Econstudentlog

Molecules

This book is almost exclusively devoted to covering biochemistry topics. When the coverage is decent I find biochemistry reasonably interesting – for example I really liked Beer, Björk & Beardall’s photosynthesis book – and the coverage here was okay, but not more than that. I think that Ball was trying to cover a bit too much ground, or perhaps that there was really too much ground to cover for it to even make sense to try to write a book on this particular topic in a series like this. I learned a lot though.

As usual I’ve added some quotes from the coverage below, as well as some additional links to topics/concepts/people/etc. covered in the book.

“Most atoms on their own are highly reactive – they have a predisposition to join up with other atoms. Molecules are collectives of atoms, firmly welded together into assemblies that may contain anything up to many millions of them. […] By molecules, we generally mean assemblies of a discrete, countable number of atoms. […] Some pure elements adopt molecular forms; others do not. As a rough rule of thumb, metals are non-molecular […] whereas non-metals are molecular. […] molecules are the smallest units of meaning in chemistry. It is through molecules, not atoms, that one can tell stories in the sub-microscopic world. They are the words; atoms are just the letters. […] most words are distinct aggregates of several letters arranged in a particular order. We often find that longer words convey subtler and more finely nuanced meanings. And in molecules, as in words, the order in which the component parts are put together matters: ‘save’ and ‘vase’ do not mean the same thing.”

“There are something like 60,000 different varieties of protein molecule in human cells, each conducting a highly specialized task. It would generally be impossible to guess what this task is merely by looking at a protein. They are undistinguished in appearance, mostly globular in shape […] and composed primarily of carbon, hydrogen, nitrogen, oxygen, and a little sulphur. […] There are twenty varieties of amino acids in natural proteins. In the chain, one amino acid is linked to the next via a covalent bond called a peptide bond. Both molecules shed a few extraneous atoms to make this linkage, and the remainder – another link in the chain – is called a residue. The chain itself is termed a polypeptide. Any string of amino acid residues is a polypeptide. […] In a protein the order of amino acids along the chain – the sequence – is not arbitrary. It is selected […] to ensure that the chain will collapse and curl up in water into the precisely determined globular form of the protein, with all parts of the chain in the right place. This shape can be destroyed by warming the protein, a process called denaturation. But many proteins will fold up again spontaneously into the same globular structure when cooled. In other words, the chain has a kind of memory of its folded shape. The details of this folding process are still not fully understood – it is, in fact, one of the central unsolved puzzles of molecular biology. […] proteins are made not in the [cell] nucleus but in a different compartment called the endoplasmic reticulum […]. The gene is transcribed first into a molecule related to DNA, called RNA (ribonucleic acid). The RNA molecules travel from the nucleus to the endoplasmic reticulum, where they are translated to proteins. The proteins are then shipped off to where they are needed.”

[M]icrofibrils aggregate together in various ways. For example, they can gather in a staggered arrangement to form thick strands called banded fibrils. […] Banded fibrils constitute the connective tissues between cells – they are the cables that hold our flesh together. Bone consists of collagen banded fibrils sprinkled with tiny crystals of the mineral hydroxyapatite, which is basically calcium phosphate. Because of the high protein content of bone, it is flexible and resilient as well as hard. […] In contrast to the disorderly tangle of connective tissue, the eye’s cornea contains collagen fibrils packed side by side in an orderly manner. These fibrils are too small to scatter light, and so the material is virtually transparent. The basic design principle – one that recurs often in nature – is that, by tinkering with the chemical composition and, most importantly, the hierarchical arrangement of the same basic molecules, it is possible to extract several different kinds of material properties. […] cross-links determine the strength of the material: hair and fingernail are more highly cross-linked than skin. Curly or frizzy hair can be straightened by breaking some of [the] sulphur cross-links to make the hairs more pliable. […] Many of the body’s structural fabrics are proteins. Unlike enzymes, structural proteins do not have to conduct any delicate chemistry, but must simply be (for instance) tough, or flexible, or waterproof. In principle many other materials besides proteins would suffice; and indeed, plants use cellulose (a sugar-based polymer) to make their tissues.”

“In many ways, it is metabolism and not replication that provides the best working definition of life. Evolutionary biologists would say that we exist in order to reproduce – but we are not, even the most amorous of us, trying to reproduce all the time. Yet, if we stop metabolizing, even for a minute or two, we are done for. […] Whether waking or asleep, our bodies stay close to a healthy temperature of 37 °C. There is only one way of doing this: our cells are constantly pumping out heat, a by-product of metabolism. Heat is not really the point here – it is simply unavoidable, because all conversion of energy from one form to another squanders some of it this way. Our metabolic processes are primarily about making molecules. Cells cannot survive without constantly reinventing themselves: making new amino acids for proteins, new lipids for membranes, new nucleic acids so that they can divide.”

“In the body, combustion takes place in a tightly controlled, graded sequence of steps, and some chemical energy is drawn off and stored at each stage. […] A power station burns coal, oil, or gas […]. Burning is just a means to an end. The heat is used to turn water into steam; the pressure of the steam drives turbines; the turbines spin and send wire coils whirling in the arms of great magnets, which induces an electrical current in the wire. Energy is passed on, from chemical to heat to mechanical to electrical. And every plant has a barrage of regulatory and safety mechanisms. There are manual checks on pressure gauges and on the structural integrity of moving parts. Automatic sensors make the measurements. Failsafe devices avert catastrophic failure. Energy generation in the cell is every bit as complicated. […] The cell seems to have thought of everything, and has protein devices for fine-tuning it all.”

ATP is the key to the maintenance of cellular integrity and organization, and so the cell puts a great deal of effort into making as much of it as possible from each molecule of glucose that it burns. About 40 per cent of the energy released by the combustion of food is conserved in ATP molecules. ATP is rich in energy because it is like a coiled spring. It contains three phosphate groups, linked like so many train carriages. Each of these phosphate groups has a negative charge; this means that they repel one another. But because they are joined by chemical bonds, they cannot escape one another […]. Straining to get away, the phosphates pull an energetically powerful punch. […] The links between phosphates can be snipped in a reaction that involves water […] called hydrolysis (‘splitting with water’). Each time a bond is hydrolysed, energy is released. Setting free the outermost phosphate converts ATP to adenosine diphosphate (ADP); cleave the second phosphate and it becomes adenosine monophosphate (AMP). Both severances release comparable amounts of energy.”

“Burning sugar is a two-stage process, beginning with its transformation to a molecule called pyruvate in a process known as glycolysis […]. This involves a sequence of ten enzyme-catalysed steps. The first five of these split glucose in half […], powered by the consumption of ATP molecules: two of them are ‘decharged’ to ADP for every glucose molecule split. But the conversion of the fragments to pyruvate […] permits ATP to be recouped from ADP. Four ATP molecules are made this way, so that there is an overall gain of two ATP molecules per glucose molecule consumed. Thus glycolysis charges the cell’s batteries. Pyruvate then normally enters the second stage of the combustion process: the citric acid cycle, which requires oxygen. But if oxygen is scarce – that is, under anaerobic conditions – a contingency plan is enacted whereby pyruvate is instead converted to the molecule lactate. […] The first thing a mitochondrion does is convert pyruvate enzymatically to a molecule called acetyl coenzyme A (CoA). The breakdown of fatty acids and glycerides from fats also eventually generates acetyl CoA. The [citric acid] cycle is a sequence of eight enzyme-catalysed reactions that transform acetyl CoA first to citric acid and then to various other molecules, ending with […] oxaloacetate. This end is a new beginning, for oxaloacetate reacts with acetyl CoA to make citric acid. In some of the steps of the cycle, carbon dioxide is generated as a by-product. It dissolves in the bloodstream and is carried off to the lungs to be exhaled. Thus in effect the carbon in the original glucose molecules is syphoned off into the end product carbon dioxide, completing the combustion process. […] Also syphoned off from the cycle are electrons – crudely speaking, the citric acid cycle sends an electrical current to a different part of the mitochondrion. These electrons are used to convert oxygen molecules and positively charged hydrogen ions to water – an energy-releasing process. The energy is captured and used to make ATP in abundance.”

“While mammalian cells have fuel-burning factories in the form of mitochondria, the solar-power centres in the cells of plant leaves are compartments called chloroplasts […] chloroplast takes carbon dioxide and water, and from them constructs […] sugar. […] In the first part of photosynthesis, light is used to convert NADP to an electron carrier (NADPH) and to transform ADP to ATP. This is effectively a charging-up process that primes the chloroplast for glucose synthesis. In the second part, ATP and NADPH are used to turn carbon dioxide into sugar, in a cyclic sequence of steps called the Calvin–Benson cycle […] There are several similarities between the processes of aerobic metabolism and photosynthesis. Both consist of two distinct sub-processes with separate evolutionary origins: a linear sequence of reactions coupled to a cyclic sequence that regenerates the molecules they both need. The bridge between glycolysis and the citric acid cycle is the electron-ferrying NAD molecule; the two sub-processes of photosynthesis are bridged by the cycling of an almost identical molecule, NAD phosphate (NADP).”

“Despite the variety of messages that hormones convey, the mechanism by which the signal is passed from a receptor protein at the cell surface to the cell’s interior is the same in almost all cases. It involves a sequence of molecular interactions in which molecules transform one another down a relay chain. In cell biology this is called signal transduction. At the same time as relaying the message, these interactions amplify the signal so that the docking of a single hormone molecule to a receptor creates a big response inside the cell. […] The receptor proteins span the entire width of the membrane; the hormone-binding site protrudes on the outer surface, while the base of the receptor emerges from the inner surface […]. When the receptor binds its target hormone, a shape change is transmitted to the lower face of the protein, which enables it to act as an enzyme. […] The participants of all these processes [G protein, guanosine diphosphate and -triphosphate, adenylate cyclase… – figured it didn’t matter if I left out a few details – US…] are stuck to the cell wall. But cAMP floats freely in the cell’s cytoplasm, and is able to carry the signal into the cell interior. It is called a ‘second messenger’, since it is the agent that relays the signal of the ‘first messenger’ (the hormone) into the community of the cell. Cyclic AMP becomes attached to protein molecules called protein kinases, whereupon they in turn become activated as enzymes. Most protein kinases switch other enzymes on and off by attaching phosphate groups to them – a reaction called phosphorylation. […] The process might sound rather complicated, but it is really nothing more than a molecular relay. The signal is passed from the hormone to its receptor, then to the G protein, on to an enzyme and thence to the second messenger, and further on to a protein kinase, and so forth. The G-protein mechanism of signal transduction was discovered in the 1970s by Alfred Gilman and Martin Rodbell, for which they received the 1994 Nobel Prize for medicine. It represents one of the most widespread means of getting a message across a cell membrane. […] it is not just hormonal signalling that makes use of the G-protein mechanism. Our senses of vision and smell, which also involve the transmission of signals, employ the same switching process.”

“Although axon signals are electrical, they differ from those in the metal wires of electronic circuitry. The axon is basically a tubular cell membrane decorated along its length with channels that let sodium and potassium ions in and out. Some of these ion channels are permanently open; others are ‘gated’, opening or closing in response to electrical signals. And some are not really channels at all but pumps, which actively transport sodium ions out of the cell and potassium ions in. These sodium-potassium pumps can move ions […] powered by ATP. […] Drugs that relieve pain typically engage with inhibitory receptors. Morphine, the main active ingredient of opium, binds to so-called opioid receptors in the spinal cord, which inhibit the transmission of pain signals to the brain. There are also opioid receptors in the brain itself, which is why morphine and related opiate drugs have a mental as well as a somatic effect. These receptors in the brain are the binding sites of peptide molecules called endorphins, which the brain produces in response to pain. Some of these are themselves extremely powerful painkillers. […] Not all pain-relieving drugs (analgesics) work by blocking the pain signal. Some prevent the signal from ever being sent. Pain signals are initiated by peptides called prostaglandins, which are manufactured and released by distressed cells. Aspirin (acetylsalicylic acid) latches onto and inhibits one of the enzymes responsible for prostaglandin synthesis, cutting off the cry of pain at its source. Unfortunately, prostaglandins are also responsible for making the mucus that protects the stomach lining […], so one of the side effects of aspirin is the risk of ulcer formation.”

“Shape changes […] are common when a receptor binds its target. If binding alone is the objective, a big shape change is not terribly desirable, since the internal rearrangements of the receptor make heavy weather of the binding event and may make it harder to achieve. This is why many supramolecular hosts are designed so that they are ‘pre-organized’ to receive their guests, minimizing the shape change caused by binding.”

“The way that a protein chain folds up is determined by its amino-acid sequence […] so the ‘information’ for making a protein is uniquely specified by this sequence. DNA encodes this information using […] groups of three bases [to] represent each amino acid. This is the genetic code.* How a particular protein sequence determines the way its chain folds is not yet fully understood. […] Nevertheless, the principle of information flow in the cell is clear. DNA is a manual of information about proteins. We can think of each chromosome as a separate chapter, each gene as a word in that chapter (they are very long words!), and each sequential group of three bases in the gene as a character in the word. Proteins are translations of the words into another language, whose characters are amino acids. In general, only when the genetic language is translated can we understand what it means.”

“It is thought that only about 2–3 per cent of the entire human genome codes for proteins. […] Some people object to genetic engineering on the grounds that it is ethically wrong to tamper with the fundamental material of life – DNA – whether it is in bacteria, humans, tomatoes, or sheep. One can understand such objections, and it would be arrogant to dismiss them as unscientific. Nevertheless, they do sit uneasily with what we now know about the molecular basis of life. The idea that our genetic make-up is sacrosanct looks hard to sustain once we appreciate how contingent, not to say arbitrary, that make-up is. Our genomes are mostly parasite-riddled junk, full of the detritus of over three billion years of evolution.”

Links:

Roald Hoffmann.
Molecular solid.
Covalent bond.
Visible spectrum.
X-ray crystallography.
Electron microscope.
Valence (chemistry).
John Dalton.
Isomer.
Lysozyme.
Organic chemistry.
Synthetic dye industry/Alizarin.
Paul Ehrlich (staining).
Retrosynthetic analysis. [I would have added a link to ‘rational synthesis as well here if there’d been a good article on that topic, but I wasn’t able to find one. Anyway: “Organic chemists call [the] kind of procedure […] in which a starting molecule is converted systematically, bit by bit, to the desired product […] a rational synthesis.”]
Paclitaxel synthesis.
Protein.
Enzyme.
Tryptophan synthase.
Ubiquitin.
Amino acid.
Protein folding.
Peptide bond.
Hydrogen bond.
Nucleotide.
Chromosome.
Structural gene. Regulatory gene.
Operon.
Gregor Mendel.
Mitochondrial DNA.
RNA world.
Ribozyme.
Artificial gene synthesis.
Keratin.
Silk.
Vulcanization.
Aramid.
Microtubule.
Tubulin.
Carbon nanotube.
Amylase/pepsin/glycogen/insulin.
Cytochrome c oxidase.
ATP synthase.
Haemoglobin.
Thylakoid membrane.
Chlorophyll.
Liposome.
TNT.
Motor protein. Dynein. Kinesin.
Sarcomere.
Sliding filament theory of muscle action.
Photoisomerization.
Supramolecular chemistry.
Hormone. Endocrine system.
Neurotransmitter.
Ionophore.
DNA.
Mutation.
Intron. Exon.
Transposon.
Molecular electronics.

October 30, 2017 - Posted by | Biology, Books, Botany, Chemistry, Genetics, Molecular biology, Neurology, Pharmacology

No comments yet.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.