Econstudentlog

Gastrointestinal complications of diabetes (I)

I really liked this book. It covered a lot of stuff also covered in Horowitz & Samsom’s excellent book on these topics, but it’s shorter and so probably easier for the relevant target group to justify reading. I recommend the book if you want to know more about these topics but don’t quite feel like reading a long textbook on these topics.

Below I’ve added some observations from the first half of the book. In the quotes below I’ve added some links and highlighted some key observations by the use of bold text.

Gastrointestinal (GI) symptoms occur more commonly in patients with diabetes than in the general population [2]. […] GI symptoms such as nausea, abdominal pain, bloating, diarrhea, constipation, and delayed gastric emptying occur in almost 75 % of patients with diabetes [3]. A majority of patients with GI symptoms stay undiagnosed or undertreated due to a lack of awareness of these complications among clinicians. […] Diabetes can affect the entire GI tract from the oral cavity and esophagus to the large bowel and anorectal region, either in isolation or in a combination. The extent and the severity of the presenting symptoms may vary widely depending upon which part of the GI tract is involved. In patients with long-term type 1 DM, upper GI symptoms seem to be particularly common [4]. Of the different types […] gastroparesis seems to be the most well known and most serious complication, occurring in about 50 % of patients with diabetes-related GI complications [5].”

The enteric nervous system (ENS) is an independent network of neurons and glial cells that spread from the esophagus up to the internal anal sphincter. […] the ENS regulates GI tract functions including motility, secretion, and participation in immune regulation [12, 13]. GI complications and their symptoms in patients with diabetes arise secondary to both abnormalities of gastric function (sensory and motor modality), as well as impairment of GI hormonal secretion [14], but these abnormalities are complex and incompletely understood. […] It has been known for a long time that diabetic autonomic neuropathy […] leads to abnormalities in the GI motility, sensation, secretion, and absorption, serving as the main pathogenic mechanism underlying GI complications. Recently, evidence has emerged to suggest that other processes might also play a role. Loss of the pacemaker interstitial cells of Cajal, impairment of the inhibitory nitric oxide-containing nerves, abnormal myenteric neurotransmission, smooth muscle dysfunction, and imbalances in the number of excitatory and inhibitory enteric neurons can drastically alter complex motor functions causing dysfunction of the enteric system [7, 11, 15, 16]. This dysfunction can further lead to the development of dysphagia and reflux esophagitis in the esophagus, gastroparesis, and dyspepsia in the stomach, pseudo-obstruction of the small intestine, and constipation, diarrhea, and incontinence in the colon. […] Compromised intestinal vascular flow arising due to ischemia and hypoxia from microvascular disease of the GI tract can also cause abdominal pain, bleeding, and mucosal dysfunction. Mitochondrial dysfunction has been implicated in the pathogenesis of gastric neuropathy. […] Another possible association between DM and the gastrointestinal tract can be infrequent autoimmune diseases associated with type I DM like autoimmune chronic pancreatitis, celiac disease (2–11 %), and autoimmune gastropathy (2 % prevalence in general population and three- to fivefold increase in patients with type 1 DM) [28, 29]. GI symptoms are often associated with the presence of other diabetic complications, especially autonomic and peripheral neuropathy [2, 30, 31]. In fact, patients with microvascular complications such as retinopathy, nephropathy, or neuropathy should be presumed to have GI abnormalities until proven otherwise. In a large cross-sectional questionnaire study of 1,101 subjects with DM, 57 % of patients reported at least one GI complication [31]. Poor glycemic control has also been found to be associated with increased severity of the upper GI symptoms. […] management of DM-induced GI complications is challenging, is generally suboptimal, and needs improvement.

Diabetes mellitus (DM) has multiple clinically important effects on the esophagus. Diabetes results in several esophageal motility disturbances, increases the risk of esophageal candidiasis, and increases the risk of Barrett’s esophagus and esophageal carcinoma. Finally, “black esophagus,” or acute esophageal necrosis, is also associated with DM. […] Esophageal dysmotility has been shown to be associated with diabetic neuropathy; however, symptomatic esophageal dysmotility is not often considered an important complication of diabetes. […] In general, the manometric effects of diabetes on the esophagus are not specific and mostly related to speed and strength of peristalsis. […] The pathological findings which amount to loss of cholinergic stimulation are consistent with the manometric findings in the esophagus, which are primarily related to slowed or weakened peristalsis. […] The association between DM and GERD is complex and conflicting. […] A recent meta-analysis suggests an overall positive association in Western countries [12]. […] The underlying pathogenesis of DM contributing to GERD is not fully elucidated, but is likely related to reduced acid clearance due to slow, weakened esophageal peristalsis. The association between DM and gastroesophageal reflux (GER) is well established, but the link between DM and GERD, which requires symptoms or esophagitis, is more complex because sensation may be blunted in diabetics with neuropathy. Asymptomatic gastroesophageal reflux (GER) confirmed by pH studies is significantly more frequent in diabetic patients than in healthy controls [13]. […] long-standing diabetics with neuropathy are at higher risk for GERD even if they have no symptoms. […] Abnormal pH and motility studies do not correlate very well with the GI symptoms of diabetics, possibly due to DM-related sensory dysfunction.”

Gastroparesis is defined as a chronic disorder characterized by delayed emptying of the stomach occurring in the absence of mechanical obstruction. It is a well-known and potentially serious complication of diabetes. […] Diabetic gastroparesis affects up to 40 % of patients with type 1 diabetes and up to 30 % of patients with type 2 diabetes [1, 2]. Diabetic gastroparesis generally affects patients with longstanding diabetes mellitus, and patients often have other diabetic complications […] For reasons that remain unclear, approximately 80 % of patients with gastroparesis are women [3]. […] In diabetes, delayed gastric emptying can often be asymptomatic. Therefore, the term gastroparesis should only be reserved for patients that have both delayed gastric emptying and upper gastrointestinal symptoms. Additionally, discordance between the pattern and type of symptoms and the magnitude of delayed gastric emptying is a well-established phenomenon. Accelerating gastric emptying may not improve symptoms, and patients can have symptomatic improvement while gastric emptying time remains unchanged. Furthermore, patients with severe symptoms can have mild delays in gastric emptying. Clinical features of gastroparesis include nausea, vomiting, bloating, abdominal pain, and malnutrition. […] Gastroparesis affects oral drug absorption and can cause hyperglycemia that is challenging to manage, in addition to unexplained hypoglycemia. […] Nutritional and caloric deficits are common in patients with gastroparesis […] Possible complications of gastroparesis include volume depletion with renal failure, malnutrition, electrolyte abnormalities, esophagitis, Mallory–Weiss tear (from vomiting), or bezoar formation. […] Unfortunately, there is a dearth of medications available to treat gastroparesis. Additionally, many of the medications used are based on older trials with small sample sizes […and some of them have really unpleasant side effects – US]. […] Gastroparesis can be associated with abdominal pain in as many as 50 % of patients with gastroparesis at tertiary care centers. There are no trials to guide the choice of agents. […] Abdominal pain […] is often difficult to treat [3]. […] In a subset of patients with diabetes [less than 10%, according to Horowitz & Samsom – US], gastric emptying can be abnormally accelerated […]. Symptoms are often difficult to distinguish from those with delayed gastric emptying. […] Worsening symptoms with a prokinetic agent can be a sign of possible accelerated emptying.”

“Diabetic enteropathy encompasses small intestinal and colorectal dysfunctions such as diarrhea, constipation, and/or fecal incontinence. It is more commonly seen in patients with long-standing diabetes, especially in those with gastroparesis. Development of diabetic enteropathy is complex and multifactorial. […] gastrointestinal symptoms and complications do not always correlate with the duration of diabetes, glycemic control, or with the presence of autonomic neuropathy, which is often assumed to be the major cause of many gastrointestinal symptoms. Other pathophysiologic processes operative in diabetic enteropathy include enteric myopathy and neuropathy; however, causes of these abnormalities are unknown [1]. […] Collectively, the effects of diabetes on several targets cause aberrations in gastrointestinal function and regulation. Loss of ICC, autonomic neuropathy, and imbalances in the number of excitatory and inhibitory enteric neurons can drastically alter complex motor functions such as peristalsis, reflexive relaxation, sphincter tone, vascular flow, and intestinal segmentation [5]. […] Diarrhea is a common complaint in DM. […] Etiologies of diarrhea in diabetes are multifactorial and include rapid intestinal transit, drug-induced diarrhea, small-intestine bacterial overgrowth, celiac disease, pancreatic exocrine insufficiency, dietary factors, anorectal dysfunction, fecal incontinence, and microscopic colitis [1]. […] It is important to differentiate whether diarrhea is caused by rapid intestinal transit vs. SIBO. […] This differentiation has key clinical implications with regard to the use of antimotility agents or antibiotics in a particular case. […] Constipation is a common problem seen with long-standing DM. It is more common than in general population, where the incidence varies from 2 % to 30 % [30]. It affects 60 % of the patients with DM and is more common than diarrhea [14]. […] There are no specific treatments for diabetes-associated constipation […] In most cases, patients are treated in the same way as those with idiopathic chronic constipation. […] Colorectal cancer is the third most common cancer in men and the second in women [33]. Individuals with type 2 DM have an increased risk of colorectal cancer when compared with their nondiabetic counterparts […] According to a recent large observational population-based cohort study, type 2 DM was associated with a 1.3-fold increased risk of colorectal cancer compared to the general population.”

Nonalcoholic fatty liver disease (NAFLD) is the main hepatic complication of obesity, insulin resistance, and diabetes and soon to become the leading cause for end-stage liver disease in the United States [1]. […] NAFLD is a spectrum of disease that ranges from steatosis (hepatic fat without significant hepatocellular injury) to nonalcoholic steatohepatitis (NASH; hepatic fat with hepatocellular injury) to advanced fibrosis and cirrhosis. As a direct consequence of the obesity epidemic, NAFLD is the most common cause of chronic liver disease, while NASH is the second leading indication for liver transplantation [1]. NAFLD prevalence is estimated at 25 % globally [2] and up to 30 % in the United States [3–5]. Roughly 30 % of individuals with NAFLD also have NASH, the progressive subtype of NAFLD. […] NASH is estimated at 22 % among patients with diabetes, compared to 5 % of the general population [4, 14]. […] Insulin resistance is strongly associated with NASH. […] Simple steatosis (also known as nonalcoholic fatty liver) is characterized by the presence of steatosis without ballooned hepatocytes (which represents hepatocyte injury) or fibrosis. Mild inflammation may be present. Simple steatosis is associated with a very low risk of progressive liver disease and liver-related mortality. […] Patients with NASH are at risk for progressive liver fibrosis and liver-related mortality, cardiovascular complications, and hepatocellular carcinoma (HCC) even in the absence of cirrhosis [26]. Liver fibrosis stage progresses at an estimated rate of one stage every 7 years [27]. Twenty percent of patients with NASH will eventually develop liver cirrhosis [9]. […] The risk of cardiovascular disease is increased across the entire NAFLD spectrum. […] Cardiovascular risk reduction should be aggressively managed in all patients.

 

June 17, 2018 - Posted by | Books, Cancer/oncology, Cardiology, Diabetes, Gastroenterology, Medicine, Neurology

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: