Econstudentlog

Blood (I)

As I also mentioned on goodreads I was far from impressed with the first few pages of this book – but I read on, and the book actually turned out to include a decent amount of very reasonable coverage. Taking into consideration the way the author started out the three star rating should be considered a high rating, and in some parts of the book the author covers very complicated stuff in a really very decent manner, considering the format of the book and its target group.

Below I have added some quotes and some links to topics/people/ideas/etc. covered in the first half of the book.

“[Clotting] makes it difficult to study the components of blood. It also [made] it impossible to store blood for transfusion [in the past]. So there was a need to find a way to prevent clotting. Fortunately the discovery that the metal calcium accelerated the rate of clotting enabled the development of a range of compounds that bound calcium and therefore prevented this process. One of them, citrate, is still in common use today [here’s a relevant link, US] when blood is being prepared for storage, or to stop blood from clotting while it is being pumped through kidney dialysis machines and other extracorporeal circuits. Adding citrate to blood, and leaving it alone, will result in gravity gradually separating the blood into three layers; the process can be accelerated by rapid spinning in a centrifuge […]. The top layer is clear and pale yellow or straw-coloured in appearance. This is the plasma, and it contains no cells. The bottom layer is bright red and contains the dense pellet of red cells that have sunk to the bottom of the tube. In-between these two layers is a very narrow layer, called the ‘buffy coat’ because of its pale yellow-brown appearance. This contains white blood cells and platelets. […] red cells, white cells, and platelets […] define the primary functions of blood: oxygen transport, immune defence, and coagulation.”

“The average human has about five trillion red blood cells per litre of blood or thirty trillion […] in total, making up a quarter of the total number of cells in the body. […] It is clear that the red cell has primarily evolved to perform a single function, oxygen transportation. Lacking a nucleus, and the requisite machinery to control the synthesis of new proteins, there is a limited ability for reprogramming or repair. […] each cell [makes] a complete traverse of the body’s circulation about once a minute. In its three- to four-month lifetime, this means every cell will do the equivalent of 150,000 laps around the body. […] Red cells lack mitochondria; they get their energy by fermenting glucose. […] A prosaic explanation for their lack of mitochondria is that it prevents the loss of any oxygen picked up from the lungs on the cells’ journey to the tissues that need it. The shape of the red cell is both deformable and elastic. In the bloodstream each cell is exposed to large shear forces. Yet, due to the properties of the membrane, they are able to constrict to enter blood vessels smaller in diameter than their normal size, bouncing back to their original shape on exiting the vessel the other side. This ability to safely enter very small openings allows capillaries to be very small. This in turn enables every cell in the body to be close to a capillary. Oxygen consequently only needs to diffuse a short distance from the blood to the surrounding tissue; this is vital as oxygen diffusion outside the bloodstream is very slow. Various pathologies, such as diabetes, peripheral vascular disease, and septic shock disturb this deformability of red blood cells, with deleterious consequences.”

“Over thirty different substances, proteins and carbohydrates, contribute to an individual’s blood group. By far the best known are the ABO and Rhesus systems. This is not because the proteins and carbohydrates that comprise these particular blood group types are vitally important for red cell function, but rather because a failure to account for these types during a blood transfusion can have catastrophic consequences. The ABO blood group is sugar-based […] blood from an O person can be safely given to anyone (with no sugar antigens this person is a ‘universal’ donor). […] As all that is needed to convert A and B to O is to remove a sugar, there is commercial and medical interest in devising ways to do this […] the Rh system […] is protein-based rather than sugar based. […] Rh proteins sit in the lipid membrane of the cell and control the transport of molecules into and out of the cell, most probably carbon dioxide and ammonia. The situation is complex, with over thirty different subgroups relating to subtle differences in the protein structure.”

“Unlike the red cells, all white cell subtypes contain nuclei. Some also contain on their surface a set of molecules called the ‘major histocompatibility complex’ (MHC). In humans, these receptors are also called ‘human leucocyte antigens’ (HLA). Their role is to recognize fragments of protein from pathogens and trigger the immune response that will ultimately destroy the invaders. Crudely, white blood cells can be divided into those that attack ‘on sight’ any foreign material — whether it be a fragment of inanimate material such as a splinter or an invading microorganism — and those that form part of a defence mechanism that recognizes specific biomolecules and marshals a slower, but equally devastating response. […] cells of the non-specific (or innate) immune system […] are divided into those that have nuclei with multiple lobed shapes (polymorphonuclear leukocytes or PMN) and those that have a single lobe nucleus ([…] ‘mononuclear leucocytes‘ or ‘MN’). PMN contain granules inside them and so are sometimes called ‘granulocytes‘.”

“Neutrophils are by far the most abundant PMN, making up over half of the total white blood cell count. The primary role of a neutrophil is to engulf a foreign object such as an invading microorganism. […] Eosinophils and basophils are the least abundant PMN cell type, each making up less than 2 per cent of white blood cells. The role of basophils is to respond to tissue injury by triggering an inflammatory response. […] When activated, basophils and mast cells degranulate, releasing molecules such as histamine, leukotrienes, and cytokines. Some of these molecules trigger an increase in blood flow causing redness and heat in the damaged site, others sensitize the area to pain. Greater permeability of the blood vessels results in plasma leaking out of the vessels and into the surrounding tissue at an increased rate, causing swelling. […] This is probably an evolutionary adaption to prevent overuse of a damaged part of the body but also helps to bring white cells and proteins to the damaged, inflamed area. […] The main function of eosinophils is to tackle invaders too large to be engulfed by neutrophils, such as the multicellular parasitic tapeworms and nematodes. […] Monocytes are a type of mononuclear leucocyte (MN) making up about 5 per cent of white blood cells. They spend even less tiem in the circulation than neutrophils, generally less than ten hours, but their time in the blood circulation does not end in death. Instead, they are converted into a cell called a ‘macrophage‘ […] Their role is similar to the neutrophil, […] the ultimate fate of both the red blood cell and the neutrophil is to be engulfed by a macrophage. An excess of monocytes in a blood count (monocytosis) is an indicator of chronic inflammation”.

“Blood has to flow freely. Therefore, the red cells, white cells, and platelets are all suspended in a watery solution called ‘plasma’. But plasma is more than just water. In fact if it were only water all the cells would burst. Plasma has to have a very similar concentration of molecules and ions as the cells. This is because cells are permeable to water. So if the concentration of dissolved substances in the plasma was significantly higher than that in the cells, water would flow from the cells to the plasma in an attempt to equalize this gradient by diluting the plasma; this would result in cell shrinkage. Even worse, if the concentration in the plasma was lower than in the cells, water would flow into the cells from the plasma, and the resulting pressure increase would burst the cells, releasing all their contents into the plasma in the process. […] Plasma contains much more than just the ions required to prevent cells bursting or shrinking. It also contains key components designed to assist in cellular function. The protein clotting factors that are part of the coagulation cascade are always present in low concentrations […] Low levels of antibodies, produced by the lymphocytes, circulate […] In addition to antibodies, the plasma contains C-reactive proteins, Mannose-binding lectin and complement proteins that function as ‘opsonins‘ […] A host of other proteins perform roles independent of oxygen delivery or immune defence. By far the most abundant protein in serum is albumin. […] Blood is the transport infrastructure for any molecule that needs to be moved around the body. Some, such as the water-soluble fuel glucose, and small hormones like insulin, dissolve freely in the plasma. Others that are less soluble hitch a ride on proteins [….] Dangerous reactive molecules, such as iron, are also bound to proteins, in this case transferrin.”

Immunoglobulins are produced by B lymphocytes and either remain bound on the surface of the cell (as part of the B cell receptor) or circulate freely in the plasma (as antibodies). Whatever their location, their purpose is the same – to bind to and capture foreign molecules (antigens). […] To perform the twin role of binding the antigen and the phagocytosing cell, immunoglobulins need to have two distinct parts to their structure — one that recognizes the foreign antigen and one that can be recognized — and destroyed — by the host defence system. The host defence system does not vary; a specific type of immunoglobulin will be recognized by one of the relatively few types of immune cells or proteins. Therefore this part of the immunoglobulin structure is not variable. But the nature of the foreign antigen will vary greatly; so the antigen-recognizing part of the structure must be highly variable. It is this that leads to the great variety of immunoglobulins. […] within the blood there is an army of potential binding sites that can recognize and bind to almost any conceivable chemical structure. Such variety is why the body is able to adapt and kill even organisms it has never encountered before. Indeed the ability to make an immunoglobulin recognize almost any structure has resulted in antibody binding assays being used historically in diagnostic tests ranging from pregnancy to drugs testing.”

“[I]mmunoglobulins consist of two different proteins — a heavy chain and a light chain. In the human heavy chain there are about forty different V (variable) segments, twenty-five different D (Diversity) segments, and six J (Joining) segments. The light chain also contains variable V and J segments. A completed immunoglobulin has a heavy chain with only one V, D, and J segment, and a light chain with only one V and D segment. It is the shuffling of these segments during development of the mature B lymphocyte that creates the diversity required […] the hypervariable regions are particularly susceptible to mutation during development. […] A separate class of immunoglobulin-like molecules also provide the key to cell-to-cell communication in the immune system. In humans, with the exception of the egg and sperm cells, all cells that possess a nucleus also have a protein on their surface called ‘Human Leucocyte Antigen (HLA) Class I’. The function of HLA Class I is to display fragments (antigens) of all the proteins currently being made inside the cell. It therefore acts like a billboard displaying the current highlights of cellular activity. Any proteins recognized as non-self by cytotoxic T cell lymphocytes will result in the whole cell being targeted for destruction […]. Another form of HLA, Class II, is only present on the surface of specialized cells of the immune system termed antigen presenting cells. In contrast to HLA Class I, the surface of HLA Class II cells displays antigens that originate from outside of the cell.”

Galen.
Bloodletting.
Marcello Malpighi.
William Harvey. De Motu Cordis.
Andreas Vesalius. De humani corporis fabrica.
Ibn al-Nafis. Michael Servetus. Realdo Colombo. Andrea Cesalpino.
Pulmonary circulation.
Hematopoietic stem cell. Bone marrow. Erythropoietin.
Hemoglobin.
Anemia.
Peroxidase.
Lymphocytes. NK cells. Granzyme. B lymphocytes. T lymphocytes. Antibody/Immunoglobulin. Lymphoblast.
Platelet. Coagulation cascade. Fibrinogen. Fibrin. Thrombin. Haemophilia. Hirudin. Von Willebrand disease. Haemophilia A. -ll- B.
Tonicity. Colloid osmotic pressure.
Adaptive immune system. Vaccination. VariolationAntiserum. Agostino Bassi. Muscardine. Louis Pasteur. Élie Metchnikoff. Paul Ehrlich.
Humoral immunity. Membrane attack complex.
Niels Kaj Jerne. David Talmage. Frank Burnet. Clonal selection theory. Peter Medawar.
Susumu Tonegawa.

June 2, 2018 - Posted by | Biology, Books, Immunology, Medicine, Molecular biology

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: