Econstudentlog

Networks

I actually think this was a really nice book, considering the format – I gave it four stars on goodreads. One of the things I noticed people didn’t like about it in the reviews is that it ‘jumps’ a bit in terms of topic coverage; it covers a wide variety of applications and analytical settings. I mostly don’t consider this a weakness of the book – even if occasionally it does get a bit excessive – and I can definitely understand the authors’ choice of approach; it’s sort of hard to illustrate the potential the analytical techniques described within this book have if you’re not allowed to talk about all the areas in which they have been – or could be gainfully – applied. A related point is that many people who read the book might be familiar with the application of these tools in specific contexts but have perhaps not thought about the fact that similar methods are applied in many other areas (and they might all of them be a bit annoyed the authors don’t talk more about computer science applications, or foodweb analyses, or infectious disease applications, or perhaps sociometry…). Most of the book is about graph-theory-related stuff, but a very decent amount of the coverage deals with applications, in a broad sense of the word at least, not theory. The discussion of theoretical constructs in the book always felt to me driven to a large degree by their usefulness in specific contexts.

I have covered related topics before here on the blog, also quite recently – e.g. there’s at least some overlap between this book and Holland’s book about complexity theory in the same series (I incidentally think these books probably go well together) – and as I found the book slightly difficult to blog as it was I decided against covering it in as much detail as I sometimes do when covering these texts – this means that I decided to leave out the links I usually include in posts like these.

Below some quotes from the book.

“The network approach focuses all the attention on the global structure of the interactions within a system. The detailed properties of each element on its own are simply ignored. Consequently, systems as different as a computer network, an ecosystem, or a social group are all described by the same tool: a graph, that is, a bare architecture of nodes bounded by connections. […] Representing widely different systems with the same tool can only be done by a high level of abstraction. What is lost in the specific description of the details is gained in the form of universality – that is, thinking about very different systems as if they were different realizations of the same theoretical structure. […] This line of reasoning provides many insights. […] The network approach also sheds light on another important feature: the fact that certain systems that grow without external control are still capable of spontaneously developing an internal order. […] Network models are able to describe in a clear and natural way how self-organization arises in many systems. […] In the study of complex, emergent, and self-organized systems (the modern science of complexity), networks are becoming increasingly important as a universal mathematical framework, especially when massive amounts of data are involved. […] networks are crucial instruments to sort out and organize these data, connecting individuals, products, news, etc. to each other. […] While the network approach eliminates many of the individual features of the phenomenon considered, it still maintains some of its specific features. Namely, it does not alter the size of the system — i.e. the number of its elements — or the pattern of interaction — i.e. the specific set of connections between elements. Such a simplified model is nevertheless enough to capture the properties of the system. […] The network approach [lies] somewhere between the description by individual elements and the description by big groups, bridging the two of them. In a certain sense, networks try to explain how a set of isolated elements are transformed, through a pattern of interactions, into groups and communities.”

“[T]he random graph model is very important because it quantifies the properties of a totally random network. Random graphs can be used as a benchmark, or null case, for any real network. This means that a random graph can be used in comparison to a real-world network, to understand how much chance has shaped the latter, and to what extent other criteria have played a role. The simplest recipe for building a random graph is the following. We take all the possible pair of vertices. For each pair, we toss a coin: if the result is heads, we draw a link; otherwise we pass to the next pair, until all the pairs are finished (this means drawing the link with a probability p = ½, but we may use whatever value of p). […] Nowadays [the random graph model] is a benchmark of comparison for all networks, since any deviations from this model suggests the presence of some kind of structure, order, regularity, and non-randomness in many real-world networks.”

“…in networks, topology is more important than metrics. […] In the network representation, the connections between the elements of a system are much more important than their specific positions in space and their relative distances. The focus on topology is one of its biggest strengths of the network approach, useful whenever topology is more relevant than metrics. […] In social networks, the relevance of topology means that social structure matters. […] Sociology has classified a broad range of possible links between individuals […]. The tendency to have several kinds of relationships in social networks is called multiplexity. But this phenomenon appears in many other networks: for example, two species can be connected by different strategies of predation, two computers by different cables or wireless connections, etc. We can modify a basic graph to take into account this multiplexity, e.g. by attaching specific tags to edges. […] Graph theory [also] allows us to encode in edges more complicated relationships, as when connections are not reciprocal. […] If a direction is attached to the edges, the resulting structure is a directed graph […] In these networks we have both in-degree and out-degree, measuring the number of inbound and outbound links of a node, respectively. […] in most cases, relations display a broad variation or intensity [i.e. they are not binary/dichotomous]. […] Weighted networks may arise, for example, as a result of different frequencies of interactions between individuals or entities.”

“An organism is […] the outcome of several layered networks and not only the deterministic result of the simple sequence of genes. Genomics has been joined by epigenomics, transcriptomics, proteomics, metabolomics, etc., the disciplines that study these layers, in what is commonly called the omics revolution. Networks are at the heart of this revolution. […] The brain is full of networks where various web-like structures provide the integration between specialized areas. In the cerebellum, neurons form modules that are repeated again and again: the interaction between modules is restricted to neighbours, similarly to what happens in a lattice. In other areas of the brain, we find random connections, with a more or less equal probability of connecting local, intermediate, or distant neurons. Finally, the neocortex — the region involved in many of the higher functions of mammals — combines local structures with more random, long-range connections. […] typically, food chains are not isolated, but interwoven in intricate patterns, where a species belongs to several chains at the same time. For example, a specialized species may predate on only one prey […]. If the prey becomes extinct, the population of the specialized species collapses, giving rise to a set of co-extinctions. An even more complicated case is where an omnivore species predates a certain herbivore, and both eat a certain plant. A decrease in the omnivore’s population does not imply that the plant thrives, because the herbivore would benefit from the decrease and consume even more plants. As more species are taken into account, the population dynamics can become more and more complicated. This is why a more appropriate description than ‘foodchains’ for ecosystems is the term foodwebs […]. These are networks in which nodes are species and links represent relations of predation. Links are usually directed (big fishes eat smaller ones, not the other way round). These networks provide the interchange of food, energy, and matter between species, and thus constitute the circulatory system of the biosphere.”

“In the cell, some groups of chemicals interact only with each other and with nothing else. In ecosystems, certain groups of species establish small foodwebs, without any connection to external species. In social systems, certain human groups may be totally separated from others. However, such disconnected groups, or components, are a strikingly small minority. In all networks, almost all the elements of the systems take part in one large connected structure, called a giant connected component. […] In general, the giant connected component includes not less than 90 to 95 per cent of the system in almost all networks. […] In a directed network, the existence of a path from one node to another does not guarantee that the journey can be made in the opposite direction. Wolves eat sheep, and sheep eat grass, but grass does not eat sheep, nor do sheep eat wolves. This restriction creates a complicated architecture within the giant connected component […] according to an estimate made in 1999, more than 90 per cent of the WWW is composed of pages connected to each other, if the direction of edges is ignored. However, if we take direction into account, the proportion of nodes mutually reachable is only 24 per cent, the giant strongly connected component. […] most networks are sparse, i.e. they tend to be quite frugal in connections. Take, for example, the airport network: the personal experience of every frequent traveller shows that direct flights are not that common, and intermediate stops are necessary to reach several destinations; thousands of airports are active, but each city is connected to less than 20 other cities, on average. The same happens in most networks. A measure of this is given by the mean number of connection of their nodes, that is, their average degree.”

“[A] puzzling contradiction — a sparse network can still be very well connected — […] attracted the attention of the Hungarian mathematicians […] Paul Erdős and Alfréd Rényi. They tackled it by producing different realizations of their random graph. In each of them, they changed the density of edges. They started with a very low density: less than one edge per node. It is natural to expect that, as the density increases, more and more nodes will be connected to each other. But what Erdős and Rényi found instead was a quite abrupt transition: several disconnected components coalesced suddenly into a large one, encompassing almost all the nodes. The sudden change happened at one specific critical density: when the average number of links per node (i.e. the average degree) was greater than one, then the giant connected component suddenly appeared. This result implies that networks display a very special kind of economy, intrinsic to their disordered structure: a small number of edges, even randomly distributed between nodes, is enough to generate a large structure that absorbs almost all the elements. […] Social systems seem to be very tightly connected: in a large enough group of strangers, it is not unlikely to find pairs of people with quite short chains of relations connecting them. […] The small-world property consists of the fact that the average distance between any two nodes (measured as the shortest path that connects them) is very small. Given a node in a network […], few nodes are very close to it […] and few are far from it […]: the majority are at the average — and very short — distance. This holds for all networks: starting from one specific node, almost all the nodes are at very few steps from it; the number of nodes within a certain distance increases exponentially fast with the distance. Another way of explaining the same phenomenon […] is the following: even if we add many nodes to a network, the average distance will not increase much; one has to increase the size of a network by several orders of magnitude to notice that the paths to new nodes are (just a little) longer. The small-world property is crucial to many network phenomena. […] The small-world property is something intrinsic to networks. Even the completely random Erdős-Renyi graphs show this feature. By contrast, regular grids do not display it. If the Internet was a chessboard-like lattice, the average distance between two routers would be of the order of 1,000 jumps, and the Net would be much slower [the authors note elsewhere that “The Internet is composed of hundreds of thousands of routers, but just about ten ‘jumps’ are enough to bring an information packet from one of them to any other.”] […] The key ingredient that transforms a structure of connections into a small world is the presence of a little disorder. No real network is an ordered array of elements. On the contrary, there are always connections ‘out of place’. It is precisely thanks to these connections that networks are small worlds. […] Shortcuts are responsible for the small-world property in many […] situations.”

“Body size, IQ, road speed, and other magnitudes have a characteristic scale: that is, an average value that in the large majority of cases is a rough predictor of the actual value that one will find. […] While height is a homogeneous magnitude, the number of social connection[s] is a heterogeneous one. […] A system with this feature is said to be scale-free or scale-invariant, in the sense that it does not have a characteristic scale. This can be rephrased by saying that the individual fluctuations with respect to the average are too large for us to make a correct prediction. […] In general, a network with heterogeneous connectivity has a set of clear hubs. When a graph is small, it is easy to find whether its connectivity is homogeneous or heterogeneous […]. In the first case, all the nodes have more or less the same connectivity, while in the latter it is easy to spot a few hubs. But when the network to be studied is very big […] things are not so easy. […] the distribution of the connectivity of the nodes of the […] network […] is the degree distribution of the graph. […] In homogeneous networks, the degree distribution is a bell curve […] while in heterogeneous networks, it is a power law […]. The power law implies that there are many more hubs (and much more connected) in heterogeneous networks than in homogeneous ones. Moreover, hubs are not isolated exceptions: there is a full hierarchy of nodes, each of them being a hub compared with the less connected ones.”

“Looking at the degree distribution is the best way to check if a network is heterogeneous or not: if the distribution is fat tailed, then the network will have hubs and heterogeneity. A mathematically perfect power law is never found, because this would imply the existence of hubs with an infinite number of connections. […] Nonetheless, a strongly skewed, fat-tailed distribution is a clear signal of heterogeneity, even if it is never a perfect power law. […] While the small-world property is something intrinsic to networked structures, hubs are not present in all kind of networks. For example, power grids usually have very few of them. […] hubs are not present in random networks. A consequence of this is that, while random networks are small worlds, heterogeneous ones are ultra-small worlds. That is, the distance between their vertices is relatively smaller than in their random counterparts. […] Heterogeneity is not equivalent to randomness. On the contrary, it can be the signature of a hidden order, not imposed by a top-down project, but generated by the elements of the system. The presence of this feature in widely different networks suggests that some common underlying mechanism may be at work in many of them. […] the Barabási–Albert model gives an important take-home message. A simple, local behaviour, iterated through many interactions, can give rise to complex structures. This arises without any overall blueprint”.

Homogamy, the tendency of like to marry like, is very strong […] Homogamy is a specific instance of homophily: this consists of a general trend of like to link to like, and is a powerful force in shaping social networks […] assortative mixing [is] a special form of homophily, in which nodes tend to connect with others that are similar to them in the number of connections. By contrast [when] high- and low-degree nodes are more connected to each other [it] is called disassortative mixing. Both cases display a form of correlation in the degrees of neighbouring nodes. When the degrees of neighbours are positively correlated, then the mixing is assortative; when negatively, it is disassortative. […] In random graphs, the neighbours of a given node are chosen completely at random: as a result, there is no clear correlation between the degrees of neighbouring nodes […]. On the contrary, correlations are present in most real-world networks. Although there is no general rule, most natural and technological networks tend to be disassortative, while social networks tend to be assortative. […] Degree assortativity and disassortativity are just an example of the broad range of possible correlations that bias how nodes tie to each other.”

“[N]etworks (neither ordered lattices nor random graphs), can have both large clustering and small average distance at the same time. […] in almost all networks, the clustering of a node depends on the degree of that node. Often, the larger the degree, the smaller the clustering coefficient. Small-degree nodes tend to belong to well-interconnected local communities. Similarly, hubs connect with many nodes that are not directly interconnected. […] Central nodes usually act as bridges or bottlenecks […]. For this reason, centrality is an estimate of the load handled by a node of a network, assuming that most of the traffic passes through the shortest paths (this is not always the case, but it is a good approximation). For the same reason, damaging central nodes […] can impair radically the flow of a network. Depending on the process one wants to study, other definitions of centrality can be introduced. For example, closeness centrality computes the distance of a node to all others, and reach centrality factors in the portion of all nodes that can be reached in one step, two steps, three steps, and so on.”

“Domino effects are not uncommon in foodwebs. Networks in general provide the backdrop for large-scale, sudden, and surprising dynamics. […] most of the real-world networks show a doubled-edged kind of robustness. They are able to function normally even when a large fraction of the network is damaged, but suddenly certain small failures, or targeted attacks, bring them down completely. […] networks are very different from engineered systems. In an airplane, damaging one element is enough to stop the whole machine. In order to make it more resilient, we have to use strategies such as duplicating certain pieces of the plane: this makes it almost 100 per cent safe. In contrast, networks, which are mostly not blueprinted, display a natural resilience to a broad range of errors, but when certain elements fail, they collapse. […] A random graph of the size of most real-world networks is destroyed after the removal of half of the nodes. On the other hand, when the same procedure is performed on a heterogeneous network (either a map of a real network or a scale-free model of a similar size), the giant connected component resists even after removing more than 80 per cent of the nodes, and the distance within it is practically the same as at the beginning. The scene is different when researchers simulate a targeted attack […] In this situation the collapse happens much faster […]. However, now the most vulnerable is the second: while in the homogeneous network it is necessary to remove about one-fifth of its more connected nodes to destroy it, in the heterogeneous one this happens after removing the first few hubs. Highly connected nodes seem to play a crucial role, in both errors and attacks. […] hubs are mainly responsible for the overall cohesion of the graph, and removing a few of them is enough to destroy it.”

“Studies of errors and attacks have shown that hubs keep different parts of a network connected. This implies that they also act as bridges for spreading diseases. Their numerous ties put them in contact with both infected and healthy individuals: so hubs become easily infected, and they infect other nodes easily. […] The vulnerability of heterogeneous networks to epidemics is bad news, but understanding it can provide good ideas for containing diseases. […] if we can immunize just a fraction, it is not a good idea to choose people at random. Most of the times, choosing at random implies selecting individuals with a relatively low number of connections. Even if they block the disease from spreading in their surroundings, hubs will always be there to put it back into circulation. A much better strategy would be to target hubs. Immunizing hubs is like deleting them from the network, and the studies on targeted attacks show that eliminating a small fraction of hubs fragments the network: thus, the disease will be confined to a few isolated components. […] in the epidemic spread of sexually transmitted diseases the timing of the links is crucial. Establishing an unprotected link with a person before they establish an unprotected link with another person who is infected is not the same as doing so afterwards.”

April 3, 2018 - Posted by | Biology, Books, Ecology, Engineering, Epidemiology, Genetics, Mathematics, Statistics

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: