Econstudentlog

Isotopes

A decent book. Below some quotes and links.

“[A]ll mass spectrometers have three essential components — an ion source, a mass filter, and some sort of detector […] Mass spectrometers need to achieve high vacuum to allow the uninterrupted transmission of ions through the instrument. However, even high-vacuum systems contain residual gas molecules which can impede the passage of ions. Even at very high vacuum there will still be residual gas molecules in the vacuum system that present potential obstacles to the ion beam. Ions that collide with residual gas molecules lose energy and will appear at the detector at slightly lower mass than expected. This tailing to lower mass is minimized by improving the vacuum as much as possible, but it cannot be avoided entirely. The ability to resolve a small isotope peak adjacent to a large peak is called ‘abundance sensitivity’. A single magnetic sector TIMS has abundance sensitivity of about 1 ppm per mass unit at uranium masses. So, at mass 234, 1 ion in 1,000,000 will actually be 235U not 234U, and this will limit our ability to quantify the rare 234U isotope. […] AMS [accelerator mass spectrometry] instruments use very high voltages to achieve high abundance sensitivity. […] As I write this chapter, the human population of the world has recently exceeded seven billion. […] one carbon atom in 1012 is mass 14. So, detecting 14C is far more difficult than identifying a single person on Earth, and somewhat comparable to identifying an individual leaf in the Amazon rain forest. Such is the power of isotope ratio mass spectrometry.”

14C is produced in the Earth’s atmosphere by the interaction between nitrogen and cosmic ray neutrons that releases a free proton turning 147N into 146C in a process that we call an ‘n-p’ reaction […] Because the process is driven by cosmic ray bombardment, we call 14C a ‘cosmogenic’ isotope. The half-life of 14C is about 5,000 years, so we know that all the 14C on Earth is either cosmogenic or has been created by mankind through nuclear reactors and bombs — no ‘primordial’ 14C remains because any that originally existed has long since decayed. 14C is not the only cosmogenic isotope; 16O in the atmosphere interacts with cosmic radiation to produce the isotope 10Be (beryllium). […] The process by which a high energy cosmic ray particle removes several nucleons is called ‘spallation’. 10Be production from 16O is not restricted to the atmosphere but also occurs when cosmic rays impact rock surfaces. […] when cosmic rays hit a rock surface they don’t bounce off but penetrate the top 2 or 3 metres (m) — the actual ‘attenuation’ depth will vary for particles of different energy. Most of the Earth’s crust is made of silicate minerals based on bonds between oxygen and silicon. So, the same spallation process that produces 10Be in the atmosphere also occurs in rock surfaces. […] If we know the flux of cosmic rays impacting a surface, the rate of production of the cosmogenic isotopes with depth below the rock surface, and the rate of radioactive decay, it should be possible to convert the number of cosmogenic atoms into an exposure age. […] Rocks on Earth which are shielded from much of the cosmic radiation have much lower levels of isotopes like 10Be than have meteorites which, before they arrive on Earth, are exposed to the full force of cosmic radiation. […] polar scientists have used cores drilled through ice sheets in Antarctica and Greenland to compare 10Be at different depths and thereby reconstruct 10Be production through time. The 14C and 10Be records are closely correlated indicating the common response to changes in the cosmic ray flux.”

“[O]nce we have credible cosmogenic isotope production rates, […] there are two classes of applications, which we can call ‘exposure’ and ‘burial’ methodologies. Exposure studies simply measure the accumulation of the cosmogenic nuclide. Such studies are simplest when the cosmogenic nuclide is a stable isotope like 3He and 21Ne. These will just accumulate continuously as the sample is exposed to cosmic radiation. Slightly more complicated are cosmogenic isotopes that are radioactive […]. These isotopes accumulate through exposure but will also be destroyed by radioactive decay. Eventually, the isotopes achieve the condition known as ‘secular equilibrium’ where production and decay are balanced and no chronological information can be extracted. Secular equilibrium is achieved after three to four half-lives […] Imagine a boulder that has been transported from its place of origin to another place within a glacier — what we call a glacial erratic. While the boulder was deeply covered in ice, it would not have been exposed to cosmic radiation. Its cosmogenic isotopes will only have accumulated since the ice melted. So a cosmogenic isotope exposure age tells us the date at which the glacier retreated, and, by examining multiple erratics from different locations along the course of the glacier, allows us to construct a retreat history for the de-glaciation. […] Burial methodologies using cosmogenic isotopes work in situations where a rock was previously exposed to cosmic rays but is now located in a situation where it is shielded.”

“Cosmogenic isotopes are also being used extensively to recreate the seismic histories of tectonically active areas. Earthquakes occur when geological faults give way and rock masses move. A major earthquake is likely to expose new rock to the Earth’s surface. If the field geologist can identify rocks in a fault zone that (s)he is confident were brought to the surface in an earthquake, then a cosmogenic isotope exposure age would date the fault — providing, of course, that subsequent erosion can be ruled out or quantified. Precarious rocks are rock outcrops that could reasonably be expected to topple if subjected to a significant earthquake. Dating the exposed surface of precarious rocks with cosmogenic isotopes can reveal the amount of time that has elapsed since the last earthquake of a magnitude that would have toppled the rock. Constructing records of seismic history is not merely of academic interest; some of the world’s seismically active areas are also highly populated and developed.”

“One aspect of the natural decay series that acts in favour of the preservation of accurate age information is the fact that most of the intermediate isotopes are short-lived. For example, in both the U series the radon (Rn) isotopes, which might be expected to diffuse readily out of a mineral, have half-lives of only seconds or days, too short to allow significant losses. Some decay series isotopes though do have significantly long half-lives which offer the potential to be geochronometers in their own right. […] These techniques depend on the tendency of natural decay series to evolve towards a state of ‘secular equilibrium’ in which the activity of all species in the decay series is equal. […] at secular equilibrium, isotopes with long half-lives (i.e. small decay constants) will have large numbers of atoms whereas short-lived isotopes (high decay constants) will only constitute a relatively small number of atoms. Since decay constants vary by several orders of magnitude, so will the numbers of atoms of each isotope in the equilibrium decay series. […] Geochronological applications of natural decay series depend upon some process disrupting the natural decay series to introduce either a deficiency or an excess of an isotope in the series. The decay series will then gradually return to secular equilibrium and the geochronometer relies on measuring the extent to which equilibrium has been approached.”

“The ‘ring of fire’ volcanoes around the margin of the Pacific Ocean are a manifestation of subduction in which the oldest parts of the Pacific Ocean crust are being returned to the mantle below. The oldest parts of the Pacific Ocean crust are about 150 million years (Ma) old, with anything older having already disappeared into the mantle via subduction zones. The Atlantic Ocean doesn’t have a ring of fire because it is a relatively young ocean which started to form about 60 Ma ago, and its oldest rocks are not yet ready to form subduction zones. Thus, while continental crust persists for billions of years, oceanic crust is a relatively transient (in terms of geological time) phenomenon at the Earth’s surface.”

“Mantle rocks typically contain minerals such as olivine, pyroxene, spinel, and garnet. Unlike say ice, which melts to form water, mixtures of minerals do not melt in the proportions in which they occur in the rock. Rather, they undergo partial melting in which some minerals […] melt preferentially leaving a solid residue enriched in refractory minerals […]. We know this from experimentally melting mantle-like rocks in the laboratory, but also because the basalts produced by melting of the mantle are closer in composition to Ca-rich (clino-) pyroxene than to the olivine-rich rocks that dominate the solid pieces (or xenoliths) of mantle that are sometimes transferred to the surface by certain types of volcanic eruptions. […] Thirty years ago geologists fiercely debated whether the mantle was homogeneous or heterogeneous; mantle isotope geochemistry hasn’t yet elucidated all the details but it has put to rest the initial conundrum; Earth’s mantle is compositionally heterogeneous.”

Links:

Frederick Soddy.
Rutherford–Bohr model.
Isotopes of hydrogen.
Radioactive decay. Types of decay. Alpha decay. Beta decay. Electron capture decay. Branching fraction. Gamma radiation. Spontaneous fission.
Promethium.
Lanthanides.
Radiocarbon dating.
Hessel de Vries.
Dendrochronology.
Suess effect.
Bomb pulse.
Delta notation (non-wiki link).
Isotopic fractionation.
C3 carbon fixation. C4 carbon fixation.
Nitrogen-15 tracing.
Isotopes of strontium. Strontium isotope analysis.
Ötzi.
Mass spectrometry.
Geiger counter.
Townsend avalanche.
Gas proportional counter.
Scintillation detector.
Liquid scintillation spectometry. Photomultiplier tube.
Dynode.
Thallium-doped sodium iodide detectors. Semiconductor-based detectors.
Isotope separation (-enrichment).
Doubly labeled water.
Urea breath test.
Radiation oncology.
Brachytherapy.
Targeted radionuclide therapy.
Iodine-131.
MIBG scan.
Single-photon emission computed tomography.
Positron emission tomography.
Inductively coupled plasma (ICP) mass spectrometry.
Secondary ion mass spectrometry.
Faraday cup (-detector).
δ18O.
Stadials and interstadials. Oxygen isotope ratio cycle.
Insolation.
Gain and phase model.
Milankovitch cycles.
Perihelion and aphelion. Precession.
Equilibrium Clumped-Isotope Effects in Doubly Substituted Isotopologues of Ethane (non-wiki link).
Age of the Earth.
Uranium–lead dating.
Geochronology.
Cretaceous–Paleogene boundary.
Argon-argon dating.
Nuclear chain reaction. Critical mass.
Fukushima Daiichi nuclear disaster.
Natural nuclear fission reactor.
Continental crust. Oceanic crust. Basalt.
Core–mantle boundary.
Chondrite.
Ocean Island Basalt.
Isochron dating.

November 23, 2017 Posted by | Biology, Books, Botany, Chemistry, Geology, Medicine, Physics | Leave a comment