would in 2005 have resulted in 20% of the surface of Paris being flooded, and 600.000 people being without electricity, among other things. The water distribution system currently in place would also be unable to deal with the load, however a plan for how to deal with this problem in an emergency setting does exist. In that context it’s perhaps worth noting that Paris is hardly unique in terms of the structure of the distribution system – elsewhere in the book it is observed that: “The water infrastructure developed in Europe during the 19th century and still applied, is almost completely based on options of centralized systems: huge supply and disposal networks with few, but large waterworks and sewage treatment plants.” Having both centralized and decentralized systems working at the same time/in the same area tends to increase costs, but may also lower risk; it’s observed in the book during the coverage of an Indonesian case-study that in that region the centralized service provider may take a long time to repair broken water pipes, which is … not very nice if you live in a tropical climate and prefer to have drinking water available to you.

“Water resources management challenges differ enormously in Romania, depending on the type of human settlement. The spectrum of settlement types stretches from the very low-density scattered single dwellings found in rural areas, through villages and small towns, to the much more dense and crowded cities. […] Water resources management will always face the challenge of balancing the needs of different water users. This is the case both in large urban or relatively small rural communities. The water needs of the agricultural production, energy and industrial sectors are often in competition. […] Romania’s water resources are relatively poor and unequally distributed in time and space […] There is a vast differential between urban and rural settlements when it comes to centralized drinking water systems; all the 263 municipalities and towns have such systems, while only 17% of rural communities benefit from this service. […] In Braila and Harghita counties, no village has a sewage network, and Giurgiu and Ialomita counties have only one a piece each. Around 47 of the largest cities which do not have wastewater treatment plants (Bucharest, Braila, Craiova, Turnu Severin Tulcea, etc.) produce ∼20 /s of wastewater, which is directly discharged untreated into surface water.”

There is a difference in quality between water from centralized and decentralized supply systems [in the Ukraine (and likely elsewhere as well)]. Water quality in decentralized systems is the worst (some 30% of samples fail to meet standards, compared to 5.7% in the centralized supply). […] The Sanitary epidemiological stations draw random samples from 1,139 municipal, 6,899 departmental, and 8,179 rural pipes, and from 158,254 points of decentralized water supply, including 152,440 wells, 996 springs, and 4,818 artesian wells. […] From the first day following the accident at Chernobyl Nuclear Power Plant (ChNPP), one of the most serious problems was to prevent general contamination of the Dnieper water system and to guarantee safe water consumption for people living in the affected zone. The water protection and development of monitoring programs for the affected water bodies were among the most important post-accident countermeasures taken by the Government Bodies in Ukraine. […] To solve the water quality problem for Kiev, an emergency water intake at the Desna River was constructed within a very short period. […] During 1986 and the early months of 1987, over 130 special filtration dams […] with sorbing screens containing zeolite (klinoptilolite) were installed for detaining radionuclides while letting the water through. […] After the spring flood of 1987, the construction of new dams was terminated and the decision was made to destroy most of the existing dams. It was found that the 90Sr concentration reduction by the dams studied was insignificant […] Although some countermeasures and cleanup activities applied to radionuclides sources on catchments proved to have positive effects, many other actions were evaluated as ineffective and even useless. […] The most effective measures to reduce radioactivity in drinking water are those, which operate at the water treatment and distribution stage.

“Diversification and redundancy are important technical features to make infrastructure systems less vulnerable to natural and social (man-made) hazards. […] risk management does not only encompass strategies to avoid the occurrence of certain events which might lead to damages or catastrophes, but also strategies of adaptation to limit damages.

The loss of potable water supply typically leads to waterborne diseases, such as typhus and cholera.”

Water velocity in a water supply system is about 1 \s. Therefore, time is a primordial factor in contamination spread along the system. In order to minimize the damage caused by contamination of water, it is essential to act with maximum speed to achieve minimum spread of the contaminant”

October 21, 2016 Posted by | Books, Engineering, Geography, Infectious disease, Microbiology | Leave a comment

Oxford Handbook of Clinical Medicine (III)

Here are my first two posts about the book, which I have now finished. I gave the book three stars on goodreads, but I’m close to a four star rating and I may change my opinion later – overall it’s a pretty good book. I’ve read about many of the topics covered before but there was also quite a bit of new stuff along the way; as a whole the book spans very widely, but despite this the level of coverage of individual topics is not bad – I actually think the structure of the book makes it more useful as a reference tool than is McPhee et al. (…in terms of reference books which one might find the need to refer to in order to make sense of medical tests and test results, I should of course add that no book can beat Newman & Kohn). I have tried to take this into account along the way in terms of the way I’ve been reading the book, in the sense that I’ve tried to make frequent references in the margin to other relevant works going into more detail about specific topics whenever this seemed like it might be useful, and I think if one does something along those lines systematically a book like this one can become a really powerful tool – you get the short version with the most important information (…or at least what the authors considered to be the most important information) here almost regardless of what topic you’re interested in – I should note in this context that the book has only very limited coverage of mental health topics, so this is one area where you definitely need to go elsewhere for semi-detailed coverage – and if you need more detail than what’s provided in the coverage you’ll also know from your notes where to go next.

In my last post I talked a bit about which topics were covered in the various chapters in the book – I figured it might make sense here to list the remaining chapter titles in this post. After the (long) surgery chapter, the rest of the chapters deal with epidemiology (I thought this was a poor chapter and the authors definitely did not consider this topic to be particularly important; they spent only 12 pages on it), clinical chemistry (lab results, plasma proteins, topics like ‘what is hypo- and hypernatremia’, …), eponymous syndromes (a random collection of diseases, many of which are quite rare), radiology (MRI vs X-ray? When to use, or not use, contrast material? Etc.), ‘reference intervals etc.‘ (the ‘etc.’ part covered drug therapeutic ranges for some commonly used drugs, as well as some important drug interactions – note to self: The effects of antidiabetic drugs are increased by alcohol, beta-blockers, bezafibrate, and MAOIs, and are decreased by contraceptive steroids, corticosteroids, diazoxide, diuretics, and possibly also lithium), practical procedures (I was considering skipping this chapter because I’m never going to be asked to e.g. insert a chest drain and knowing how to do it seems to be of limited benefit to me, but I figured I might as well read it anyway; there were some details about what can go wrong in the context of specific procedures and what should be done when this happens, and this seemed like valuable information. Also, did you know that “There is no evidence that lying flat post procedure prevents headache” in the context of lumbar punctures? I didn’t, and a lot of doctors probably also don’t. You can actually go even further than that: “Despite years of anecdotal advice to the contrary, none of the following has ever been shown to be a risk factor [for post-LP headache]: position during or after the procedure; hydration status before, during, or after; amount of CSF removed; immediate activity or rest post-LP.”), and emergencies.

In this post I won’t cover specific chapters of the book in any detail, rather I’ll talk about a few specific topics and observations I could be bothered to write some stuff about here. Let’s start with some uplifting news about the topic of liver tumours: Most of these (~90%) are secondary (i.e. metastatic) tumours with an excellent prognosis (“Often ↑3yr survival to 59% from 13%; but ~50% have recurrence by 3yrs.[3] Liver transplant gives a 5yr survival rate of 70%.” It should be noted in a disease impact context that this type of cancer is far more common in areas of the world with poorly developed health care systems like Africa and China.

Alcoholism is another one of the causes of liver tumors. In the book they include the observation that the lifetime prevalence of alcoholism is around 10% for men and 4% for women, but such numbers are of course close to being completely meaningless almost regardless of where they’re coming from. Alcoholism is dangerous; in cases with established cirrhosis roughly half (52%) of people who do not stop drinking will be dead within 5 years, whereas this is also the case for 23% of the people who do stop drinking. Excessive alcohol consumption can cause alcoholic hepatitis; “[m]ild episodes hardly affect mortality” but in severe cases half will be dead in a month, and in general 40% of people admitted to the hospital for alcoholic hepatitis will be dead within one year of admission. Alcohol can cause portal hypertension (80% of cases are caused by cirrhosis in the UK), which may lead to the development of abnormal blood vessels e.g. in the oesophagus which will have a tendency to cause bleeding, which can be fatal.  Roughly 30% of cirrhotics with varices bleed, and rebleeding is common: “After a 1st variceal bleed, 60% rebleed within 1yr” and “40% of rebleeders die of complications.” Alcoholism can kill you in a variety of different ways (acute poisonings and accidents should probably also be included here as well), and many don’t survive long enough to develop cancer.

As mentioned in the first post about the book acute kidney injury is common in a hospital setting. In the following I’ve added a few more observations about renal disease. “Renal pain is usually a dull ache, constant and in the loin.” But renal disease don’t always cause pain, and in general: “There is often a poor correlation between symptoms and severity of renal disease. Progression [in chronic disease] may be so insidious that patients attribute symptoms to age or a minor illnesses. […] Serious renal failure may cause no symptoms at all.” The authors note that odd chronic symptoms like fatigue should not be dismissed without considering a renal function test first. The book has a nice brief overview of the pathophysiology of diabetic nephropathy – this part is slightly technical, but I decided to include it here anyway before moving on to a different topic:
“Early on, glomerular and tubular hypertrophy occur, increasing GFR [glomerular filtration rate, an indicator variable used to assess kidney function] transiently, but ongoing damage from advanced glycosylation end-products (AGE—caused by non-enzymatic glycosylation of proteins from chronic hyperglycaemia) triggers more destructive disease. These AGE trigger an inflammatory response leading to deposition of type IV collagen and mesangial expansion, eventually leading to arterial hyalinization, thickening of the mesangium and glomerular basement membrane and nodular glomerulosclerosis (Kimmelstiel–Wilson lesions). Progression generally occurs in four stages:
1 GFR elevated: early in disease renal blood flow increases, increasing the GFR and leading to microalbuminuria. […]
2 Glomerular hyperfiltration: in the next 5–10yrs mesangial expansion gradually occurs and hyperfiltration at the glomerulus is seen without microalbuminuria.
3 Microalbuminuria: as soon as this is detected it indicates progression of disease, GFR may be raised or normal. This lasts another 5–10yrs.
4 Nephropathy: GFR begins to decline and proteinuria increases.
Patients with type 2 DM may present at the later stages having had undetected hyperglycaemia for many years before diagnosis.”

Vitamin B12 deficiency is quite common, the authors note that it occurs in up to 15% of older people. Severe B12 deficiency is not the sort of thing which will lead to you feeling ‘a bit under the weather’ – it can lead to permanent brain damage and damage to the spinal cord. “Vitamin B12 is found in meat, fish, and dairy products, but not in plants.” It’s important to note that “foods of non-animal origin contain no B12 unless fortified or contain bacteria.” The wiki article incidentally includes even higher prevalence estimates (“It is estimated to occur in about 6% of those under the age of 60 and 20% of those over the age of 60. Rates may be as high as 80% in parts of Africa and Asia.”) than the one included in the book – this vitamin deficiency is common, and if severe it can have devastating consequences.

On bleeding disorders: “After injury, 3 processes halt bleeding: vasoconstriction, gap-plugging by platelets, and the coagulation cascade […]. Disorders of haemostasis fall into these 3 groups. The pattern of bleeding is important — vascular and platelet disorders lead to prolonged bleeding from cuts, bleeding into the skin (eg easy bruising and purpura), and bleeding from mucous membranes (eg epistaxis [nose bleeds], bleeding from gums, menorrhagia). Coagulation disorders cause delayed bleeding into joints and muscle.” An important observation in the context of major bleeds is incidentally this: “Blood should only be given if strictly necessary and there is no alternative. Outcomes are often worse after a transfusion.” The book has some good chapters about the leukaemias, but they’re relatively rare diseases and some of them are depressing (e.g. acute myeloid leukaemia: according to the book coverage death occurs in ~2 months if untreated, and roughly four out of five treated patients are dead within 3 years) so I won’t talk a lot about them. One thing I found somewhat interesting about the blood disorders covered in the book is actually how rare they are, all things considered: “every day each of us makes 175 billion red cells, 70 billion granulocytes, and 175 billion platelets”. There are lots of opportunities for things to go wrong here…

Some ways to prevent traveller’s diarrhea: “If in doubt, boil all water. Chlorination is OK, but doesn’t kill amoebic cysts (get tablets from pharmacies). Filter water before purifying. Distinguish between simple gravity filters and water purifiers (which also attempt to sterilize chemically). […] avoid surface water and intermittent tap supplies. In Africa assume that all unbottled water is unsafe. With bottled water, ensure the rim is clean & dry. Avoid ice. […] Avoid salads and peel your own fruit. If you cannot wash your hands, discard the part of the food that you are holding […] Hot, well-cooked food is best (>70°C for 2min is no guarantee; many pathogens survive boiling for 5min, but few last 15min)”

An important observation related to this book’s coverage about how to control hospital acquired infection: “Cleaning hospitals: Routine cleaning is necessary to ensure that the hospital is visibly clean and free from dust and soiling. 90% of microorganisms are present within ‘visible dirt’, and the purpose of routine cleaning is to eliminate this dirt. Neither soap nor detergents have antimicrobial activity, and the cleaning process depends essentially on mechanical action.”

Falciparum malaria causes one million deaths/year, according to the book, and mortality is close to 100% in untreated severe malaria – treatment reduces this number to 15-20%. Malaria in returning travellers is not particularly common, but there are a couple thousand cases in the UK each year. Malaria prophylaxis does not give full protection, and “[t]here is no good protection for parts of SE Asia.” Multidrug resistance is common.

November 8, 2015 Posted by | alcohol, Books, Cancer/oncology, Epidemiology, Infectious disease, Medicine, Nephrology | Leave a comment

Random stuff

It’s been a while since I posted anything here so I figured I should at least post something…

i. A few Khan Academy videos I watched a while back:

(No comments)

(Bookmark remark: (‘Not completely devoid of slight inaccuracies as usual – e.g. in meningitis, neck stiffness is not as much as symptom as it is a clinical sign (see Chamberlain’s symptoms and signs…))’

(Bookmark remark: ‘Very simplified, but not terrible’)

(No comments)

ii. I previously read the wiki on strategic bombing during WW2, but the article did not really satisfy my curiosity and it turns out that the wiki also has a great (featured) article about Air raids on Japan (a topic not covered in a great amount of detail in the aforementioned wiki article). A few random observations from the article:

“Overall, the attacks in May destroyed 94 square miles (240 km2) of buildings, which was equivalent to one seventh of Japan’s total urban area.”

“In Tokyo, Osaka, Nagoya, Yokohama, Kobe, and Kawasaki, “over 126,762 people were killed … and a million and a half dwellings and over 105 square miles (270 km2) of urban space were destroyed.”[136] In Tokyo, Osaka and Nagoya, “the areas leveled (almost 100 square miles (260 km2)) exceeded the areas destroyed in all German cities by both the American and English air forces (approximately 79 square miles (200 km2)).”[136]

“In financial terms, the Allied air campaign and attacks on merchant ships destroyed between one third and a quarter of Japan’s wealth.[289]

“Approximately 40 percent of the urban area of the 66 cities subjected to area attacks were destroyed.[290] This included the loss of about 2.5 million housing units, which rendered 8.5 million people homeless.”

iii. A few longer lectures I’ve watched recently but did not think were particularly good: The Fortress (GM Akobian, Chess), Safety in the Nuclear Industry (Philip Thomas, Gresham College), War, Health and Medicine: The medical lessons of World War I (Mark Harrison, Gresham College – topic had potential, somehow did not like ‘the delivery’; others may find it worth watching).

iv. I play a lot of (too much) chess these days, so I guess it makes sense to post a little on this topic as well. Here’s a list of some of my recent opponents on the ICC: GM Zurab Azmaiparashvili, IM Jerzy Slaby, IM Petar Gojkovic, GM Goran Kosanovic, IM Jeroen Bosch, WGM Alla Grinfeld. I recall encountering a few titled players when I started out on the ICC and my rating was still adjusting and stabilizing, but now I’ve sort of fixed at a level around 1700-1800 in both the 1, 3 and 5 minute pools – sometimes a bit higher, sometimes a bit lower (and I’ve played relatively few 5 minute games so far)). This is a level where at least in bullet some of the semi-regular opponents I’ll meet in the rating pool are guys like these. I was quite dissatisfied with my play when I started out on the ICC because I hadn’t realized how tough it is to maintain a high rating there; having a closer look at which sort of opponents I was actually facing gradually made me realize I was probably doing quite well, all things considered. Lately I’ve been thinking that I have probably even been doing quite a bit better than I’d thought I had. See also this and this link. I’ve gradually concluded that I’m probably never ‘going back’ now that I’ve familiarized myself with the ICC server.

And yes, I do occasionally win against opposition like that, also on position – below an example from a recent game against a player not on the list above (there are quite a few anonymous title-holders as well on the server):

easy-e
Click to view full size – the list to the lower left is a list of other players online on the server at that point in time, ordered by rating; as should be clear, lots of title-holders have relatively low ratings (I’m not completely sure which rating pool was displayed in the sidebar at that time, but the defaults on display for me are 5- or 3-minutes, so for example the international master ‘softrain’ thus had either a 3 or 5 minute rating of 1799 at that time. Do note that ICC requires proof for titles to display on the server; random non-titled players do not display as titleholders on the ICC (actually the formally approved titled accounts obviously do not account for all accounts held by title-holders as some titled players on the server use accounts which do not give away the fact that they have a title).

v. A few words I’ve recently encountered on vocabulary.com: Anaphora, usufruct, mimesis, amanuensis, peculate, elide, ataraxia, myrmidon, velleity.

vi. A few other wiki links: Fritz Haber, Great Stink (featured), Edward Low (a really nice guy, it seems – “A story describes Low burning a French cook alive, saying he was a “greasy fellow who would fry well”, and another tells he once killed 53 Spanish captives with his cutlass.[6]“), 1940 Soviet ultimatum to Lithuania (‘good article’).

vii. A really cute paper from the 2013 Christmas edition of the British Medical Journal: Were James Bond’s drinks shaken because of alcohol induced tremor? Here’s the abstract:

Objective To quantify James Bond’s consumption of alcohol as detailed in the series of novels by Ian Fleming.

Design Retrospective literature review.

Setting The study authors’ homes, in a comfy chair.

Participants Commander James Bond, 007; Mr Ian Lancaster Fleming.

Main outcome measures Weekly alcohol consumption by Commander Bond.

Methods All 14 James Bond books were read by two of the authors. Contemporaneous notes were taken detailing every alcoholic drink taken. Predefined alcohol unit levels were used to calculate consumption. Days when Bond was unable to consume alcohol (such as through incarceration) were noted.

Results After exclusion of days when Bond was unable to drink, his weekly alcohol consumption was 92 units a week, over four times the recommended amount. His maximum daily consumption was 49.8 units. He had only 12.5 alcohol free days out of 87.5 days on which he was able to drink.

Conclusions James Bond’s level of alcohol intake puts him at high risk of multiple alcohol related diseases and an early death. The level of functioning as displayed in the books is inconsistent with the physical, mental, and indeed sexual functioning expected from someone drinking this much alcohol. We advise an immediate referral for further assessment and treatment, a reduction in alcohol consumption to safe levels, and suspect that the famous catchphrase “shaken, not stirred” could be because of alcohol induced tremor affecting his hands.”

viii. A couple of other non-serious links which I found hilarious:
1) The Prof(essor) or Hobo quiz (via SSC).
2) Today’s SMBC. I’ll try to remember the words in the votey in the highly unlikely case I’ll ever have use for them – in my opinion it would be a real tragedy if one were to miss an opportunity to make a statement like that, given that it was at all suitable to the situation at hand..

July 6, 2015 Posted by | Chess, Diabetes, Epidemiology, History, Immunology, Infectious disease, Khan Academy, Lectures, Medicine, Personal | Leave a comment

An Introduction to Medical Diagnosis (4)

Here’s a previous post in the series covering this book. There’s a lot of stuff in these chapters, so the stuff below’s just some of the things I thought were interesting and worth being aware of. I’ve covered three chapters in this post: One about skin, nails and hair, one about the eye, and one about infectious and tropical diseases. I may post one more post about the book later on, but I’m not sure if I’ll do that or not at this point so this may be the last post in the series.

Okay, on to the book – skin, nails and hair (my coverage mostly deals with the skin):

“The skin is a highly specialized organ that covers the entire external surface of the body. Its various roles include protecting the body from trauma, infection and ultraviolet radiation. It provides waterproofing and is important for fluid and temperature regulation. It is essential for the detection of some sensory stimuli. […] Skin problems are extremely common and are responsible for 10–15 per cent of all consultations in general practice. […] Given that there are around 2000 dermatological conditions described, only common and important conditions, including some that might be especially relevant in the examination setting, can be covered here.”

Urticaria is characterized by the development of red dermal swellings known as weals […]. Scaling is not seen and the lesions are typically very itchy. The lesions result from the release of histamine from mast cells. An important clue to the diagnosis is that individual lesions come and go within 24 hours, although new lesions may be appearing at other sites. Another associated feature is dermographism: a firm scratch of the skin with an orange stick will produce a linear weal within a few minutes. Urticaria is common, estimated to affect up to 20 per cent of the population at some point in their lives.”

“Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are thought to be two ends of a spectrum of the same condition. They are usually attributable to drug hypersensitivity, though a precipitant is not always identified. The latent period following initiation of the drug tends to be longer than seen with a classical maculopapular drug eruption. The disease is termed:
*SJS when 10 per cent or less of the body surface area epidermis detaches
*TEN when greater than 30 per cent detachment occurs.
Anything in between is designated SJS/TEN overlap. Following a prodrome of fever, an erythematous eruption develops. Macules, papules, or plaques may be seen. Some or all of the affected areas become vesicular or bullous, followed by sloughing off of the dead epidermis. This leads to potentially widespread denudation of skin. […] The affected skin is typically painful rather than itchy. […] The risk of death relates to the extent of epidermal loss and can exceed 30 per cent. […] A widespread ‘drug rash’ that is very painful should ring alarm bells.”

“Various skin problems arise in patients with diabetes mellitus. Bacterial and fungal infections are more common, due to impaired immunity. Vascular disease and neuropathy lead to ulceration on the feet, which can sometimes be very deep and there may be underlying osteomyelitis. Granuloma annulare […] and necrobiosis lipoidica have also been associated with diabetes, though many cases are seen in non-diabetic patients. The former produces smooth papules in an annular configuration, often coalescing into a ring. The latter usually occurs over the shins giving rise to yellow-brown discoloration, with marked atrophy and prominent telangiectasia. There is often an annular appearance, with a red or brown border. Acanthosis nigricans, velvety thickening of the flexural skin […], is seen with insulin resistance, with or without frank diabetes. […] Diabetic bullae are also occasionally seen and diabetic dermopathy produces hyperpigmented, atrophic plaques on the legs. The aetiology of these is unknown.”

“Malignant melanoma is one of the commonest cancers in young adults [and it] is responsible for almost three-quarters of skin cancer deaths, despite only accounting for around 4 per cent of skin cancers. Malignant melanoma can arise de novo or from a pre-existing naevus. Most are pigmented, but some are amelanotic. The most important prognostic factor for melanoma is the depth of the tumour when it is excised – Breslow’s thickness. As most malignant melanomas undergo a relatively prolonged radial (horizontal) growth phase prior to invading vertically, there is a window of opportunity for early detection and management, while the prognosis remains favourable. […] ‘Red flag’ findings […] in pigmented lesions are increasing size, darkening colour, irregular pigmentation, multiple colours within the same lesion, and itching or bleeding for no reason. […] In general, be suspicious if a lesion is rapidly changing.”

The eye:

“Most ocular surface diseases […] are bilateral, whereas most serious pathology (usually involving deeper structures) is unilateral […] Any significant reduction of vision suggests serious pathology [and] [s]udden visual loss always requires urgent investigation and referral to an ophthalmologist. […] Sudden loss of vision is commonly due to a vascular event. These may be vessel occlusions giving rise to ischaemia of vision-serving structures such as the retina, optic nerve or brain. Alternatively there may be vessel rupture and consequent bleeding which may either block transmission of light as in traumatic hyphaema (haemorrhage into the anterior chamber) and vitreous haemorrhage, or may distort the retina as in ‘wet’ age-related macular degeneration (AMD). […] Gradual loss of vision is commonly associated with degenerations or depositions. […] Transient loss of vision is commonly due to temporary or subcritical vascular insufficiency […] Persistent loss of vision suggests structural changes […] or irreversible damage”.

There are a lot of questions one might ask here, and I actually found it interesting to know how much can be learned simply by asking some questions which might help narrow things down – the above are just examples of variables to consider, and there are others as well, e.g. whether or not there is pain (“Painful blurring of vision is most commonly associated with diseases at the front of the eye”, whereas “Painless loss of vision usually arises from problems in the posterior part of the eye”), whether there’s discharge, just how the vision is affected (a blind spot, peripheral field loss, floaters, double vision, …), etc.

“Ptosis (i.e. drooping lid) and a dilated pupil suggest an ipsilateral cranial nerve III palsy. This is a neuro-ophthalmic emergency since it may represent an aneurysm of the posterior communicating artery. […] In such cases the palsy may be the only warning of impending aneurysmal rupture with subsequent subarachnoid haemorrhage. One helpful feature that warns that a cranial nerve III palsy may be compressive is pupil involvement (i.e. a dilated pupil).”

“Although some degree of cataract (loss of transparency of the lens) is almost universal in those >65 years of age, it is only a problem when it is restricting the patient’s activity. It is most commonly due to ageing, but it may be associated with ocular disease (e.g. uveitis), systemic disease (e.g. diabetes), drugs (e.g. systemic corticosteroids) or it may be inherited. It is the commonest cause of treatable blindness worldwide. […] Glaucoma describes a group of eye conditions characterized by a progressive optic neuropathy and visual field loss, in which the intraocular pressure is sufficiently raised to impair normal optic nerve function. Glaucoma may present insidiously or acutely. In the more common primary open angle glaucoma, there is an asymptomatic sustained elevation in intraocular pressure which may cause gradual unnoticed loss of visual field over years, and is a significant cause of blindness worldwide. […] Primary open angle glaucoma is asymptomatic until sufficiently advanced for field loss to be noticeable to the patient. […] Acute angle closure glaucoma is an ophthalmic emergency in which closure of the drainage angle causes a sudden symptomatic elevation of intraocular pressure which may rapidly damage the optic nerve.”

“Age-related macular degeneration is the commonest cause of blindness in the older population (>65 years) in the Western world. Since it is primarily the macula […] that is affected, patients retain their peripheral vision and with it a variable level of independence. There are two forms: ‘dry’ AMD accounts for 90 per cent of cases and the more dramatic ‘wet’ (also known as neovascular) AMD accounts for 10 per cent. […] Treatments for dry AMD do not alter the course of the disease but revolve around optimizing the patient’s remaining vision, such as using magnifiers. […] Treatments for wet AMD seek to reverse the neovascular process”.

“Diabetes is the commonest cause of blindness in the younger population (<65 years) in the Western world. Diabetic retinopathy is a microvascular disease of the retinal circulation. In both type 1 and type 2 diabetes glycaemic control and blood pressure should be optimized to reduce progression. Progression of retinopathy to the proliferative stage is most commonly seen in type 1 diabetes, whereas maculopathy is more commonly a feature of type 2 diabetes. […] Symptoms
*Bilateral. *Usually asymptomatic until either maculopathy or vitreous haemorrhage. [This is part of why screening programs for diabetic eye disease are so common – the first sign of eye disease may well be catastrophic and irreversible vision loss, despite the fact that the disease process may take years or decades to develop to that point] *Gradual loss of vision – suggests diabetic maculopathy (especially if distortion) or cataract. *Sudden loss of vision – most commonly vitreous haemorrhage secondary to proliferative diabetic retinopathy.”

Recap of some key points made in the chapter:
“*For uncomfortable/red eyes, grittiness, itchiness or a foreign body sensation usually indicate ocular surface problems such as conjunctivitis.
*Severe ‘aching’ eye pain suggests serious eye pathology such as acute angle closure glaucoma or scleritis.  *Photophobia is most commonly seen with acute anterior uveitis or corneal disease (ulcers or trauma). [it’s also common in migraine]
*Sudden loss of vision is usually due to a vascular event (e.g. retinal vessel occlusions, anterior ischaemic optic neuropathy, ‘wet’ AMD).
*Gradual loss of vision is common in the ageing population. It is frequently due to cataract […], primary open angle glaucoma (peripheral field loss) or ‘dry’ AMD (central field loss).
*Recent-onset flashes and floaters should be presumed to be retinal tear/detachment.
*Double vision may be monocular (both images from the same eye) or binocular (different images from each eye). Binocular double vision is serious, commonly arising from a cranial nerve III, IV or VI palsy. […]
the following presentations are sufficiently serious to warrant urgent referral to an ophthalmologist: sudden loss of vision, severe ‘aching’ eye pain, new-onset flashes and floaters, [and] new-onset binocular diplopia.”

Infectious and tropical diseases:

“Patients with infection (and inflammatory conditions or, less commonly, malignancy) usually report fever […] Whatever the cause, body temperature generally rises in the evening and falls during the night […] Fever is often lower or absent in the morning […]. A sensation of ‘feeling hot’ or ‘feeling cold’ is unreliable – healthy individuals often feel these sensations, as may those with menopausal flushing, thyrotoxicosis, stress, panic, or migraine. The height and duration of fever are important. Rigors (chills or shivering, often uncontrollable and lasting for 20–30 minutes) are highly significant, and so is a documented temperature over 37.5 °C taken with a reliable oral thermometer. Drenching sweats are also highly significant. Rigors generally indicate serious bacterial infections […] or malaria. An oral temperature >39 °C has the same significance as rigors. Rigors generally do not occur in mild viral infections […] malignancy, connective tissue diseases, tuberculosis and other chronic infections. […] Anyone with fever lasting longer than a week should have lost weight – if a patient reports a prolonged fever but no weight loss, the ‘fever’ usually turns out to be of no consequence. […] untouched meals indicate ongoing illness; return of appetite is a reliable sign of recovery.”

“Bacterial infections are the most common cause of sepsis, but other serious infections (e.g. falciparum malaria) or inflammatory states (e.g. pancreatitis, pre-eclamptic toxaemia, burns) can cause the same features. Below are listed the indicators of sepsis – the more abnormal the result, the more severe is the patient’s condition.
Temperature
*Check if it is above 38 °C or below 36 °C.
*Simple viral infections seldom exceed 39 °C.
*Temperatures (from any cause) are generally higher in the evening than in the early morning.
*As noted above, rigors (uncontrollable shivering) are important indicators of severe bacterial infection or malaria. […] A heart rate greater than 90 beats/min is abnormal, and in severe sepsis a pulse of 140/min is not unusual. […] Peripheries (fingers, toes, nose) are often markedly cooler than central skin (trunk, forehead) with prolonged capillary refill time […] Blood pressure (BP) is low in the supine position (systolic BP <90 mmHg) and falls further when the patient is repositioned upright. In septic shock sometimes the BP is unrecordable on standing, and the patient may faint when they are helped to stand up […] The first sign [of respiratory disturbance] is a respiratory rate greater than 20 breaths/min. This is often a combination of two abnormalities: hypoxia caused by intrapulmonary shunts, and lactic acidosis. […] in hypoxia, the respiratory pattern is normal but rapid. Acidotic breathing has a deep, sighing character (also known as Kussmaul’s respiration). […] Also called toxic encephalopathy or delirium, confusion or drowsiness is often present in sepsis. […] Sepsis is always severe when it is accompanied by organ dysfunction. Septic shock is defined as severe sepsis with hypotension despite adequate fluid replacement.”

“Involuntary neck stiffness (‘nuchal rigidity’) is a characteristic sign of meningitis […] Patients with meningitis or subarachnoid haemorrhage characteristically lie still and do not move the head voluntarily. Patients who complain about a stiff neck are often worried about meningitis; patients with meningitis generally complain of a sore head, not a sore neck – thus neck stiffness is a sign, not a symptom, of meningitis.”

“General practitioners are generally correct when they say an infection is ‘a virus’, but the doctor needs to make an accurate assessment to be sure of not missing a serious bacterial infection masquerading as ‘flu’. […]
*Influenza is highly infectious, so friends, family, or colleagues should also be affected at the same time – the incubation period is short (1–3 days). If there are no other cases, question the diagnosis.
*The onset of viraemic symptoms is abrupt and often quite severe, with chills, headache, and myalgia. There may be mild rigors on the first day, but these are not sustained.
*As the next few days pass, the fever improves each day, and by day 3 the fever is settling or absent. A fever that continues for more than 3 days is not uncomplicated ’flu, and nor is an illness with rigors after the first day.
*As the viraemia subsides, so the upper respiratory symptoms become prominent […] The patient experiences a combination of: rasping sore throat, dry cough, hoarseness, coryza, red eyes, congested sinuses. These persist for a long time (10 days is not unusual) and the patient feels ‘miserable’ but the fever is no longer prominent.”

“Several infections cause a similar picture to ‘glandular fever’. The commonest is EBV [Epstein–Barr Virus], with cytomegalovirus (CMV) a close second; HIV seroconversion may look clinically identical, and acute toxoplasmosis similar (except for the lack of sore throat). Glandular fever in the USA is called ‘infectious mononucleosis’ […] The illness starts with viraemic symptoms of fever (without marked rigors), myalgia, lassitude, and anorexia. A sore throat is characteristic, and the urine often darkens (indicating liver involvement). […] Be very alert for any sign of stridor, or if the tonsils meet in the middle or are threatening to obstruct (a clue is that the patient is unable to swallow their saliva and is drooling or spitting it out). If there are any of these signs of upper airway obstruction, give steroids, intravenous fluids, and call the ENT surgeons urgently – fatal obstruction occasionally occurs in the middle of the night. […] Be very alert for a painful or tender spleen, or any signs of peritonism. In glandular fever the spleen may rupture spontaneously; it is rare, but tragic. It usually begins as a subcapsular haematoma, with pain and tenderness in the left upper quadrant. A secondary rupture through the capsule then occurs at a later date, and this is often rapidly fatal.”

April 7, 2015 Posted by | Books, Cancer/oncology, Diabetes, Infectious disease, Medicine, Neurology, Ophthalmology | Leave a comment

A Systematic Review… (II)

Yesterday I gave some of the reasons I had for disliking the book; in this post I’ll provide some of the reasons why I kept reading. The book had a lot of interesting data. I know I’ve covered some of these topics and numbers before (e.g. here), but I don’t mind repeating myself every now and then; some things are worth saying more than once, and as for the those that are not I must admit I don’t really care enough about not repeating myself here to spend time perusing the archives in order to make sure I don’t repeat myself here. Anyway, here are some number from the coverage:

“Twenty-two high-burden countries account for over 80 % of the world’s TB cases […] data referring to 2011 revealed 8.7 million new cases of TB [worldwide] (13 % coinfected with HIV) and 1.4 million people deaths due to such disease […] Around 80 % of TB cases among people living with HIV were located in Africa. In 2011, in the WHO European Region, 6 % of TB patients were coinfected with HIV […] In 2011, the global prevalence of HIV accounted for 34 million people; 69 % of them lived in Sub-Saharan Africa. Around five million people are living with HIV in South, South-East and East Asia combined. Other high-prevalence regions include the Caribbean, Eastern Europe and Central Asia [11]. Worldwide, HIV incidence is in downturn. In 2011, 2.5 million people acquired HIV infection; this number was 20 % lower than in 2001. […] Sub-Saharan Africa still accounts for 70 % of all AIDS-related deaths […] Worldwide, an estimated 499 million new cases of curable STIs (as gonorrhoea, chlamydia and syphilis) occurred in 2008; these findings suggested no improvement compared to the 448 million cases occurring in 2005. However, wide variations in the incidence of STIs are reported among different regions; the burden of STIs mainly occurs in low-income countries”.

“It is estimated that in 2010 alone, malaria caused 216 million clinical episodes and 655,000 deaths. An estimated 91 % of deaths in 2010 were in the African Region […]. A total of 3.3 billion people (half the world’s population) live in areas at risk of malaria transmission in 106 countries and territories”.

“Diarrhoeal diseases amount to an estimated 4.1 % of the total disability-adjusted life years (DALY) global burden of disease, and are responsible for 1.8 million deaths every year. An estimated 88 % of that burden is attributable to unsafe supply of water, sanitation and hygiene […] It is estimated that diarrhoeal diseases account for one in nine child deaths worldwide, making diarrhoea the second leading cause of death among children under the age of 5 after pneumonia”

“NCDs [Non-Communicable Diseases] are the leading global cause of death worldwide, being responsible for more
deaths than all other causes combined. […] more than 60 % of all deaths worldwide currently stem from NCDs [3].
In 2008, the leading causes of all NCD deaths (36 million) were:
• CVD [cardiovascular disease] (17 million, or 48 % of NCD deaths) [nearly 30 % of all deaths];
• Cancer (7.6 million, or 21 % of NCD deaths) [about 13 % of all deaths]
• Respiratory diseases (4.2 million, or 12 % of NCD deaths) [7 % of all deaths]
• Diabetes (1.3 million, 4 % of NCD deaths) [4].” [Elsewhere in the publication they report that: “In 2010, diabetes was responsible for 3.4 million deaths globally and 3.6 % of DALYs” – obviously there’s a lot of uncertainty here. How to avoid ‘double-counting’ is one of the major issues, because we have a pretty good idea what they die of: “CVD is by far the most frequent cause of death in both men and women with diabetes, accounting for about 60 % of all mortality”].

“Behavioural risk factors such as physical inactivity, tobacco use and unhealthy diet explain nearly 80 % of the CVD burden”

“nearly 80 % of NCD deaths occur in low- and middle-income countries [4], up sharply from just under 40 % in 1990 […] Low- and lower-middle-income countries have the highest proportion of deaths from NCDs under 60 years. Premature deaths under 60 years for high-income countries were 13 and 25 % for upper-middle-income countries. […] In low-income countries, the proportion of premature NCD deaths under 60 years is 41 %, three times the proportion in high-income countries [7]. […] Overall, NCDs account for more than 50 % of DALYs [disability-adjusted life years] in most counties. This percentage rises to over 80 % in Australia, Japan and the richest countries of Western Europe and North America […] In Europe, CVD causes over four million deaths per year (52 % of deaths in women and 42 % of deaths in men), and they are the main cause of death in women in all European countries.”

“Overall, age-adjusted CVD death rates are higher in most low- and middle-income countries than in developed countries […]. CHD [coronary heart disease] and stroke together are the first and third leading causes of death in developed and developing countries, respectively. […] excluding deaths from cancer, these two conditions were responsible for more deaths in 2008 than all remaining causes among the ten leading causes of death combined (including chronic diseases of the lungs, accidents, diabetes, influenza, and pneumonia)”.

“The global prevalence of diabetes was estimated to be 10 % in adults aged 25 + years […] more than half of all nontraumatic lower limb amputations are due to diabetes [and] diabetes is one of the leading causes of visual impairment and blindness in developed countries [14].”

“Almost six million people die from tobacco each year […] Smoking is estimated to cause nearly 10 % of CVD […] Approximately 2.3 million die each year from the harmful use of alcohol. […] Alcohol abuse is responsible for 3.8 % of all deaths (half of which are due to CVD, cancer, and liver cirrhosis) and 4.5 % of the global burden of disease […] Heavy alcohol consumption (i.e. ≥ 4 drinks/day) is significantly associated with an about fivefold increased risk of oral and pharyngeal cancer and oesophageal squamous cell carcinoma (SqCC), 2.5-fold for laryngeal cancer, 50 % for colorectal and breast cancers and 30 % for pancreatic cancer [37]. These estimates are based on a large number of epidemiological studies, and are generally consistent across strata of several covariates. […] The global burden of cancer attributable to alcohol drinking has been estimated at 3.6 and 3.5 % of cancer deaths [39], although this figure is higher in high-income countries (e.g. the figure of 6 % has been proposed for UK [9] and 9 % in Central and Eastern Europe).”

“At least two million cancer cases per year (18 % of the global cancer burden) are attributable to chronic infections by human papillomavirus, hepatitis B virus, hepatitis C virus and Helicobacter pylori. These infections are largely preventable or treatable […] The estimate of the attributable fraction is higher in low- and middle-income countries than in high-income countries (22.9 % of total cancer vs. 7.4 %).”

“Information on the magnitude of CVD in high-income countries is available from three large longitudinal studies that collect multidisciplinary data from a representative sample of European and American individuals aged 50 and older […] according to the Health Retirement Survey (HRS) in the USA, almost one in three adults have one or more types of CVD [11, 12]. By contrast, the data of Survey of Health, Ageing and Retirement in Europe (SHARE), obtained from 11 European countries, and English Longitudinal Study of Aging (ELSA) show that disease rates (specifically heart disease, diabetes, and stroke) across these populations are lower (almost one in five)”

“In 1990, the major fraction of morbidity worldwide was due to communicable, maternal, neonatal, and nutritional disorders (47 %), while 43 % of disability adjusted life years (DALYs) lost were attributable to NCDs. Within two decades, these estimates had undergone a drastic change, shifting to 35 % and 54 %, respectively”

“Estimates of the direct health care and nonhealth care costs attributable to CVD in many countries, especially in low- and middle-income countries, are unclear and fragmentary. In high-income countries (e.g., USA and Europe), CVD is the most costly disease both in terms of economic costs and human costs. Over half (54 %) of the total cost is due to direct health care costs, while one fourth (24 %) is attributable to productivity losses and 22 % to the informal care of people with CVD. Overall, CVD is estimated to cost the EU economy, in terms of health care, almost €196 billion per year, i.e., 9 % of the total health care expenditure across the EU”

“In the WHO European Region, the Eastern Mediterranean Region, and the Region of the Americas, over 50 % of women are overweight. The highest prevalence of overweight among infants and young children is in upper-to-middle-income populations, while the fastest rise in overweight is in the lower-to-middle-income group [19]. Globally, in 2008, 9.8 % of men and 13.8 % of women were obese compared to 4.8 % of men and 7.9 % of women in 1980 [27].”

“In low-income countries, around 25 % of adults have raised total cholesterol, while in high-income countries, over 50 % of adults have raised total cholesterol […]. Overall, one third of CHD disease is attributable to high cholesterol levels” (These numbers seem very high to me, but I’m reporting them anyway).

“interventions based on tobacco taxation have a proportionally greater effect on smokers of lower SES and younger smokers, who might otherwise be difficult to influence. Several studies suggest that the application of a 10 % rise in price could lead to as much as a 2.5–10 % decline in smoking [20, 45, 50, 56].”

“The decision to allocate resources for implementing a particular health intervention depends not only on the strength of the evidence (effectiveness of intervention) but also on the cost of achieving the expected health gain. Cost-effectiveness analysis is the primary tool for evaluating health interventions on the basis of the magnitude of their incremental net benefits in comparison with others, which allows the economic attractiveness of one program over another to be determined [More about this kind of stuff here]. If an intervention is both more effective and less costly than the existing one, there are compelling reasons to implement it. However, the majority of health interventions do not meet these criteria, being either more effective but more costly, or less costly but less effective, than the existing interventions [see also this]. Therefore, in most cases, there is no “best” or absolute level of cost-effectiveness, and this level varies mainly on the basis of health care system expenditure and needs [102].”

“The number of new cases of cancer worldwide in 2008 has been estimated at about 12,700,000 [3]. Of these, 6,600,000 occurred in men and 6,000,000 in women. About 5,600,000 cases occurred in high-resource countries […] and 7,100,000 in low- and middle-income countries. Among men, lung, stomach, colorectal, prostate and liver cancers are the most common […], while breast, colorectal, cervical, lung and stomach are the most common neoplasms among women […]. The number of deaths from cancer was estimated at about 7,600,000 in 2008 […] No global estimates of survival from cancer are available: Data from selected cancer registries suggest wide disparities between high- and low-income countries for neoplasms with effective but expensive treatment, such as leukaemia, while the gap is narrow for neoplasms without an effective therapy, such as lung cancer […]. The overall 5-year survival of cases diagnosed during 1995– 1999 in 23 European countries was 49.6 % […] Tobacco smoking is the main single cause of human cancer worldwide […] In high-income countries, tobacco smoking causes approximately 30 % of all human cancers [9].”

“Systematic reviews have concluded that nutritional factors may be responsible for about one fourth of human cancers in high-income countries, although, because of the limitations of the current understanding of the precise role of diet in human cancer, the proportion of cancers known to be avoidable in practicable ways is much smaller [9]. The only justified dietary recommendation for cancer prevention is to reduce the total caloric intake, which would contribute to a decrease in overweight and obesity, an established risk factor for human cancer. […] The magnitude of the excess risk [associated with obesity] is not very high (for most cancers, the relative risk (RR) ranges between 1.5 and 2 for body weight higher than 35 % above the ideal weight). Estimates of the proportion of cancers attributable to overweight and obesity in Europe range from 2 % [9] to 5 % [34]. However, this figure is likely to be larger in North America, where the prevalence of overweight and obesity is higher.”

“Estimates of the global burden of cancer attributable to occupation in high-income countries result in the order of 1–5 % [9, 42]. In the past, almost 50 % of these were due to asbestos alone […] The available evidence suggests, in most populations, a small role of air, water and soil pollutants. Global estimates are in the order of 1 % or less of total cancers [9, 42]. This is in striking contrast with public perception, which often identifies pollution as a major cause of human cancer.”

“Avoidance of sun exposure, in particular during the middle of the day, is the primary preventive measure to reduce the incidence of skin cancer. There is no adequate evidence of a protective effect of sunscreens, possibly because use of sunscreens is associated with increased exposure to the sun. The possible benefit in reducing skin cancer risk by reduction of sun exposure, however, should be balanced against possible favourable effects of UV radiation in promoting vitamin D metabolism.”

March 30, 2015 Posted by | alcohol, Books, Cancer/oncology, Cardiology, Data, Diabetes, Epidemiology, Infectious disease, Medicine | Leave a comment

Chlamydia and gonorrhea…

Below some observations from Holmes et al.‘s chapters about the sexually transmitted bacterial infections chlamydia and gonorrhea. A few of these chapters covered some really complicated stuff, but I’ve tried to keep the coverage reasonably readable by avoiding many of the technical details. I’ve also tried to make the excerpts easier to read by adding relevant links and by adding brief explanations of specific terms in brackets where this approach seemed like it might be helpful.

“Since the early 1970s, Chlamydia trachomatis has been recognized as a genital pathogen responsible for an increasing variety of clinical syndromes, many closely resembling infections caused by Neisseria gonorrhoeae […]. Because many practitioners have lacked access to facilities for laboratory testing for chlamydia, these infections often have been diagnosed and treated without benefit of microbiological confirmation. Newer, molecular diagnostic tests have in part now addressed this problem […] Unfortunately, many chlamydial infections, particularly in women, are difficult to diagnose clinically and elude detection because they produce few or no symptoms and because the symptoms and signs they do produce are nonspecific. […] chlamydial infections tend to follow a fairly self-limited acute course, resolving into a low-grade persistent infection which may last for years. […] The disease process and clinical manifestations of chlamydial infections probably represent the combined effects of tissue damage from chlamydial replication and inflammatory responses to chlamydiae and the necrotic material from destroyed host cells. There is an abundant immune response to chlamydial infection (in terms of circulating antibodies or cell-mediated responses), and there is evidence that chlamydial diseases are diseases of immunopathology. […] A common pathologic end point of chlamydial infection is scarring of the affected mucous membranes. This is what ultimately leads to blindness in trachoma and to infertility and ectopic pregnancy after acute salpingitis. There is epidemiologic evidence that repeated infection results in higher rates of sequelae.”

“The prevalence of chlamydial urethral infection has been assessed in populations of men attending general medical clinics, STD clinics, adolescent medicine clinics, and student health centers and ranges from 3–5% of asymptomatic men seen in general medical settings to 15–20% of all men seen in STD clinics. […] The overall incidence of C. trachomatis infection in men has not been well defined, since in most countries these infections are not officially reported, are not microbiologically
confirmed, and often may be asymptomatic, thus escaping detection. […] The prevalence of chlamydial infection has been studied in pregnant women, in women attending gynecology or family planning clinics, in women attending STD clinics, in college students, and in women attending general medicine or family practice clinics in school-based clinics and more recently in population-based studies. Prevalence of infection in these studies has ranged widely from 3% in asymptomatic women in community-based surveys to over 20% in women seen in STD clinics.[31–53] During pregnancy, 3–7% of women generally have been chlamydia positive […] Several studies in the United States indicate that approximately 5% of neonates acquire chlamydial infection perinatally, yet antibody prevalence in later childhood before onset of sexual activity may exceed 20%.”

“Clinically, chlamydia-positive and chlamydia-negative NGU [Non-Gonococcal Urethritis] cannot be differentiated on the basis of signs or symptoms.[76] Both usually present after a 7–21-day incubation period with dysuria and mild-to-moderate whitish or clear urethral discharge. Examination reveals no abnormalities other than the discharge in most cases […] Clinical recognition of chlamydial cervicitis depends on a high index of suspicion and a careful cervical examination. There are no genital symptoms that are specifically correlated with chlamydial cervical infection. […] Although urethral symptoms may develop in some women with chlamydial infection, the majority of female STD clinic patients with urethral chlamydial infection do not have dysuria or frequency. […] the majority of women with chlamydial infection cannot be distinguished from uninfected women either by clinical examination or by […] simple tests and thus require the use of specific diagnostic testing. […] Since many chlamydial infections are asymptomatic, it has become clear that effective control must involve periodic testing of individuals at risk.[168] As the cost of extensive screening may be prohibitive, various approaches to defining target populations at increased risk of infection have been evaluated. One strategy has been to designate patients attending specific high prevalence clinic populations for universal testing. Such clinics would include STD, juvenile detention, and some family planning clinics. This approach, however, fails to account for the majority of asymptomatic infections, since attendees at high prevalence clinics often attend because of symptoms or suspicion of infection. Consequently, selective screening criteria have been developed for use in various clinical settings.[204–208] Among women, young age (generally,

If you’re a woman who’s decided not to have children and so aren’t terribly worried about infertility, it should be emphasized that untreated chlamydia can cause other really unpleasant stuff as well, like chronic pelvic pain from pelvic inflammatory disease, or ectopic pregnancy, which may be life-threatening. This is the sort of infection you’ll want to get treated even if you’re not bothered by symptoms.

Neisseria gonorrhoeae (gonococci) is the etiologic agent of gonorrhea and its related clinical syndromes (urethritis, cervicitis, salpingitis, bacteremia, arthritis, and others). It is closely related to Neisseria meningitidis (meningococci), the etiologic agent of one form of bacterial meningitis, and relatively closely to Neisseria lactamica, an occasional human pathogen. The genus Neisseria includes a variety of other relatively or completely nonpathogenic organisms that are principally important because of their occasional diagnostic confusion with gonococci and meningococci. […] Many dozens of specific serovars have been defined […] By a combination of auxotyping and serotyping […] gonococci can be divided into over 70 different strains; the number may turn out to be much larger.”

“Humans are the only natural host for gonococci. Gonococci survive only a short time outside the human body. Although gonococci can be cultured from a dried environment such as a toilet seat up to 24 hours after being artificially inoculated in large numbers onto such a surface, there is virtually no evidence that natural transmission occurs from toilet seats or similar objects. Gonorrhea is a classic example of an infection spread by contact: immediate physical contact with the mucosal surfaces of an infected person, usually a sexual partner, is required for transmission. […] Infection most often remains localized to initial sites of inoculation. Ascending genital infections (salpingitis, epididymitis) and bacteremia, however, are relatively common and account for most of the serious morbidity due to gonorrhea.”

“Consideration of clinical manifestations of gonorrhea suggests many facets of the pathogenesis of the infection. Since gonococci persist in the male urethra despite hydrodynamic forces that would tend to wash the organisms from the mucosal surface, they must be able to adhere effectively to mucosal surfaces. Similarly, since gonococci survive in the urethra despite close attachment to large numbers of neutrophils, they must have mechanisms that help them to survive interactions with polymorphonuclear neutrophils. Since some gonococci are able to invade and persist in the bloodstream for many days at least, they must be able to evade killing by normal defense mechanisms of plasma […] Invasion of the bloodstream also implies that gonococci are able to invade mucosal barriers in order to gain access to the bloodstream. Repeated reinfections of the same patient by one strain strongly suggest that gonococci are able to change surface antigens frequently and/or to escape local immune mechanisms […] The considerable tissue damage of fallopian tubes consequent to gonococcal salpingitis suggests that gonococci make at least one tissue toxin or gonococci trigger an immune response that results in damage to host tissues.[127] There is evidence to support many of these inferences. […] Since the mid-1960s, knowledge of the molecular basis of gonococcal–host interactions and of gonococcal epidemiology has increased to the point where it is amongst the best described of all microbial pathogens. […] Studies of pathogenesis are [however] complicated by the absence of a suitable animal model. A variety of animal models have been developed, each of which has certain utility, but no animal model faithfully reproduces the full spectrum of naturally acquired disease of humans.”

“Gonococci are inherently quite sensitive to antimicrobial agents, compared with many other gram-negative bacteria. However, there has been a gradual selection for antibioticresistant mutants in clinical practice over the past several decades […] The consequence of these events has been to make penicillin and tetracycline therapy ineffective in most areas. Antibiotics such as spectinomycin, ciprofloxacin, and ceftriaxone generally are effective but more expensive than penicillin G and tetracycline. Resistance to ciprofloxacin emerged in SE Asia and Africa in the past decade and has spread gradually throughout much of the world […] Streptomycin (Str) is not frequently used for therapy of gonorrhea at present, but many gonococci exhibit high-level resistance to Str. […] Resistance to fluoroquinolones is increasing, and now has become a general problem in many areas of the world.”

“The efficiency of gonorrhea transmission depends on anatomic sites infected and exposed as well as the number of exposures. The risk of acquiring urethral infection for a man following a single episode of vaginal intercourse with an infected woman is estimated to be 20%, rising to an estimated 60–80% following four exposures.[16] The prevalence of infection in women named as secondary sexual contacts of men with gonococcal urethritis has been reported to be 50–90%,[16,17] but no published studies have carefully controlled for number of exposures. It is likely that the single-exposure transmission rate from male to female is higher than that from female to male […] Previous reports saying that 80% of women with gonorrhea were asymptomatic were most often based on studies of women who were examined in screening surveys or referred to STD clinics because of sexual contact with infected men.[23] Symptomatic infected women who sought medical attention were thus often excluded from such surveys. However […] more than 75% of women with gonorrhea attending acute care facilities such as hospital emergency rooms are symptomatic.[24] The true proportion of infected women who remain asymptomatic undoubtedly lies between these extremes […] Asymptomatic infections occur in men as well as women […] Asymptomatically infected males and females contribute disproportionately to gonorrhea transmission, because symptomatic individuals are more likely to cease sexual activity and seek medical care.”

“the incidence of asymptomatic urethral gonococcal infection in the general population also has been estimated at approximately 1–3%.[27] The prevalence of asymptomatic infection may be much higher, approaching 5% in some studies, because untreated asymptomatic infections may persist for considerable periods. […] The prevalence of gonorrhea within communities tends to be dynamic, fluctuating over time, and influenced by a number of interactive factors. Mathematical models for gonorrhea within communities suggest that gonorrhea prevalence is sustained not only through continued transmission by asymptomatically infected patients but also by “core group” transmitters who are more likely than members of the general population to become infected and transmit gonorrhea to their sex partners. […] At present, gonorrhea prevention and control efforts are heavily invested in the concept of vigorous pursuit and treatment of infected core-group members and asymptomatically infected individuals.”

“Relatively large numbers (>50) of gonococcal A/S [auxotype/serotype] classes usually are present in most communities simultaneously […] and new strains can be detected over time. The distribution of isolates within A/S classes tends to be uneven, with a few A/S classes contributing disproportionately to the total number of isolates. These predominant A/S classes generally persist within communities for months or years. […] Interviews of the patients infected by [a specific] strain early in [an] outbreak identified one infected female who acknowledged over 100 different sexual partners over the preceding 2 months, suggesting that she may have played an important role in the introduction and establishment of this gonococcal strain in the community. Thus the Proto/IB-3 strain may have become common in Seattle not because of specific biologic factors but because of its chance of transmission to members of a core population by a high-frequency transmitter.” [100+ partners over a 2 month period! I was completely dumbstruck when I’d read that.]

“clinical gonorrhea is manifested by a broad spectrum of clinical presentations including asymptomatic and symptomatic local infections, local complicated infections, and systemic dissemination. […] Acute anterior urethritis is the most common manifestation of gonococcal infection in men. The incubation period ranges from 1 to 14 days or even longer; however, the majority of men develop symptoms within 2–5 days […] The predominant symptoms are urethral discharge or dysuria [pain on urination]. […] Without treatment, the usual course of gonococcal urethritis is spontaneous resolution over a period of several weeks, and before the development of effective antimicrobial therapy, 95% of untreated patients became asymptomatic within 6 months.[43] […] The incubation period for urogenital gonorrhea in women is less certain and probably more variable than in men, but most who develop local symptoms apparently do so within 10 days of infection.[51,52] The most common symptoms are those of most lower genital tract infections in women […] and include increased vaginal discharge, dysuria, intermenstrual uterine bleeding, and menorrhagia [abnormally heavy and prolonged menstrual period], each of which may occur alone or in combination and may range in intensity from minimal to severe. […] The clinical assessment of women for gonorrhea is often confounded […] by the nonspecificity of these signs and symptoms and by the high prevalence of coexisting cervical or vaginal infections with Chlamydia trachomatis, Trichomonas vaginalis, Candida albicans, herpes simplex virus, and a variety of other organisms […] Among coinfecting agents for patients with gonorrhea in the United States, C. trachomatis [chlamydia] is preeminent. Up to 10–20% of men and 20–30% of women with acute urogenital gonorrhea are coinfected with C. trachomatis.[10,46,76,139–141] In addition, substantial numbers of women with acute gonococcal infection have simultaneous T. vaginalis infections.”

“Among patients with gonorrhea, pharyngeal infection occurs in 3–7% of heterosexual men, 10–20% of heterosexual women, and 10–25% of homosexually active men. […] Gonococcal infection is transmitted to the pharynx by orogenital sexual contact and is more efficiently acquired by fellatio than by cunnilingus.[63]”

“In men, the most common local complication of gonococcal urethritis is epididymitis […], a syndrome that occurred in up to 20% of infected patients prior to the availability of modern antimicrobial therapy. […] Postinflammatory urethral strictures were common complications of untreated gonorrhea in the preantibiotic era but are now rare […] In acute PID [pelvic inflammatory disease], the clinical syndrome comprised primarily of salpingitis, and frequently including endometritis, tubo-ovarian tuboovarian abscess, or pelvic peritonitis is the most common complication of gonorrhea in women, occurring in an estimated 10–20% of those with acute gonococcal infection.[75,76] PID is the most common of all complications of gonorrhea, as well as the most important in terms of public-health impact, because of both its acute manifestations and its longterm sequelae (infertility, ectopic pregnancy, and chronic pelvic pain).”

“A major impediment to use of culture for gonorrhea diagnosis in many clinical settings are the time, expense, and logistical limitations such as specimen transport to laboratories for testing, a process that may take several days and result in temperature variation or other circumstances that can jeopardize culture viability.[111] In recent years, reliable nonculture assays for gonorrhea detection have become available and are being used increasingly. […] recently, nucleic acid amplification tests (NAATs) for gonorrhea diagnosis have become widely available.[116,117] Assays based on polymerase chain reaction (PCR), transcription-mediated amplification (TMA), and other nucleic acid amplification technologies have been developed. As a group, commercially available NAATs are more sensitive than culture for gonorrhea diagnosis and specificities are nearly as high as for culture. […] Emerging data suggest that most currently available NAATs are substantially more sensitive for gonorrhea detection than conventional culture.”

“Prior to the mid-1930s, when sulfanilamide was introduced, gonorrhea therapy involved local genital irrigation with antiseptic solutions such as silver nitrate […] By 1944 […] many gonococci had become sulfanilamide resistant […] Fortunately, in 1943 the first reports of the near 100% utility of penicillin for gonorrhea therapy were published,[127] and by the end of World War II, as penicillin became available to the general public, it quickly became the therapy of choice. Since then, continuing development of antimicrobial resistance by N. gonorrhoeae[128,129] led to regular revisions of recommended gonorrhea therapy. From the 1950s until the mid-1970s, gradually increasing chromosomal penicillin resistance led to periodic increases in the amount of penicillin required for reliable therapy. […] by the late 1980s, penicillins and tetracyclines were no longer recommended for gonorrhea therapy.
In addition to resistance to penicillin, tetracyclines, and erythromycin, in 1987, clinically significant chromosomally mediated resistance to spectinomycin — another drug recommended for gonorrhea therapy — was described in U.S. military personnel in Korea.[132] In Korea, because of the high prevalence of PPNG [spectinomycin-resistant Penicillinase-Producing Neisseria Gonorrhoeae], in 1981, spectinomycin had been adopted as the drug of choice for gonorrhea therapy. By 1983, however, spectinomycin treatment failures were beginning to occur in patients with gonorrhea […] Following recognition of the outbreak of spectinomycin-resistant gonococci in Korea, ceftriaxone became the drug of choice for treatment of gonorrhea in U.S. military personnel in that country.[132] […] Beginning in 1993, fluoroquinolone antibiotics were recommended for therapy of uncomplicated gonorrhea in the United States […] [However] in 2007 the CDC opted to no longer recommend fluoroquinolone antibiotics for therapy of uncomplicated gonorrhea. This change meant that ceftriaxone and other cephalosporin antibiotics had become the sole class of antibiotics recommended as first-line therapy for gonorrhea. […] For over two decades, ceftriaxone — a third-generation cephalosporin—has been the most reliable single-dose regimen used for gonorrhea worldwide. […] there are currently few well-studied therapeutic alternatives to ceftriaxone for gonorrhea treatment.”

November 1, 2014 Posted by | Books, Epidemiology, Immunology, Infectious disease, Medicine, Microbiology, Pharmacology | Leave a comment