Econstudentlog

A few papers

i. To Conform or to Maintain Self-Consistency? Hikikomori Risk in Japan and the Deviation From Seeking Harmony.

A couple of data points and observations from the paper:

“There is an increasing number of youth in Japan who are dropping out of society and isolating themselves in their bedrooms from years to decades at a time. According to Japan’s Ministry of Health, Labor and Welfare’s first official 2003 guidelines on this culture-bound syndrome, hikikomori (social isolation syndrome) has the following specific diagnostic criteria: (1) no motivation to participate in school or work; (2) no signs of schizophrenia or any other known psychopathologies; and (3) persistence of social withdrawal for at least six months.”

“One obvious dilemma in studying hikikomori is that most of those suffering from hikikomori, by definition, do not seek treatment. More importantly, social isolation itself is not even a symptom of any of the DSM diagnosis often assigned to an individual afflicted with hikikomori […] The motivation for isolating oneself among a hikikomori is simply to avoid possible social interactions with others who might know or judge them (Zielenziger, 2006).”

“Saito’s (2010) and Sakai and colleagues’ (2011) data suggest that 10% to 15% of the hikikomori population suffer from an autism spectrum disorder. […] in the first epidemiological study conducted on hikikomori that was as close to a nation-wide random sample as possible, Koyama and colleagues (2010) conducted a face-to-face household survey, including a structured diagnostic interview, by randomly picking households and interviewing 4,134 individuals. They confirmed a hikikomori lifetime prevalence rate of 1.2% in their nationwide sample. Among these hikikomori individuals, the researchers found that only half suffered from a DSM-IV diagnosis. However, and more importantly, there was no particular diagnosis that was systematically associated with hikikomori. […] the researchers concluded that any DSM diagnosis was an epiphenomenon to hikikomori at best and that hikikomori is rather a “psychopathology characterized by impaired motivation” p. 72).”

ii. Does the ‘hikikomori’ syndrome of social withdrawal exist outside Japan?: A preliminary international investigation.

Purpose

To explore whether the ‘hikikomori’ syndrome (social withdrawal) described in Japan exists in other countries, and if so, how patients with the syndrome are diagnosed and treated.

Methods

Two hikikomori case vignettes were sent to psychiatrists in Australia, Bangladesh, India, Iran, Japan, Korea, Taiwan, Thailand and the USA. Participants rated the syndrome’s prevalence in their country, etiology, diagnosis, suicide risk, and treatment.

Results

Out of 247 responses to the questionnaire (123 from Japan and 124 from other countries), 239 were enrolled in the analysis. Respondents’ felt the hikikomori syndrome is seen in all countries examined and especially in urban areas. Biopsychosocial, cultural, and environmental factors were all listed as probable causes of hikikomori, and differences among countries were not significant. Japanese psychiatrists suggested treatment in outpatient wards and some did not think that psychiatric treatment is necessary. Psychiatrists in other countries opted for more active treatment such as hospitalization.

Conclusions

Patients with the hikikomori syndrome are perceived as occurring across a variety of cultures by psychiatrists in multiple countries. Our results provide a rational basis for study of the existence and epidemiology of hikikomori in clinical or community populations in international settings.”

“Our results extend rather than clarify the debate over diagnosis of hikikomori. In our survey, a variety of diagnoses, such as psychosis, depression anxiety and personality disorders, were proffered. Opinions as to whether hikikomori cases can be diagnosed using ICD-10/DSV-IV criteria differed depending on the participants’ countries and the cases’ age of onset. […] a recent epidemiological survey in Japan reported approximately a fifty-fifty split between hikikomori who had experienced a psychiatric disorder and had not [14]. These data and other studies that have not been able to diagnose all cases of hikikomori may suggest the existence of ‘primary hikikomori’ that is not an expression of any other psychiatric disorder [28,8,9,5,29]. In order to clarify differences between ‘primary hikikomori’ (social withdrawal not associated with any underlying psychiatric disorder) and ‘secondary hikikomori’ (social withdrawal caused by an established psychiatric disorder), further epidemiological and psychopathological studies are needed. […] Even if all hikikomori cases prove to be within some kind of psychiatric disorders, it is valuable to continue to focus on the hikikomori phenomenon because of its associated morbidity, similar to how suicidality is examined in various fields of psychiatry [30]. Reducing the burden of hikikomori symptoms, regardless of what psychiatric disorders patients may have, may provide a worthwhile improvement in their quality of life, and this suggests another direction of future hikikomori research.”

“Our case vignette survey indicates that the hikikomori syndrome, previously thought to exist only in Japan, is perceived by psychiatrists to exist in many other countries. It is particularly perceived as occurring in urban areas and might be associated with rapid global sociocultural changes. There is no consensus among psychiatrists within or across countries about the causes, diagnosis and therapeutic interventions for hikikomori yet.”

iii. Hikikomori: clinical and psychopathological issues (review). A poor paper, but it did have a little bit of data of interest:

“The prevalence of hikikomori is difficult to assess […]. In Japan, more than one million cases have been estimated by experts, but there is no population-based study to confirm these data (9). […] In 2008, Kiyota et al. summarized 3 population-based studies involving 12 cities and 3951 subjects, highlighting that a percentage comprised between 0.9% and 3.8% of the sample had an hikikomori history in anamnesis (11). The typical hikikomori patient is male (4:1 male-to-female ratio) […] females constitute a minor fraction of the reported cases, and usually their period of social isolation is limited.”

iv. Interpreting results of ethanol analysis in postmortem specimens: A review of the literature.

A few observations from the paper:

“A person’s blood-alcohol concentration (BAC) and state of inebriation at the time of death is not always easy to establish owing to various postmortem artifacts. The possibility of alcohol being produced in the body after death, e.g. via microbial contamination and fermentation is a recurring issue in routine casework. If ethanol remains unabsorbed in the stomach at the time of death, this raises the possibility of continued local diffusion into surrounding tissues and central blood after death. Skull trauma often renders a person unconscious for several hours before death, during which time the BAC continues to decrease owing to metabolism in the liver. Under these circumstances blood from an intracerebral or subdural clot is a useful specimen for determination of ethanol. Bodies recovered from water are particular problematic to deal with owing to possible dilution of body fluids, decomposition, and enhanced risk of microbial synthesis of ethanol. […] Alcoholics often die at home with zero or low BAC and nothing more remarkable at autopsy than a fatty liver. Increasing evidence suggests that such deaths might be caused by a pronounced ketoacidosis.”

“The concentrations of ethanol measured in blood drawn from different sampling sites tend to vary much more than expected from inherent variations in the analytical methods used [49]. Studies have shown that concentrations of ethanol and other drugs determined in heart blood are generally higher than in blood from a peripheral vein although in any individual case there are likely to be considerable variations [50–53].”

“The BAC necessary to cause death is often an open question and much depends on the person’s age, drinking experience and degree of tolerance development [78]. The speed of drinking plays a role in alcohol toxicity as does the kind of beverage consumed […] Drunkenness and hypothermia represent a dangerous combination and deaths tend to occur at a lower BAC when people are exposed to cold, such as, when an alcoholic sleeps outdoors in the winter months [78]. Drinking large amounts of alcohol to produce stupor and unconsciousness combined with positional asphyxia or inhalation of vomit are common causes of death in intoxicated individuals who die of suffocation [81–83]. The toxicity of ethanol is often considerably enhanced by the concomitant use of other drugs with their site of action in the brain, especially opiates, propoxyphene, antidepressants and some sedative hypnotics [84]. […] It seems reasonable to assume that the BAC at autopsy will almost always be lower than the maximum BAC reached during a drinking binge, owing to metabolism of ethanol taking place up until the moment of death [85–87]. During the time after discontinuation of drinking until death, the BAC might decrease appreciably depending on the speed of alcohol elimination from blood, which in heavy drinkers could exceed 20 or 30 mg/100 mL per h (0.02 or 0.03 g% per h) [88].”

“When the supply of oxygen to the body ends, the integrity of cell membranes and tissue compartments gradually disintegrate through the action of various digestive enzymes. This reflects the process of autolysis (self digestion) resulting in a softening and liquefaction of the tissue (freezing the body prevents autolysis). During this process, bacteria from the bowel invade the surrounding tissue and vascular system and the rate of infiltration depends on many factors including the ambient temperature, position of the body and whether death was caused by bacterial infection. Glucose concentrations increase in blood after death and this sugar is probably the simplest substrate for microbial synthesis of ethanol [20,68]. […] Extensive trauma to a body […] increases the potential for spread of bacteria and heightens the risk of ethanol production after death [217]. Blood-ethanol concentrations as high as 190 mg/100 mL have been reported in postmortem blood after particularly traumatic events such as explosions and when no evidence existed to support ingestion of ethanol before the disaster [218].”

v. Interventions based on the Theory of Mind cognitive model for autism spectrum disorder (ASD) (Cochrane review).

“The ‘Theory of Mind’ (ToM) model suggests that people with autism spectrum disorder (ASD) have a profound difficulty understanding the minds of other people – their emotions, feelings, beliefs, and thoughts. As an explanation for some of the characteristic social and communication behaviours of people with ASD, this model has had a significant influence on research and practice. It implies that successful interventions to teach ToM could, in turn, have far-reaching effects on behaviours and outcome.”

“Twenty-two randomised trials were included in the review (N = 695). Studies were highly variable in their country of origin, sample size, participant age, intervention delivery type, and outcome measures. Risk of bias was variable across categories. There were very few studies for which there was adequate blinding of participants and personnel, and some were also judged at high risk of bias in blinding of outcome assessors. There was also evidence of some bias in sequence generation and allocation concealment.”

“Studies were grouped into four main categories according to intervention target/primary outcome measure. These were: emotion recognition studies, joint attention and social communication studies, imitation studies, and studies teaching ToM itself. […] There was very low quality evidence of a positive effect on measures of communication based on individual results from three studies. There was low quality evidence from 11 studies reporting mixed results of interventions on measures of social interaction, very low quality evidence from four studies reporting mixed results on measures of general communication, and very low quality evidence from four studies reporting mixed results on measures of ToM ability. […] While there is some evidence that ToM, or a precursor skill, can be taught to people with ASD, there is little evidence of maintenance of that skill, generalisation to other settings, or developmental effects on related skills. Furthermore, inconsistency in findings and measurement means that evidence has been graded of ‘very low’ or ‘low’ quality and we cannot be confident that suggestions of positive effects will be sustained as high-quality evidence accumulates. Further longitudinal designs and larger samples are needed to help elucidate both the efficacy of ToM-linked interventions and the explanatory value of the ToM model itself.”

vi. Risk of Psychiatric and Neurodevelopmental Disorders Among Siblings of Probands With Autism Spectrum Disorders.

“The Finnish Prenatal Study of Autism and Autism Spectrum Disorders used a population-based cohort that included children born from January 1, 1987, to December 31, 2005, who received a diagnosis of ASD by December 31, 2007. Each case was individually matched to 4 control participants by sex and date and place of birth. […] Among the 3578 cases with ASD (2841 boys [79.4%]) and 11 775 controls (9345 boys [79.4%]), 1319 cases (36.9%) and 2052 controls (17.4%) had at least 1 sibling diagnosed with any psychiatric or neurodevelopmental disorder (adjusted RR, 2.5; 95% CI, 2.3-2.6).”

Conclusions and Relevance Psychiatric and neurodevelopmental disorders cluster among siblings of probands with ASD. For etiologic research, these findings provide further evidence that several psychiatric and neurodevelopmental disorders have common risk factors.”

vii. Treatment for epilepsy in pregnancy: neurodevelopmental outcomes in the child (Cochrane review).

“Accumulating evidence suggests an association between prenatal exposure to antiepileptic drugs (AEDs) and increased risk of both physical anomalies and neurodevelopmental impairment. Neurodevelopmental impairment is characterised by either a specific deficit or a constellation of deficits across cognitive, motor and social skills and can be transient or continuous into adulthood. It is of paramount importance that these potential risks are identified, minimised and communicated clearly to women with epilepsy.”

“Twenty-two prospective cohort studies were included and six registry based studies. Study quality varied. […] the IQ of children exposed to VPA [sodium valproate] (n = 112) was significantly lower than for those exposed to CBZ [carbamazepine] (n = 191) (MD [mean difference] 8.69, 95% CI 5.51 to 11.87, P < 0.00001). […] IQ was significantly lower for children exposed to VPA (n = 74) versus LTG [lamotrigine] (n = 84) (MD -10.80, 95% CI -14.42 to -7.17, P < 0.00001). DQ [developmental quotient] was higher in children exposed to PHT (n = 80) versus VPA (n = 108) (MD 7.04, 95% CI 0.44 to 13.65, P = 0.04). Similarly IQ was higher in children exposed to PHT (n = 45) versus VPA (n = 61) (MD 9.25, 95% CI 4.78 to 13.72, P < 0.0001). A dose effect for VPA was reported in six studies, with higher doses (800 to 1000 mg daily or above) associated with a poorer cognitive outcome in the child. We identified no convincing evidence of a dose effect for CBZ, PHT or LTG. Studies not included in the meta-analysis were reported narratively, the majority of which supported the findings of the meta-analyses.”

“The most important finding is the reduction in IQ in the VPA exposed group, which are sufficient to affect education and occupational outcomes in later life. However, for some women VPA is the most effective drug at controlling seizures. Informed treatment decisions require detailed counselling about these risks at treatment initiation and at pre-conceptual counselling. We have insufficient data about newer AEDs, some of which are commonly prescribed, and further research is required. Most women with epilepsy should continue their medication during pregnancy as uncontrolled seizures also carries a maternal risk.”

Do take note of the effect sizes reported here. To take an example, the difference between being treated with valproate and lamotrigine might equal 10 IQ points in the child – these are huge effects.

June 11, 2017 Posted by | Medicine, Neurology, Pharmacology, Psychiatry, Psychology, Studies | Leave a comment

A few papers

i. Quality of life of adolescents with autism spectrum disorders: comparison to adolescents with diabetes.

“The goals of our study were to clarify the consequences of autistic disorder without mental retardation on […] adolescents’ daily lives, and to consider them in comparison with the impact of a chronic somatic disease (diabetes) […] Scores for adolescents with ASD were significantly lower than those of the control and the diabetic adolescents, especially for friendships, leisure time, and affective and sexual relationships. On the other hand, better scores were obtained for the relationships with parents and teachers and for self-image. […] For subjects with autistic spectrum disorders and without mental retardation, impairment of quality of life is significant in adolescence and young adulthood. Such adolescents are dissatisfied with their relationships, although they often have real motivation to succeed with them.”

As someone who has both conditions, that paper was quite interesting. A follow-up question of some personal interest to me would of course be this: How do the scores/outcomes of these two groups compare to the scores of the people who have both conditions simultaneously? This question is likely almost impossible to answer in any confident manner, certainly if the conditions are not strongly dependent (unlikely), considering the power issues; global prevalence of autism is around 0.6% (link), and although type 1 prevalence is highly variable across countries, the variation just means that in some countries almost nobody gets it whereas in other countries it’s just rare; prevalence varies from 0.5 per 100.000 to 60 per 100.000 children aged 0-15 years. Assuming independence, if you look at combinations of the sort of conditions which affect one in a hundred people with those affecting one in a thousand, you’ll need on average in the order of 100.000 people to pick up just one individual with both of the conditions of interest. It’s bothersome to even try to find people like that, and good luck doing any sort of sensible statistics on that kind of sample. Of course type 1 diabetes prevalence increases with age in a way that autism does not because people continue to be diagnosed with it into late adulthood, whereas most autistics are diagnosed as children, so this makes the rarity of the condition less of a problem in adult samples, but if you’re looking at outcomes it’s arguable whether it makes sense to not differentiate between someone diagnosed with type 1 diabetes as a 35 year old and someone diagnosed as a 5 year old (are these really comparable diseases, and which outcomes are you interested in?). At least that is the case for developed societies where people with type 1 diabetes have high life expectancies; in less developed societies there may be stronger linkage between incidence and prevalence because of high mortality in the patient group (because people who get type 1 diabetes in such countries may not live very long because of inadequate medical care, which means there’s a smaller disconnect between how many new people get the disease during each time period and how many people in total have the disease than is the case for places where the mortality rates are lower). You always need to be careful about distinguishing between incidence and prevalence when dealing with conditions like T1DM with potential high mortality rates in settings where people have limited access to medical care because differential cross-country mortality patterns may be important.

ii. Exercise for depression (Cochrane review).

Background

Depression is a common and important cause of morbidity and mortality worldwide. Depression is commonly treated with antidepressants and/or psychological therapy, but some people may prefer alternative approaches such as exercise. There are a number of theoretical reasons why exercise may improve depression. This is an update of an earlier review first published in 2009.

Objectives

To determine the effectiveness of exercise in the treatment of depression in adults compared with no treatment or a comparator intervention. […]

Selection criteria 

Randomised controlled trials in which exercise (defined according to American College of Sports Medicine criteria) was compared to standard treatment, no treatment or a placebo treatment, pharmacological treatment, psychological treatment or other active treatment in adults (aged 18 and over) with depression, as defined by trial authors. We included cluster trials and those that randomised individuals. We excluded trials of postnatal depression.

Thirty-nine trials (2326 participants) fulfilled our inclusion criteria, of which 37 provided data for meta-analyses. There were multiple sources of bias in many of the trials; randomisation was adequately concealed in 14 studies, 15 used intention-to-treat analyses and 12 used blinded outcome assessors.For the 35 trials (1356 participants) comparing exercise with no treatment or a control intervention, the pooled SMD for the primary outcome of depression at the end of treatment was -0.62 (95% confidence interval (CI) -0.81 to -0.42), indicating a moderate clinical effect. There was moderate heterogeneity (I² = 63%).

When we included only the six trials (464 participants) with adequate allocation concealment, intention-to-treat analysis and blinded outcome assessment, the pooled SMD for this outcome was not statistically significant (-0.18, 95% CI -0.47 to 0.11). Pooled data from the eight trials (377 participants) providing long-term follow-up data on mood found a small effect in favour of exercise (SMD -0.33, 95% CI -0.63 to -0.03). […]

Authors’ conclusions

Exercise is moderately more effective than a control intervention for reducing symptoms of depression, but analysis of methodologically robust trials only shows a smaller effect in favour of exercise. When compared to psychological or pharmacological therapies, exercise appears to be no more effective, though this conclusion is based on a few small trials.”

iii. Risk factors for suicide in individuals with depression: A systematic review.

“The search strategy identified 3374 papers for potential inclusion. Of these, 155 were retrieved for a detailed evaluation. Thirty-two articles fulfilled the detailed eligibility criteria. […] Nineteen studies (28 publications) were included. Factors significantly associated with suicide were: male gender (OR = 1.76, 95% CI = 1.08–2.86), family history of psychiatric disorder (OR = 1.41, 95% CI= 1.00–1.97), previous attempted suicide (OR = 4.84, 95% CI = 3.26–7.20), more severe depression (OR = 2.20, 95% CI = 1.05–4.60), hopelessness (OR = 2.20, 95% CI = 1.49–3.23) and comorbid disorders, including anxiety (OR = 1.59, 95% CI = 1.03–2.45) and misuse of alcohol and drugs (OR = 2.17, 95% CI = 1.77–2.66).
Limitations: There were fewer studies than suspected. Interdependence between risk factors could not be examined.”

iv. Cognitive behaviour therapy for social anxiety in autism spectrum disorder: a systematic review.

“Individuals who have autism spectrum disorders (ASD) commonly experience anxiety about social interaction and social situations. Cognitive behaviour therapy (CBT) is a recommended treatment for social anxiety (SA) in the non-ASD population. Therapy typically comprises cognitive interventions, imagery-based work and for some individuals, behavioural interventions. Whether these are useful for the ASD population is unclear. Therefore, we undertook a systematic review to summarise research about CBT for SA in ASD.”

I mostly include this review here to highlight how reviews aren’t everything – I like them, but you can’t do reviews when a field hasn’t been studied. This is definitely the case here. The review was sort of funny, but also depressing. So much work for so little insight. Here’s the gist of it:

“Using a priori criteria, we searched for English-language peer-reviewed empirical studies in five databases. The search yielded 1364 results. Titles, abstracts and relevant publications were independently screened by two reviewers. Findings: Four single case studies met the review inclusion criteria; data were synthesised narratively. Participants (three adults and one child) were diagnosed with ASD and social anxiety disorder.”

You search the scientific literature systematically, you find more than a thousand results, and you carefully evaluate which ones of them should be included in this kind of study …and what you end up with is 4 individual case studies…

(I won’t go into the results of the study as they’re pretty much worthless.)

v. Immigrant Labor Market Integration across Admission Classes.

“We examine patterns of labor market integration across immigrant groups. The study draws on Norwegian longitudinal administrative data covering labor earnings and social insurance claims over a 25‐year period and presents a comprehensive picture of immigrant‐native employment and social insurance differentials by admission class and by years since entry.”

Some quotes from the paper:

“A recent study using 2011 administrative data from Sweden finds an average employment gap to natives of 30 percentage points for humanitarian migrants (refugees) and 26 percentage point for family immigrants (Luik et al., 2016).”

“A considerable fraction of the immigrants leaves the country after just a few years. […] this is particularly the case for immigrants from the old EU and for students and work-related immigrants from developing countries. For these groups, fewer than 50 percent remain in the country 5 years after entry. For refugees and family migrants, the picture is very different, and around 80 percent appear to have settled permanently in the country. Immigrants from the new EU have a settlement pattern somewhere in between, with approximately 70 percent settled on a permanent basis. An implication of such differential outmigration patterns is that the long-term labor market performance of refugees and family immigrants is of particular economic and fiscal importance. […] the varying rates of immigrant inflows and outflows by admission class, along with other demographic trends, have changed the composition of the adult (25‐66) population between 1990 and 2015. In this population segment, the overall immigrant share increased from 4.9 percent in 1990 to 18.7 percent in 2015 — an increase by a factor of 3.8 over 25 years. […] Following the 2004 EU enlargement, the fraction of immigrants in Norway has increased by a steady rate of approximately one percentage point per year.”

“The trends in population and employment shares varies considerably across admission classes, with employment shares of refugees and family immigrants lagging their growth in population shares. […] In 2014, refugees and family immigrants accounted for 12.8 percent of social insurance claims, compared to 5.7 percent of employment (and 7.7 percent of the adult population). In contrast, the two EU groups made up 9.3 percent of employment (and 8.8 percent of the adult population) but only 3.6 percent of social insurance claimants. Although these patterns do illuminate the immediate (short‐term) fiscal impacts of immigration at each particular point in time, they are heavily influenced by each year’s immigrant composition – in terms of age, years since migration, and admission classes – and therefore provide little information about long‐term consequences and impacts of fiscal sustainability. To assess the latter, we need to focus on longer‐term integration in the Norwegian labor market.”

Which they then proceed to do in the paper. From the results of those analyses:

“For immigrant men, the sample average share in employment (i.e., whose main source of income is work) ranges from 58 percent for refugees to 89 percent for EU immigrants, with family migrants somewhere between (around 80 percent). The average shares with social insurance as the main source of income ranges from only four percent for EU immigrants to as much as 38 percent for refugees. The corresponding shares for native men are 87 percent in employment and 12 percent with social insurance as their main income source. For women, the average shares in employment vary from 46 percent for refugees to 85 percent for new EU immigrants, whereas the average shares in social insurance vary from five percent for new EU immigrants to 42 percent for refugees. The corresponding rates for native women are 80 percent in employment and 17 percent with social insurance as their main source of income.”

“The profiles estimated for refugees are particularly striking. For men, we find that the native‐immigrant employment gap reaches its minimum value at 20 percentage points after five to six years of residence. The gap then starts to increase quite sharply again, and reaches 30 percentage points after 15 years. This development is mirrored by a corresponding increase in social insurance dependency. For female refugees, the employment differential reaches its minimum of 30 percentage points after 5‐9 years of residence. The subsequent decline is less dramatic than what we observe for men, but the differential stands at 35 percentage points 15 years after admission. […] The employment difference between refugees from Bosnia and Somalia is fully 22.2 percentage points for men and 37.7 points for women. […] For immigrants from the old EU, the employment differential is slightly in favor of immigrants regardless of years since migration, and the social insurance differentials remain consistently negative. In other words, employment of old EU immigrants is almost indistinguishable from that of natives, and they are less likely to claim social insurance benefits.”

vi. Glucose Peaks and the Risk of Dementia and 20-Year Cognitive Decline.

“Hemoglobin A1c (HbA1c), a measure of average blood glucose level, is associated with the risk of dementia and cognitive impairment. However, the role of glycemic variability or glucose excursions in this association is unclear. We examined the association of glucose peaks in midlife, as determined by the measurement of 1,5-anhydroglucitol (1,5-AG) level, with the risk of dementia and 20-year cognitive decline.”

“Nearly 13,000 participants from the Atherosclerosis Risk in Communities (ARIC) study were examined. […] Over a median time of 21 years, dementia developed in 1,105 participants. Among persons with diabetes, each 5 μg/mL decrease in 1,5-AG increased the estimated risk of dementia by 16% (hazard ratio 1.16, P = 0.032). For cognitive decline among participants with diabetes and HbA1c <7% (53 mmol/mol), those with glucose peaks had a 0.19 greater z score decline over 20 years (P = 0.162) compared with those without peaks. Among participants with diabetes and HbA1c ≥7% (53 mmol/mol), those with glucose peaks had a 0.38 greater z score decline compared with persons without glucose peaks (P < 0.001). We found no significant associations in persons without diabetes.

CONCLUSIONS Among participants with diabetes, glucose peaks are a risk factor for cognitive decline and dementia. Targeting glucose peaks, in addition to average glycemia, may be an important avenue for prevention.”

vii. Gaze direction detection in autism spectrum disorder.

“Detecting where our partners direct their gaze is an important aspect of social interaction. An atypical gaze processing has been reported in autism. However, it remains controversial whether children and adults with autism spectrum disorder interpret indirect gaze direction with typical accuracy. This study investigated whether the detection of gaze direction toward an object is less accurate in autism spectrum disorder. Individuals with autism spectrum disorder (n = 33) and intelligence quotients–matched and age-matched controls (n = 38) were asked to watch a series of synthetic faces looking at objects, and decide which of two objects was looked at. The angle formed by the two possible targets and the face varied following an adaptive procedure, in order to determine individual thresholds. We found that gaze direction detection was less accurate in autism spectrum disorder than in control participants. Our results suggest that the precision of gaze following may be one of the altered processes underlying social interaction difficulties in autism spectrum disorder.”

“Where people look at informs us about what they know, want, or attend to. Atypical or altered detection of gaze direction might thus lead to impoverished acquisition of social information and social interaction. Alternatively, it has been suggested that abnormal monitoring of inner states […], or the lack of social motivation […], would explain the reduced tendency to follow conspecific gaze in individuals with ASD. Either way, a lower tendency to look at the eyes and to follow the gaze would provide fewer opportunities to practice GDD [gaze direction detection – US] ability. Thus, impaired GDD might either play a causal role in atypical social interaction, or conversely be a consequence of it. Exploring GDD earlier in development might help disentangle this issue.”

June 1, 2017 Posted by | Diabetes, Economics, Epidemiology, Medicine, Neurology, Psychiatry, Psychology, Studies | Leave a comment

A few diabetes papers of interest

i. Cost-Effectiveness of Prevention and Treatment of the Diabetic Foot.

“A risk-based Markov model was developed to simulate the onset and progression of diabetic foot disease in patients with newly diagnosed type 2 diabetes managed with care according to guidelines for their lifetime. Mean survival time, quality of life, foot complications, and costs were the outcome measures assessed. Current care was the reference comparison. Data from Dutch studies on the epidemiology of diabetic foot disease, health care use, and costs, complemented with information from international studies, were used to feed the model.

RESULTS—Compared with current care, guideline-based care resulted in improved life expectancy, gain of quality-adjusted life-years (QALYs), and reduced incidence of foot complications. The lifetime costs of management of the diabetic foot following guideline-based care resulted in a cost per QALY gained of <$25,000, even for levels of preventive foot care as low as 10%. The cost-effectiveness varied sharply, depending on the level of foot ulcer reduction attained.

CONCLUSIONS—Management of the diabetic foot according to guideline-based care improves survival, reduces diabetic foot complications, and is cost-effective and even cost saving compared with standard care.”

I won’t go too deeply into the model setup and the results but some of the data they used to feed the model were actually somewhat interesting in their own right, and I have added some of these data below, along with some of the model results.

“It is estimated that 80% of LEAs [lower extremity amputations] are preceded by foot ulcers. Accordingly, it has been demonstrated that preventing the development of foot ulcers in patients with diabetes reduces the frequency of LEAs by 49–85% (6).”

“An annual ulcer incidence rate of 2.1% and an amputation incidence rate of 0.6% were among the reference country-specific parameters derived from this study and adopted in the model.”

“The health outcomes results of the cohort following standard care were comparable to figures reported for diabetic patients in the Netherlands. […] In the 10,000 patients followed until death, a total of 1,780 ulcer episodes occurred, corresponding to a cumulative ulcer incidence of 17.8% and an annual ulcer incidence of 2.2% (mean annual ulcer incidence for the Netherlands is 2.1%) (17). The number of amputations observed was 362 (250 major and 112 minor), corresponding to a cumulative incidence of 3.6% and an annual incidence of 0.4% (mean annual amputation incidence reported for the Netherlands is 0.6%) (17).”

“Cornerstones of guidelines-based care are intensive glycemic control (IGC) and optimal foot care (OFC). Although health benefits and economic efficiency of intensive blood glucose control (8) and foot care programs (914) have been individually reported, the health and economic outcomes and the cost-effectiveness of both interventions have not been determined. […] OFC according to guidelines includes professional protective foot care, education of patients and staff, regular inspection of the feet, identification of the high-risk patient, treatment of nonulcerative lesions, and a multidisciplinary approach to established foot ulcers. […] All cohorts of patients simulated for the different scenarios of guidelines care resulted in improved life expectancy, QALYs gained, and reduced incidence of foot ulcers and LEA compared with standard care. The largest effects on these outcomes were obtained when patients received IGC + OFC. When comparing the independent health effects of the two guidelines strategies, OFC resulted in a greater reduction in ulcer and amputation rates than IGC. Moreover, patients who received IGC + OFC showed approximately the same LEA incidence as patients who received OFC alone. The LEA decrease obtained was proportional to the level of foot ulcer reduction attained.”

“The mean total lifetime costs of a patient under either of the three guidelines care scenarios ranged from $4,088 to $4,386. For patients receiving IGC + OFC, these costs resulted in <$25,000 per QALY gained (relative to standard care). For patients receiving IGC alone, the ICER [here’s a relevant link – US] obtained was $32,057 per QALY gained, and for those receiving OFC alone, this ICER ranged from $12,169 to $220,100 per QALY gained, depending on the level of ulcer reduction attained. […] Increasing the effectiveness of preventive foot care in patients under OFC and IGC + OFC resulted in more QALYs gained, lower costs, and a more favorable ICER. The results of the simulations for the combined scenario (IGC + OFC) were rather insensitive to changes in utility weights and costing parameters. Similar results were obtained for parameter variations in the other two scenarios (IGC and OFC separately).”

“The results of this study suggest that IGC + OFC reduces foot ulcers and amputations and leads to an improvement in life expectancy. Greater health benefits are obtained with higher levels of foot ulcer prevention. Although care according to guidelines increases health costs, the cost per QALY gained is <$25,000, even for levels of preventive foot care as low as 10%. ICERs of this order are cost-effective according to the stratification of interventions for diabetes recently proposed (32). […] IGC falls into the category of a possibly cost-effective intervention in the management of the diabetic foot. Although it does not produce significant reduction in foot ulcers and LEA, its effectiveness resides in the slowing of neuropathy progression rates.

Extrapolating our results to a practical situation, if IGC + OFC was to be given to all diabetic patients in the Netherlands, with the aim of reducing LEA by 50% (St. Vincent’s declaration), the cost per QALY gained would be $12,165 and the cost for managing diabetic ulcers and amputations would decrease by 53 and 58%, respectively. From a policy perspective, this is clearly cost-effective and cost saving compared with current care.”

ii. Early Glycemic Control, Age at Onset, and Development of Microvascular Complications in Childhood-Onset Type 1 Diabetes.

“The aim of this work was to study the impact of glycemic control (HbA1c) early in disease and age at onset on the occurrence of incipient diabetic nephropathy (MA) and background retinopathy (RP) in childhood-onset type 1 diabetes.

RESEARCH DESIGN AND METHODS—All children, diagnosed at 0–14 years in a geographically defined area in northern Sweden between 1981 and 1992, were identified using the Swedish Childhood Diabetes Registry. From 1981, a nationwide childhood diabetes care program was implemented recommending intensified insulin treatment. HbA1c and urinary albumin excretion were analyzed, and fundus photography was performed regularly. Retrospective data on all 94 patients were retrieved from medical records and laboratory reports.

RESULTS—During the follow-up period, with a mean duration of 12 ± 4 years (range 5–19), 17 patients (18%) developed MA, 45 patients (48%) developed RP, and 52% had either or both complications. A Cox proportional hazard regression, modeling duration to occurrence of MA or RP, showed that glycemic control (reflected by mean HbA1c) during the follow-up was significantly associated with both MA and RP when adjusted for sex, birth weight, age at onset, and tobacco use as potential confounders. Mean HbA1c during the first 5 years of diabetes was a near-significant determinant for development of MA (hazard ratio 1.41, P = 0.083) and a significant determinant of RP (1.32, P = 0.036). The age at onset of diabetes significantly influenced the risk of developing RP (1.11, P = 0.021). Thus, in a Kaplan-Meier analysis, onset of diabetes before the age of 5 years, compared with the age-groups 5–11 and >11 years, showed a longer time to occurrence of RP (P = 0.015), but no clear tendency was seen for MA, perhaps due to lower statistical power.

CONCLUSIONS—Despite modern insulin treatment, >50% of patients with childhood-onset type 1 diabetes developed detectable diabetes complications after ∼12 years of diabetes. Inadequate glycemic control, also during the first 5 years of diabetes, seems to accelerate time to occurrence, whereas a young age at onset of diabetes seems to prolong the time to development of microvascular complications. […] The present study and other studies (15,54) indicate that children with an onset of diabetes before the age of 5 years may have a prolonged time to development of microvascular complications. Thus, the youngest age-groups, who are most sensitive to hypoglycemia with regard to risk of persistent brain damage, may have a relative protection during childhood or a longer time to development of complications.”

It’s important to note that although some people reading the study may think this is all ancient history (people diagnosed in the 80es?), to a lot of people it really isn’t. The study is of great personal interest to me, as I was diagnosed in ’87; if it had been a Danish study rather than a Swedish one I might well have been included in the analysis.

Another note to add in the context of the above coverage is that unlike what the authors of the paper seem to think/imply, hypoglycemia may not be the only relevant variable of interest in the context of the effect of childhood diabetes on brain development, where early diagnosis has been observed to tend to lead to less favourable outcomes – other variables which may be important include DKA episodes and perhaps also chronic hyperglycemia during early childhood. See this post for more stuff on these topics.

Some more stuff from the paper:

“The annual incidence of type 1 diabetes in northern Sweden in children 0–14 years of age is now ∼31/100,000. During the time period 1981–1992, there has been an increase in the annual incidence from 19 to 31/100,000 in northern Sweden. This is similar to the rest of Sweden […]. Seventeen (18%) of the 94 patients fulfilled the criteria for MA during the follow-up period. None of the patients developed overt nephropathy, elevated serum creatinine, or had signs of any other kidney disorder, e.g., hematuria, during the follow-up period. […] The mean time to diagnosis of MA was 9 ± 3 years (range 4–15) from diabetes onset. Forty-five (48%) of the 94 patients fulfilled the criteria for RP during the follow-up period. None of the patients developed proliferative retinopathy or were treated with photocoagulation. The mean time to diagnosis of RP was 11 ± 4 years (range 4–19) from onset of diabetes. Of the 45 patients with RP, 13 (29%) had concomitant MA, and thus 13 (76.5%) of the 17 patients with MA had concomitant RP. […] Altogether, among the 94 patients, 32 (34%) had isolated RP, 4 (4%) had isolated MA, and 13 (14%) had combined RP and MA. Thus, 49 (52%) patients had either one or both complications and, hence, 45 (48%) had neither of these complications.”

“When modeling MA as a function of glycemic level up to the onset of MA or during the entire follow-up period, adjusting for sex, birth weight, age at onset of diabetes, and tobacco use, only glycemic control had a significant effect. An increase in hazard ratio (HR) of 83% per one percentage unit increase in mean HbA1c was seen. […] The increase in HR of developing RP for each percentage unit rise in HbA1c during the entire follow-up period was 43% and in the early period 32%. […] Age at onset of diabetes was a weak but significant independent determinant for the development of RP in all regression models (P = 0.015, P = 0.018, and P = 0.010, respectively). […] Despite that this study was relatively small and had a retrospective design, we were able to show that the glycemic level already during the first 5 years may be an important predictor of later development of both MA and RP. This is in accordance with previous prospective follow-up studies (16,30).”

“Previously, male sex, smoking, and low birth weight have been shown to be risk factors for the development of nephropathy and retinopathy (6,4549). However, in this rather small retrospective study with a limited follow-up time, we could not confirm these associations”. This may just be because of lack of power, it’s a relatively small study. Again, this is/was of personal interest to me; two of those three risk factors apply to me, and neither of those risk factors are modifiable.

iii. Eighteen Years of Fair Glycemic Control Preserves Cardiac Autonomic Function in Type 1 Diabetes.

“Reduced cardiovascular autonomic function is associated with increased mortality in both type 1 and type 2 diabetes (14). Poor glycemic control plays an important role in the development and progression of diabetic cardiac autonomic dysfunction (57). […] Diabetic cardiovascular autonomic neuropathy (CAN) can be defined as impaired function of the peripheral autonomic nervous system. Exercise intolerance, resting tachycardia, and silent myocardial ischemia may be early signs of cardiac autonomic dysfunction (9).The most frequent finding in subclinical and symptomatic CAN is reduced heart rate variability (HRV) (10). […] No other studies have followed type 1 diabetic patients on intensive insulin treatment during ≥14-year periods and documented cardiac autonomic dysfunction. We evaluated the association between 18 years’ mean HbA1c and cardiac autonomic function in a group of type 1 diabetic patients with 30 years of disease duration.”

“A total of 39 patients with type 1 diabetes were followed during 18 years, and HbA1c was measured yearly. At 18 years follow-up heart rate variability (HRV) measurements were used to assess cardiac autonomic function. Standard cardiac autonomic tests during normal breathing, deep breathing, the Valsalva maneuver, and the tilt test were performed. Maximal heart rate increase during exercise electrocardiogram and minimal heart rate during sleep were also used to describe cardiac autonomic function.

RESULTS—We present the results for patients with mean HbA1c <8.4% (two lowest HbA1c tertiles) compared with those with HbA1c ≥8.4% (highest HbA1c tertile). All of the cardiac autonomic tests were significantly different in the high- and the low-HbA1c groups, and the most favorable scores for all tests were seen in the low-HbA1c group. In the low-HbA1c group, the HRV was 40% during deep breathing, and in the high-HbA1c group, the HRV was 19.9% (P = 0.005). Minimal heart rate at night was significantly lower in the low-HbA1c groups than in the high-HbA1c group (P = 0.039). With maximal exercise, the increase in heart rate was significantly higher in the low-HbA1c group compared with the high-HbA1c group (P = 0.001).

CONCLUSIONS—Mean HbA1c during 18 years was associated with cardiac autonomic function. Cardiac autonomic function was preserved with HbA1c <8.4%, whereas cardiac autonomic dysfunction was impaired in the group with HbA1c ≥8.4%. […] The study underlines the importance of good glycemic control and demonstrates that good long-term glycemic control is associated with preserved cardiac autonomic function, whereas a lack of good glycemic control is associated with cardiac autonomic dysfunction.”

These results are from Norway (Oslo), and again they seem relevant to me personally (‘from a statistical point of view’) – I’ve had diabetes for about as long as the people they included in the study.

iv. The Mental Health Comorbidities of Diabetes.

“Individuals living with type 1 or type 2 diabetes are at increased risk for depression, anxiety, and eating disorder diagnoses. Mental health comorbidities of diabetes compromise adherence to treatment and thus increase the risk for serious short- and long-term complications […] Young adults with type 1 diabetes are especially at risk for poor physical and mental health outcomes and premature mortality. […] we summarize the prevalence and consequences of mental health problems for patients with type 1 or type 2 diabetes and suggest strategies for identifying and treating patients with diabetes and mental health comorbidities.”

“Major advances in the past 2 decades have improved understanding of the biological basis for the relationship between depression and diabetes.2 A bidirectional relationship might exist between type 2 diabetes and depression: just as type 2 diabetes increases the risk for onset of major depression, a major depressive disorder signals increased risk for on set of type 2 diabetes.2 Moreover, diabetes distress is now recognized as an entity separate from major depressive disorder.2 Diabetes distress occurs because virtually all of diabetes care involves self-management behavior—requiring balance of a complex set of behavioral tasks by the person and family, 24 hours a day, without “vacation” days. […] Living with diabetes is associated with a broad range of diabetes-related distresses, such as feeling over-whelmed with the diabetes regimen; being concerned about the future and the possibility of serious complications; and feeling guilty when management is going poorly. This disease burden and emotional distress in individuals with type 1 or type 2 diabetes, even at levels of severity below the threshold for a psychiatric diagnosis of depression or anxiety, are associated with poor adherence to treatment, poor glycemic control, higher rates of diabetes complications, and impaired quality of life. […] Depression in the context of diabetes is […] associated with poor self-care with respect to diabetes treatment […] Depression among individuals with diabetes is also associated with increased health care use and expenditures, irrespective of age, sex, race/ethnicity, and health insurance status.3

“Women with type 1 diabetes have a 2-fold increased risk for developing an eating disorder and a 1.9-fold increased risk for developing subthreshold eating disorders than women without diabetes.6 Less is known about eating disorders in boys and men with diabetes. Disturbed eating behaviors in women with type 1 diabetes include binge eating and caloric purging through insulin restriction, with rates of these disturbed eating behaviors reported to occur in 31% to 40% of women with type 1 diabetes aged between 15 and 30 years.6 […] disordered eating behaviors persist and worsen over time. Women with type 1 diabetes and eating disorders have poorer glycemic control, with higher rates of hospitalizations and retinopathy, neuropathy, and premature death compared with similarly aged women with type 1 diabetes without eating disorders.6 […] few diabetes clinics provide mental health screening or integrate mental/behavioral health services in diabetes clinical care.4 It is neither practical nor affordable to use standardized psychiatric diagnostic interviews to diagnose mental health comorbidities in individuals with diabetes. Brief paper-and-pencil self-report measures such as the Beck Depression Inventory […] that screen for depressive symptoms are practical in diabetes clinical settings, but their use remains rare.”

The paper does not mention this, but it is important to note that there are multiple plausible biological pathways which might help to explain bidirectional linkage between depression and type 2 diabetes. Physiological ‘stress’ (think: inflammation) is likely to be an important factor, and so are the typical physiological responses to some of the pharmacological treatments used to treat depression (…as well as other mental health conditions); multiple drugs used in psychiatry, including tricyclic antidepressants, cause weight gain and have proven diabetogenic effects – I’ve covered these topics before here on the blog. I’ve incidentally also covered other topics touched briefly upon in the paper – here’s for example a more comprehensive post about screening for depression in the diabetes context, and here’s a post with some information about how one might go about screening for eating disorders; skin signs are important. I was a bit annoyed that the author of the above paper did not mention this, as observing whether or not Russell’s sign – which is a very reliable indicator of eating disorder – is present or not is easier/cheaper/faster than performing any kind of even semi-valid depression screen.

v. Diabetes, Depression, and Quality of Life. This last one covers topics related to the topics covered in the paper above.

“The study consisted of a representative population sample of individuals aged ≥15 years living in South Australia comprising 3,010 personal interviews conducted by trained health interviewers. The prevalence of depression in those suffering doctor-diagnosed diabetes and comparative effects of diabetic status and depression on quality-of-life dimensions were measured.

RESULTS—The prevalence of depression in the diabetic population was 24% compared with 17% in the nondiabetic population. Those with diabetes and depression experienced an impact with a large effect size on every dimension of the Short Form Health-Related Quality-of-Life Questionnaire (SF-36) as compared with those who suffered diabetes and who were not depressed. A supplementary analysis comparing both depressed diabetic and depressed nondiabetic groups showed there were statistically significant differences in the quality-of-life effects between the two depressed populations in the physical and mental component summaries of the SF-36.

CONCLUSIONS—Depression for those with diabetes is an important comorbidity that requires careful management because of its severe impact on quality of life.”

I felt slightly curious about the setup after having read this, because representative population samples of individuals should not in my opinion yield depression rates of either 17% nor 24%. Rates that high suggest to me that the depression criteria used in the paper are a bit ‘laxer’/more inclusive than what you see in some other contexts when reading this sort of literature – to give an example of what I mean, the depression screening post I link to above noted that clinical or major depression occurred in 11.4% of people with diabetes, compared to a non-diabetic prevalence of 5%. There’s a long way from 11% to 24% and from 5% to 17%. Another potential explanation for such a high depression rate could of course also be some sort of selection bias at the data acquisition stage, but that’s obviously not the case here. However 3000 interviews is a lot of interviews, so let’s read on…

“Several studies have assessed the impact of depression in diabetes in terms of the individual’s functional ability or quality of life (3,4,13). Brown et al. (13) examined preference-based time tradeoff utility values associated with diabetes and showed that those with diabetes were willing to trade a significant proportion of their remaining life in return for a diabetes-free health state.”

“Depression was assessed using the mood module of the Primary Care Evaluation of Mental Disorders questionnaire. This has been validated to provide estimates of mental disorder comparable with those found using structured and longer diagnostic interview schedules (16). The mental disorders examined in the questionnaire included major depressive disorder, dysthymia, minor depressive disorder, and bipolar disorder. [So yes, the depression criteria used in this study are definitely more inclusive than depression criteria including only people with MDD] […] The Short Form Health-Related Quality-of-Life Questionnaire (SF-36) was also included to assess the quality of life of the different population groups with and without diabetes. […] Five groups were examined: the overall population without diabetes and without depression; the overall diabetic population; the depression-only population; the diabetic population without depression; and the diabetic population with depression.”

“Of the population sample, 205 (6.8%) were classified as having major depression, 130 (4.3%) had minor depression, 105 (3.5%) had partial remission of major depression, 79 (2.6%) had dysthymia, and 5 (0.2%) had bipolar disorder (depressed phase). No depressive syndrome was detected in 2,486 (82.6%) respondents. The population point prevalence of doctor-diagnosed diabetes in this survey was 5.2% (95% CI 4.6–6.0). The prevalence of depression in the diabetic population was 23.6% (22.1–25.1) compared with 17.1% (15.8–18.4) in the nondiabetic population. This difference approached statistical significance (P = 0.06). […] There [was] a clear difference in the quality-of-life scores for the diabetic and depression group when compared with the diabetic group without depression […] Overall, the highest quality-of-life scores are experienced by those without diabetes and depression and the lowest by those with diabetes and depression. […] the standard scores of those with no diabetes have quality-of-life status comparable with the population mean or slightly better. At the other extreme those with diabetes and depression experience the most severe comparative impact on quality-of-life for every dimension. Between these two extremes, diabetes overall and the diabetes without depression groups have a moderate-to-severe impact on the physical functioning, role limitations (physical), and general health scales […] The results of the two-factor ANOVA showed that the interaction term was significant only for the PCS [Physical Component Score – US] scale, indicating a greater than additive effect of diabetes and depression on the physical health dimension.”

“[T]here was a significant interaction between diabetes and depression on the PCS but not on the MCS [Mental Component Score. Do note in this context that the no-interaction result is far from certain, because as they observe: “it may simply be sample size that has not allowed us to observe a greater than additive effect in the MCS scale. Although there was no significant interaction between diabetes and depression and the MCS scale, we did observe increases on the effect size for the mental health dimensions”]. One explanation for this finding might be that depression can influence physical outcomes, such as recovery from myocardial infarction, survival with malignancy, and propensity to infection. Various mechanisms have been proposed for this, including changes to the immune system (24). Other possibilities are that depression in diabetes may affect the capacity to maintain medication vigilance, maintain a good diet, and maintain other lifestyle factors, such as smoking and exercise, all of which are likely possible pathways for a greater than additive effect. Whatever the mechanism involved, these data indicate that the addition of depression to diabetes has a severe impact on quality of life, and this needs to be managed in clinical practice.”

May 25, 2017 Posted by | Cardiology, Diabetes, Medicine, Nephrology, Neurology, Papers, Personal, Pharmacology, Psychiatry, Psychology | Leave a comment

Diabetes and the Metabolic Syndrome in Mental Health (I)

As I stated in my goodreads review, ‘If you’re a schizophrenic and/or you have a strong interest in e.g. the metabolic effects of various anti-psychotics, the book is a must-read’. If that’s not true, it’s a different matter. One reason why I didn’t give the book a higher rating is that many of the numbers in there are quite dated, which is a bit annoying because it means you might feel somewhat uncertain about how valid the estimates included still are at this point.

As pointed out in my coverage of the human drug metabolism text there are a lot of things that can influence the way that drugs are metabolized, and this text includes some details about a specific topic which may help to illustrate what I meant by stating in that post that people ‘self-experimenting’ may be taking on risks they may not be aware of. Now, diabetics who need insulin injections are taking a drug with a narrow therapeutic index, meaning that even small deviations from the optimal dose may have serious repercussions. A lot of things influence what is actually the optimal dose in a specific setting; food (“food is like a drug to a person with diabetes”, as pointed out in Matthew Neal’s endocrinology text, which is yet another text I, alas, have yet to cover here), sleep patterns, exercise (sometimes there may be an impact even days after you’ve exercised), stress, etc. all play a role, and even well-educated diabetics may not know all the details.

A lot of drugs also affect glucose metabolism and insulin sensitivity, one of the best known drug types of this nature probably being the corticosteroids because of their widespread use in a variety of disorders, including autoimmune disorders which tend to be more common in autoimmune forms of diabetes (mainly type 1). However many other types of drugs can also influence blood glucose, and on the topic of antidepressants and antipsychotics we actually know some stuff about these things and about how various medications influence glucose levels; it’s not a big coincidence that people have looked at this, they’ve done that because it has become clear that “[m]any medications, in particular psychotropics, including antidepressants, antipsychotics, and mood stabilizers, are associated with elevations in blood pressure, weight gain, dyslipidemias, and/or impaired glucose homeostasis.” (p. 49). Which may translate into an increased risk of type 2 diabetes, and impaired glucose control in diabetics. Incidentally the authors of this text observes in the text that: “Our research group was among the first in the field to identify a possible link between the development of obesity, diabetes, and other metabolic derangements (e.g., lipid abnormalities) and the use of newer, second-generation antipsychotic medications.” Did the people who took these drugs before this research was done/completed know that their medications might increase their risk of developing diabetes? No, because the people prescribing it didn’t know, nor did the people who developed the drugs. Some probably still don’t know, including some of the medical people prescribing these medications. But the knowledge is out there now, and the effect size is in the case of some drugs argued to be large enough to be clinically relevant. In the context of a ‘self-experimentation’-angle the example is also interesting because the negative effect in question here is significantly delayed; type 2 diabetes takes time to develop, and this is an undesirable outcome which you’re not going to spot the way you might link a headache the next day to a specific drug you just started out with (another example of a delayed adverse event is incidentally cancer). You’re not going to spot dyslipidemia unless you keep track of your lipid levels on your own or e.g. develop xanthomas as a consequence of it, leading you to consult a physician. It helps a lot if you have proper research protocols and large n studies with sufficient power when you want to discover things like this, and when you want to determine whether an association like this is ‘just an association’ or if the link is actually causal (and then clarifying what we actually mean by that, and whether the causal link is also clinically relevant and/or for whom it might be clinically relevant). Presumably many people taking all kinds of medical drugs these days are taking on risks which might in a similar manner be ‘hidden from view’ as was the risk of diabetes in people taking second-generation antipsychotics in the near-past; over time epidemiological studies may pick up on some of these risks, but many will probably remain hidden from view on account of the amount of complexity involved. Even if a drug ‘works’ as intended in the context of the target variable in question, you can get into a lot of trouble if you only focus on the target variable (“if a drug has no side effects, then it is unlikely to work“). People working in drug development know this.

The book has a lot of blog-worthy stuff so I decided to include some quotes in the coverage below. The quotes are from the first half of the book, and this part of the coverage actually doesn’t talk much about the effects of drugs; it mainly deals with epidemiology and cost estimates. I thus decided to save the ‘drug coverage’ to a later post. It should perhaps be noted that some of the things I’d hoped to learn from Ru-Band Lu et al.’s book (blog coverage here) was actually included in this one, which was nice.

“Those with mental illness are at higher risk and are more likely to suffer the severe consequences of comorbid medical illness. Adherence to treatment is often more difficult, and other factors such as psychoneuroendocrine interactions may complicate already problematic treatments. Additionally, psychiatric medications themselves often have severe side effects and can interact with other medications, rendering treatment of the mental illness more complicated. Diabetes is one example of a comorbid medical illness that is seen at a higher rate in people with mental illness.”

“Depression rates have been studied and are increased in type 1 and type 2 diabetes. In a meta-analysis, Barnard et al. reviewed 14 trials in which patients with type 1 diabetes were surveyed for rates of depression.16 […] subjects with type 1 diabetes had a 12.0% rate of depression compared with a rate of 3.4% in those without diabetes. In noncontrolled trials, they found an even higher rate of depression in patients with type 1 diabetes (13.4%). However, despite these overall findings, in trials that were considered of an adequate design, and with a substantially rigorous depression screening method (i.e., use of structured clinical interview rather than patient reported surveys), the rates were not statistically significantly increased (odds ratio [OR] 2.36, 95% confidence interval [CI] 0.69–5.4) but had such substantial variation that it was not sufficient to draw a conclusion regarding type 1 diabetes. […] When it comes to rates of depression, type 2 diabetes has been studied more extensively than type 1 diabetes. Anderson et al. compiled a large metaanalysis, looking at 42 studies involving more than 21,000 subjects to assess rates of depression among patients with type 1 versus type 2 diabetes mellitus.18 Regardless of how depression was measured, type 1 diabetes was associated with lower rates of depression than type 2 diabetes. […] Depression was significantly increased in both type 1 and type 2 diabetes, with increased ORs for subjects with type 1 (OR = 2.9, 95% CI 1.6 –5.5, […] p=0.0003) and type 2 disease (OR = 2.9, 95% CI 2.3–3.7, […] p = 0.0001) compared with controls. Overall, with multiple factors controlled for, the risk of depression in people with diabetes was approximately twofold. In another large meta-analysis, Ali et al. looked at more than 51,000 subjects in ten different studies to assess rates of depression in type 2 diabetes mellitus. […] the OR for comorbid depression among the diabetic patients studied was higher for men than for women, indicating that although women with diabetes have an overall increased prevalence of depression (23.8 vs. 12.8%, p = 0.0001), men with diabetes have an increased risk of developing depression (men: OR = 1.9, 95% CI = 1.7–2.1 vs. women: OR = 1.3, 95% CI = 1.2–1.4). […] Research has shown that youths 12–17 years of age with type 1 diabetes had double the risk of depression compared with a teenage population without diabetes.21 This amounted to nearly 15% of children meeting the criteria for depression.

As many as two-thirds of patients with diabetes and major depression have been ill with depression for more than 2 years.44 […] Depression has been linked to decreased adherence to self-care regimens (exercise, diet, and cessation of smoking) in patients with diabetes, as well as to the use of diabetes control medications […] Patients with diabetes and depression are twice as likely to have three or more cardiac risk factors such as smoking, obesity, sedentary lifestyle, or A1c > 8.0% compared with patients with diabetes alone.47 […] The costs for individuals with both major depression and diabetes are 4.5 times greater than for those with diabetes alone.53

“A 2004 cross-sectional and longitudinal study of data from the Health and Retirement Study demonstrated that the cumulative risk of incident disability over an 8-year period was 21.3% for individuals with diabetes versus 9.3% for those without diabetes. This study examined a cohort of adults ranging in age from 51 to 61 years from 1992 through 2000.”

Although people with diabetes comprise just slightly more than 4% of the U.S. population,3 19% of every dollar spent on health care (including hospitalizations, outpatient and physician visits, ambulance services, nursing home care, home health care, hospice, and medication/glucose control agents) is incurred by individuals with diabetes” (As I noted in the margin, these are old numbers, and prevalence in particular is definitely higher today than it was when that chapter was written, so diabetics’ proportion of the total cost is likely even higher today than it was when that chapter was written. As observed multiple times previously on this blog, most of these costs are unrelated to the costs of insulin treatment and oral anti-diabetics like metformin, and indirect costs make out a quite substantial proportion of the total costs).

In 1997, only 8% of the population with a medical claim of diabetes was treated for diabetes alone. Other conditions influenced health care spending, with 13.8% of the population with one other condition, 11.2% with two comorbidities, and 67% with three or more related conditions.6 Patients with diabetes who suffer from comorbid conditions related to diabetes have a greater impact on health services compared with those patients who do not have comorbid conditions. […] Overall, comorbid conditions and complications are responsible for 75% of total medical expenditures for diabetes.” (Again, these are old numbers)

“Heart disease and stroke are the largest contributors to mortality for individuals with diabetes; these two conditions are responsible for 65% of deaths. Death rates from heart disease in adults with diabetes are two to four times higher than in adults without diabetes. […] Adults with diabetes are more than twice as likely to have multiple diagnoses related to macrovascular disease compared to patients without diabetes […] Although the prevalence of cardiovascular disease increases with age for both diabetics and nondiabetics, adults with diabetes have a significantly higher rate of disease. […] The management of macrovascular disease, such as heart attacks and strokes, represents the largest factor driving medical service use and related costs, accounting for 52% of costs to treat diabetes over a lifetime. The average costs of treating macrovascular disease are $24,330 of a total of $47,240 per person (in year 2000 dollars) over the course of a lifetime.17 Moreover, macrovascular disease is an important determinant of cost at an earlier time than other complications, accounting for 85% of the cumulative costs during the first 5 years following diagnosis and 77% over the initial decade. [Be careful here: This is completely driven by type 2 diabetics; a 10-year old newly diagnosed type 1 diabetic does not develop heart disease in the first decade of disease – type 1s are also at high risk of cardiovascular disease, but the time profile here is completely different] […] Cardiovascular disease in the presence of diabetes affects not only cost but also the allocation of health care resources. Average annual individual costs attributed to the treatment of diabetes with cardiovascular disease were $10,172. Almost 51% of costs were for inpatient hospitalizations, 28% were for outpatient care, and 21% were for pharmaceuticals and related supplies. In comparison, the average annual costs for adults with diabetes and without cardiovascular disease were $4,402 for management and treatment of diabetes. Only 31.2% of costs were for inpatient hospitalizations, 40.3% were for outpatient care, and 28.6% were for pharmaceuticals.16

Of individuals with diabetes, 2% to 3% develop a foot ulcer during any given year. The lifetime incidence rate of lower extremity ulcers is 15% in the diabetic population.20 […] The rate of amputation in individuals with diabetes is ten times higher than in those without diabetes.5 Diabetic lower-extremity ulcers are responsible for 92,000 amputations each year,21 accounting for more than 60% of all nontraumatic amputations.5 The 10-year cumulative incidence of lower-extremity amputation is 7% in adults older than 30 years of age who are diagnosed with diabetes.22 […] Following amputation, the 5-year survival rate is 27%.23 […] The majority of annual costs associated with treating diabetic peripheral neuropathy are associated with treatment of ulcers […] Overall, inpatient hospitalization is a major driver of cost, accounting for 77% of expenditures associated with individual episodes of lower-extremity ulcers.24

By 2003, diabetes accounted for 37% of individuals being treated for renal disease in the United States. […] Diabetes is the leading cause of kidney failure, accounting for 44% of all newly diagnosed cases. […] The amount of direct medical costs for ESRD attributed to diabetes is substantial. The total adjusted costs in a 24-month period were 76% higher among ESRD patients with diabetes compared with those without diabetes. […] Nearly one half of the costs of ESRD are due to diabetes.27” [How much did these numbers change since the book was written? I’m not sure, but these estimates do provide some sort of a starting point, which is why I decided to include the numbers even though I assume some of them may have changed since the publication of the book]

Every percentage point decrease in A1c levels reduces the risk of microvascular complications such as retinopathy, neuropathy, and nephropathy by 40%.5 However, the trend is for A1c to drift upward at an average of 0.15% per year, increasing the risk of complications and costs.17 […] A1c levels also affect the cost of specific complications associated with diabetes. Increasing levels affect overall cost and escalate more dramatically when comorbidities are present. A1c along with cardiovascular disease, hypertension, and depression are significant independent predictors of health care
costs in adults with diabetes.”

August 10, 2016 Posted by | Books, Cardiology, Diabetes, Economics, Epidemiology, Medicine, Nephrology, Pharmacology, Psychiatry | Leave a comment

Effects of Antidepressants

I gave the book two stars on goodreads. The contributors to this volume are from Brazil, Spain, Mexico, Japan, Turkey, Denmark, and the Czech Republic; the editor is from Taiwan. In most chapters you can tell that the first language of these authors is not English; the language is occasionally quite bad, although you can usually tell what the authors are trying to say.

The book is open access and you can read it here. I have included some quotes from the book below:

“It is estimated that men and women with depression are 20.9 and 27 times, respectively, more likely to commit suicide than those without depression (Briley & Lépine, 2011).” [Well, that’s one way to communicate risk… See also this comment].

“depression is on average twice as common in women as in men (Bromet et al., 2011). […] sex differences have been observed in the prevalence of mental disorders as well as in responses to treatment […] When this [sexual] dimorphism is present [in rats, a common animal model], the drug effect is generally stronger in males than in females.”

“Several reports indicate that follicular stimulating and luteinizing hormones and estradiol oscillations are correlated with the onset or worsening of depression symptoms during early perimenopause […], when major depressive disorder incidence is 3-5 times higher than the male matched population of the same [age] […]. Several longitudinal studies that followed women across the menopausal transition indicate that the risk for significant depressive symptoms increases during the menopausal transition and then decreases in […] early postmenopause […] the impact of hormone oscillations during perimenopause transition may affect the serotonergic system function and increase vulnerability to develop depression.”

“The use of antidepressant drugs for treating patients with depression began in the late 1950s. Since then, many drugs with potential antidepressants have been made available and significant advances have been made in understanding their possible mechanisms of action […]. Only two classes of antidepressants were known until the 80’s: tricyclic antidepressants and monoamine oxidase inhibitors. Both, although effective, were nonspecific and caused numerous side effects […]. Over the past 20 years, new classes of antidepressants have been discovered: selective serotonin reuptake inhibitors, selective serotonin/norepinephrine reuptake inhibitors, serotonin reuptake inhibitors and alpha-2 antagonists, serotonin reuptake stimulants, selective norepinephrine reuptake inhibitors, selective dopamine reuptake inhibitors and alpha-2 adrenoceptor antagonists […] Neither the biological basis of depression […] nor the precise mechanism of antidepressant efficacy are completely understood […]. Indeed, antidepressants are widely prescribed for anxiety and disorders other than depression.”

“Taken together the TCAs and the MAO-Is can be considered to be non-selective or multidimensional drugs, comparable to a more or less rational polypharmacy at the receptor level. This is even when used as monotherapy in the acute therapy of major depression. The new generation of selective antidepressants (the selective serotonin reuptake inhibitors (SSRIs)), or the selective noradrenaline and serotonin reuptake inhibitors (SNRIs) have a selective mechanism of action, thus avoiding polypharmacy. However, the new generation antidepressants such as the SSRIs or SNRIs are less effective than the TCAs. […] The most selective second generation antidepressants have not proved in monotherapy to be more effective on the core symptoms of depression than the first generation TCAs or MAOIs. It is by their safety profiles, either in overdose or in terms of long term side effects, that the second generation antidepressants have outperformed the first generation.”

“Suicide is a serious global public health problem. Nearly 1 million individuals commit suicide every year. […] Suicide […] ranks among the top 10 causes of death in every country, and is one of the three leading causes of death in 15 to 35-year olds.”

“Considering patients that commit suicide, about half of them, at some point, had contact with psychiatric services, yet only a quarter had current or recent contact (Andersen et al., 2000; Lee et al., 2008). A study conducted by Gunnell & Frankel (1994) revealed that 20-25% of those committing suicide had contact with a health care professional in the week before death and 40% had such contact one month before death” (I’m assuming ‘things have changed’ during the last couple of decades, but it would be interesting to know how much they’ve changed).

“In cases of suicide by drug overdose, TCAs have the highest fatal toxicity, followed by serotonin and noradrenalin reuptake inhibitors (SNRIs), specific serotonergic antidepressants (NaSSA) and SSRIs […] SSRIs are considered to be less toxic than TCAs and MAOIs because they have an extended therapeutic window. The ingestion of up to 30 times its recommended daily dose produces little or no symptoms. The intake of 50 to 70 times the recommended daily dose can cause vomiting, mild depression of the CNS or tremors. Death rarely occurs, even at very high doses […] When we talk about suicide and suicide attempt with antidepressants overdose, we are referring mainly to women in their twenties – thirties who are suicide repeaters.”

“Physical pain is one of the most common somatic symptoms in patients that suffer depression and conversely, patients suffering from chronic pain of diverse origins are often depressed. […] While […] data strongly suggest that depression is linked to altered pain perception, pain management has received little attention to date in the field of psychiatric research […] The monoaminergic system influences both mood and pain […], and since many antidepressants modify properties of monoamines, these compounds may be effective in managing chronic pain of diverse origins in non-depressed patients and to alleviate pain in depressed patients. There are abundant evidences in support of the analgesic properties of tricyclic antidepressants (TCAs), particularly amitriptyline, and another TCA, duloxetine, has been approved as an analgesic for diabetic neuropathic pain. By contrast, there is only limited data regarding the analgesic properties of selective serotonin reuptake inhibitors (SSRIs) […]. In general, compounds with noradrenergic and serotonergic modes of action are more effective analgesics […], although the underlying mechanisms of action remain poorly understood […] While the utility of many antidepressant drugs in pain treatment is well established, it remains unclear whether antidepressants alleviate pain by acting on mood (emotional pain) or nociceptive transmission (sensorial pain). Indeed, in many cases, no correlation exists between the level of pain experienced by the patient and the effect of antidepressants on mood. […] Currently, TCAs (amitriptyline, nortriptiline, imipramine and clomipramine) are the most common antidepressants used in the treatment of neuropathic pain processes associated with diabetes, cancer, viral infections and nerve compression. […] TCAs appear to provide effective pain relief at lower doses than those required for their antidepressant effects, while medium to high doses of SNRIs are necessary to produce analgesia”. Do keep in mind here that in a neuropathy setting one should not expect to get anywhere near complete pain relief with these drugs – see also this post.

“Prevalence of a more or less severe depression is approximately double in patients with diabetes compared to a general population [for more on related topics, see incidentally this previous post of mine]. […] Diabetes as a primary disease is typically superimposed by depression as a reactive state. Depression is usually a result of exposure to psycho-social factors that are related to hardship caused by chronic disease. […] Several studies concerning comorbidity of type 1 diabetes and depression identified risk factors of depression development; chronic somatic comorbidity and polypharmacy, female gender, higher age, solitary life, lower than secondary education, lower financial status, cigarette smoking, obesity, diabetes complications and a higher glycosylated hemoglobin [Engum, 2005; Bell, 2005; Hermanns, 2005; Katon, 2004]”

November 11, 2015 Posted by | Books, Diabetes, Epidemiology, Medicine, Pharmacology, Psychiatry, Psychology | Leave a comment