Econstudentlog

The pleasure of finding things out (II)

Here’s my first post about the book. In this post I have included a few more quotes from the last half of the book.

“Are physical theories going to keep getting more abstract and mathematical? Could there be today a theorist like Faraday in the early nineteenth century, not mathematically sophisticated but with a very powerful intuition about physics?
Feynman: I’d say the odds are strongly against it. For one thing, you need the math just to understand what’s been done so far. Beyond that, the behavior of subnuclear systems is so strange compared to the ones the brain evolved to deal with that the analysis has to be very abstract: To understand ice, you have to understand things that are themselves very unlike ice. Faraday’s models were mechanical – springs and wires and tense bands in space – and his images were from basic geometry. I think we’ve understood all we can from that point of view; what we’ve found in this century is different enough, obscure enough, that further progress will require a lot of math.”

“There’s a tendency to pomposity in all this, to make it all deep and profound. My son is taking a course in philosophy, and last night we were looking at something by Spinoza – and there was the most childish reasoning! There were all these Attributes, and Substances, all this meaningless chewing around, and we started to laugh. Now, how could we do that? Here’s this great Dutch philosopher, and we’re laughing at him. It’s because there was no excuse for it! In that same period there was Newton, there was Harvey studying the circulation of the blood, there were people with methods of analysis by which progress was being made! You can take every one of Spinoza’s propositions, and take the contrary propositions, and look at the world – and you can’t tell which is right. Sure, people were awed because he had the courage to take on these great questions, but it doesn’t do any good to have the courage if you can’t get anywhere with the question. […] It isn’t the philosophy that gets me, it’s the pomposity. If they’d just laugh at themselves! If they’d just say, “I think it’s like this, but von Leipzig thought it was like that, and he had a good shot at it, too.” If they’d explain that this is their best guess … But so few of them do”.

“The lesson you learn as you grow older in physics is that what we can do is a very small fraction of what there is. Our theories are really very limited.”

“The first principle is that you must not fool yourself – and you are the easiest person to fool. So you have to be very careful about that. After you’ve not fooled yourself, it’s easy not to fool other scientists. You just have to be honest in a conventional way after that.”

“When I was an undergraduate I worked with Professor Wheeler* as a research assistant, and we had worked out together a new theory about how light worked, how the interaction between atoms in different places worked; and it was at that time an apparently interesting theory. So Professor Wigner†, who was in charge of the seminars there [at Princeton], suggested that we give a seminar on it, and Professor Wheeler said that since I was a young man and hadn’t given seminars before, it would be a good opportunity to learn how to do it. So this was the first technical talk that I ever gave. I started to prepare the thing. Then Wigner came to me and said that he thought the work was important enough that he’d made special invitations to the seminar to Professor Pauli, who was a great professor of physics visiting from Zurich; to Professor von Neumann, the world’s greatest mathematician; to Henry Norris Russell, the famous astronomer; and to Albert Einstein, who was living near there. I must have turned absolutely white or something because he said to me, “Now don’t get nervous about it, don’t be worried about it. First of all, if Professor Russell falls asleep, don’t feel bad, because he always falls asleep at lectures. When Professor Pauli nods as you go along, don’t feel good, because he always nods, he has palsy,” and so on. That kind of calmed me down a bit”.

“Well, for the problem of understanding the hadrons and the muons and so on, I can see at the present time no practical applications at all, or virtually none. In the past many people have said that they could see no applications and then later they found applications. Many people would promise under those circumstances that something’s bound to be useful. However, to be honest – I mean he looks foolish; saying there will never be anything useful is obviously a foolish thing to do. So I’m going to be foolish and say these damn things will never have any application, as far as I can tell. I’m too dumb to see it. All right? So why do you do it? Applications aren’t the only thing in the world. It’s interesting in understanding what the world is made of. It’s the same interest, the curiosity of man that makes him build telescopes. What is the use of discovering the age of the universe? Or what are these quasars that are exploding at long distances? I mean what’s the use of all that astronomy? There isn’t any. Nonetheless, it’s interesting. So it’s the same kind of exploration of our world that I’m following and it’s curiosity that I’m satisfying. If human curiosity represents a need, the attempt to satisfy curiosity, then this is practical in the sense that it is that. That’s the way I would look at it at the present time. I would not put out any promise that it would be practical in some economic sense.”

“To science we also bring, besides the experiment, a tremendous amount of human intellectual attempt at generalization. So it’s not merely a collection of all those things which just happen to be true in experiments. It’s not just a collection of facts […] all the principles must be as wide as possible, must be as general as possible, and still be in complete accord with experiment, that’s the challenge. […] Evey one of the concepts of science is on a scale graduated somewhere between, but at neither end of, absolute falsity or absolute truth. It is necessary, I believe, to accept this idea, not only for science, but also for other things; it is of great value to acknowledge ignorance. It is a fact that when we make decisions in our life, we don’t necessarily know that we are making them correctly; we only think that we are doing the best we can – and that is what we should do.”

“In this age of specialization, men who thoroughly know one field are often incompetent to discuss another.”

“I believe that moral questions are outside of the scientific realm. […] The typical human problem, and one whose answer religion aims to supply, is always of the following form: Should I do this? Should we do this? […] To answer this question we can resolve it into two parts: First – If I do this, what will happen? – and second – Do I want that to happen? What would come of it of value – of good? Now a question of the form: If I do this, what will happen? is strictly scientific. […] The technique of it, fundamentally, is: Try it and see. Then you put together a large amount of information from such experiences. All scientists will agree that a question – any question, philosophical or other – which cannot be put into the form that can be tested by experiment (or, in simple terms, that cannot be put into the form: If I do this, what will happen?) is not a scientific question; it is outside the realm of science.”

June 26, 2019 - Posted by | Astronomy, Books, Mathematics, Philosophy, Physics, Quotes/aphorisms, Science

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: