Econstudentlog

The Origin of Species

I figured I ought to blog this book at some point, and today I decided to take out the time to do it. This is the second book by Darwin I’ve read – for blog content dealing with Darwin’s book The Voyage of the Beagle, see these posts. The two books are somewhat different; Beagle is sort of a travel book written by a scientist who decided to write down his observations during his travels, whereas Origin is a sort of popular-science research treatise – for more details on Beagle, see the posts linked above. If you plan on reading both the way I did I think you should aim to read them in the order they are written.

I did not rate the book on goodreads because I could not think of a fair way to rate the book; it’s a unique and very important contribution to the history of science, but how do you weigh the other dimensions? I decided not to try. Some of the people reviewing the book on goodreads call the book ‘dry’ or ‘dense’, but I’d say that I found the book quite easy to read compared to quite a few of the other books I’ve been reading this year and it doesn’t actually take that long to read; thus I read a quite substantial proportion of the book during a one day trip to Copenhagen and back. The book can be read by most literate people living in the 21st century – you do not need to know any evolutionary biology to read this book – but that said, how you read the book will to some extent depend upon how much you know about the topics about which Darwin theorizes in his book. I had a conversation with my brother about the book a short while after I’d read it, and I recall noting during that conversation that in my opinion one would probably get more out of reading this book if one has at least some knowledge of geology (for example some knowledge about the history of the theory of continental drift – this book was written long before the theory of plate tectonics was developed), paleontology, Mendel’s laws/genetics/the modern synthesis and modern evolutionary thought, ecology and ethology, etc. Whether or not you actually do ‘get more out of the book’ if you already know some stuff about the topics about which Darwin speaks is perhaps an open question, but I think a case can certainly be made that someone who already knows a bit about evolution and related topics will read this book in a different manner than will someone who knows very little about these topics. I should perhaps in this context point out to people new to this blog that even though I hardly consider myself an expert on these sorts of topics, I have nevertheless read quite a bit of stuff about those things in the past – books like this, this, this, this, this, this, this, this, this, this, this, this, this, this, and this one – so I was reading the book perhaps mainly from the vantage point of someone at least somewhat familiar both with many of the basic ideas and with a lot of the refinements of these ideas that people have added to the science of biology since Darwin’s time. One of the things my knowledge of modern biology and related topics had not prepared me for was how moronic some of the ideas of Darwin’s critics were at the time and how stupid some of the implicit alternatives were, and this is actually part of the fun of reading this book; there was a lot of stuff back then which even many of the people presumably held in high regard really had no clue about, and even outrageously idiotic ideas were seemingly taken quite seriously by people involved in the debate. I assume that biologists still to this day have to spend quite a bit of time and effort dealing with ignorant idiots (see also this), but back in Darwin’s day these people were presumably to a much greater extent taken seriously even among people in the scientific community, if indeed they were not themselves part of the scientific community.

Darwin was not right about everything and there’s a lot of stuff that modern biologists know which he had no idea about, so naturally some mistaken ideas made their way into Origin as well; for example the idea of the inheritance of acquired characteristics (Lamarckian inheritance) occasionally pops up and is implicitly defended in the book as a credible complement to natural selection, as also noted in Oliver Francis’ afterword to the book. On a general note it seems that Darwin did a better job convincing people about the importance of the concept of evolution than he did convincing people that the relevant mechanism behind evolution was natural selection; at least that’s what’s argued in wiki’s featured article on the history of evolutionary thought (to which I have linked before here on the blog).

Darwin emphasizes more than once in the book that evolution is a very slow process which takes a lot of time (for example: “I do believe that natural selection will always act very slowly, often only at long intervals of time, and generally on only a very few of the inhabitants of the same region at the same time”, p.123), and arguably this is also something about which he is part right/part wrong because the speed with which natural selection ‘makes itself felt’ depends upon a variety of factors, and it can be really quite fast in some contexts (see e.g. this and some of the topics covered in books like this one); though you can appreciate why he held the views he did on that topic.

A big problem confronted by Darwin was that he didn’t know how genes work, so in a sense the whole topic of the ‘mechanics of the whole thing’ – the ‘nuts and bolts’ – was more or less a black box to him (I have included a few quotes which indirectly relate to this problem in my coverage of the book below; as can be inferred from those quotes Darwin wasn’t completely clueless, but he might have benefited greatly from a chat with Gregor Mendel…) – in a way a really interesting thing about the book is how plausible the theory of natural selection is made out to be despite this blatantly obvious (at least to the modern reader) problem. Darwin was incidentally well aware there was a problem; just 6 pages into the first chapter of the book he observes frankly that: “The laws governing inheritance are quite unknown”. Some of the quotes below, e.g. on reciprocal crosses, illustrate that he was sort of scratching the surface, but in the book he never does more than that.

Below I have added some quotes from the book.

“Certainly no clear line of demarcation has as yet been drawn between species and sub-species […]; or, again, between sub-species and well-marked varieties, or between lesser varieties and individual differences. These differences blend into each other in an insensible series; and a series impresses the mind with the idea of an actual passage. […] I look at individual differences, though of small interest to the systematist, as of high importance […], as being the first step towards such slight varieties as are barely thought worth recording in works on natural history. And I look at varieties which are in any degree more distinct and permanent, as steps leading to more strongly marked and more permanent varieties; and at these latter, as leading to sub-species, and to species. […] I attribute the passage of a variety, from a state in which it differs very slightly from its parent to one in which it differs more, to the action of natural selection in accumulating […] differences of structure in certain definite directions. Hence I believe a well-marked variety may be justly called an incipient species […] I look at the term species as one arbitrarily given, for the sake of convenience, to a set of individuals closely resembling each other, and that it does not essentially differ from the term variety, which is given to less distinct and more fluctuating forms. The term variety, again, in comparison with mere individual differences, is also applied arbitrarily, and for mere convenience’ sake. […] the species of large genera present a strong analogy with varieties. And we can clearly understand these analogies, if species have once existed as varieties, and have thus originated: whereas, these analogies are utterly inexplicable if each species has been independently created.”

“Owing to [the] struggle for life, any variation, however slight and from whatever cause proceeding, if it be in any degree profitable to an individual of any species, in its infinitely complex relations to other organic beings and to external nature, will tend to the preservation of that individual, and will generally be inherited by its offspring. The offspring, also, will thus have a better chance of surviving, for, of the many individuals of any species which are periodically born, but a small number can survive. I have called this principle, by which each slight variation, if useful, is preserved, by the term of Natural Selection, in order to mark its relation to man’s power of selection. We have seen that man by selection can certainly produce great results, and can adapt organic beings to his own uses, through the accumulation of slight but useful variations, given to him by the hand of Nature. But Natural Selection, as we shall hereafter see, is a power incessantly ready for action, and is as immeasurably superior to man’s feeble efforts, as the works of Nature are to those of Art. […] In looking at Nature, it is most necessary to keep the foregoing considerations always in mind – never to forget that every single organic being around us may be said to be striving to the utmost to increase in numbers; that each lives by a struggle at some period of its life; that heavy destruction inevitably falls either on the young or old, during each generation or at recurrent intervals. Lighten any check, mitigate the destruction ever so little, and the number of the species will almost instantaneously increase to any amount. The face of Nature may be compared to a yielding surface, with ten thousand sharp wedges packed close together and driven inwards by incessant blows, sometimes one wedge being struck, and then another with greater force. […] A corollary of the highest importance may be deduced from the foregoing remarks, namely, that the structure of every organic being is related, in the most essential yet often hidden manner, to that of all other organic beings, with which it comes into competition for food or residence, or from which it has to escape, or on which it preys.”

“Under nature, the slightest difference of structure or constitution may well turn the nicely-balanced scale in the struggle for life, and so be preserved. How fleeting are the wishes and efforts of man! how short his time! And consequently how poor will his products be, compared with those accumulated by nature during whole geological periods. […] It may be said that natural selection is daily and hourly scrutinising, throughout the world, every variation, even the slightest; rejecting that which is bad, preserving and adding up all that is good; silently and insensibly working, whenever and wherever opportunity offers, at the improvement of each organic being in relation to its organic and inorganic conditions of life. We see nothing of these slow changes in progress, until the hand of time has marked the long lapses of ages, and then so imperfect is our view into long past geological ages, that we only see that the forms of life are now different from what they formerly were.”

“I have collected so large a body of facts, showing, in accordance with the almost universal belief of breeders, that with animals and plants a cross between different varieties, or between individuals of the same variety but of another strain, gives vigour and fertility to the offspring; and on the other hand, that close interbreeding diminishes vigour and fertility; that these facts alone incline me to believe that it is a general law of nature (utterly ignorant though we be of the meaning of the law) that no organic being self-fertilises itself for an eternity of generations; but that a cross with another individual is occasionally perhaps at very long intervals — indispensable. […] in many organic beings, a cross between two individuals is an obvious necessity for each birth; in many others it occurs perhaps only at long intervals; but in none, as I suspect, can self-fertilisation go on for perpetuity.”

“as new species in the course of time are formed through natural selection, others will become rarer and rarer, and finally extinct. The forms which stand in closest competition with those undergoing modification and improvement, will naturally suffer most. […] Whatever the cause may be of each slight difference in the offspring from their parents – and a cause for each must exist – it is the steady accumulation, through natural selection, of such differences, when beneficial to the individual, which gives rise to all the more important modifications of structure, by which the innumerable beings on the face of this earth are enabled to struggle with each other, and the best adapted to survive.”

“Natural selection, as has just been remarked, leads to divergence of character and to much extinction of the less improved and intermediate forms of life. On these principles, I believe, the nature of the affinities of all organic beings may be explained. It is a truly wonderful fact – the wonder of which we are apt to overlook from familiarity – that all animals and all plants throughout all time and space should be related to each other in group subordinate to group, in the manner which we everywhere behold – namely, varieties of the same species most closely related together, species of the same genus less closely and unequally related together, forming sections and sub-genera, species of distinct genera much less closely related, and genera related in different degrees, forming sub-families, families, orders, sub-classes, and classes. The several subordinate groups in any class cannot be ranked in a single file, but seem rather to be clustered round points, and these round other points, and so on in almost endless cycles. On the view that each species has been independently created, I can see no explanation of this great fact in the classification of all organic beings; but, to the best of my judgment, it is explained through inheritance and the complex action of natural selection, entailing extinction and divergence of character […] The affinities of all the beings of the same class have sometimes been represented by a great tree. I believe this simile largely speaks the truth. The green and budding twigs may represent existing species; and those produced during each former year may represent the long succession of extinct species. At each period of growth all the growing twigs have tried to branch out on all sides, and to overtop and kill the surrounding twigs and branches, in the same manner as species and groups of species have tried to overmaster other species in the great battle for life. The limbs divided into great branches, and these into lesser and lesser branches, were themselves once, when the tree was small, budding twigs; and this connexion of the former and present buds by ramifying branches may well represent the classification of all extinct and living species in groups subordinate to groups. Of the many twigs which flourished when the tree was a mere bush, only two or three, now grown into great branches, yet survive and bear all the other branches; so with the species which lived during long-past geological periods, very few now have living and modified descendants. From the first growth of the tree, many a limb and branch has decayed and dropped off; and these lost branches of various sizes may represent those whole orders, families, and genera which have now no living representatives, and which are known to us only from having been found in a fossil state. As we here and there see a thin straggling branch springing from a fork low down in a tree, and which by some chance has been favoured and is still alive on its summit, so we occasionally see an animal like the Ornithorhynchus or Lepidosiren, which in some small degree connects by its affinities two large branches of life, and which has apparently been saved from fatal competition by having inhabited a protected station. As buds give rise by growth to fresh buds, and these, if vigorous, branch out and overtop on all sides many a feebler branch, so by generation I believe it has been with the great Tree of Life, which fills with its dead and broken branches the crust of the earth, and covers the surface with its ever branching and beautiful ramifications.”

“No one has been able to point out what kind, or what amount, of difference in any recognisable character is sufficient to prevent two species crossing. It can be shown that plants most widely different in habit and general appearance, and having strongly marked differences in every part of the flower, even in the pollen, in the fruit, and in the cotyledons, can be crossed. […] By a reciprocal cross between two species, I mean the case, for instance, of a stallion-horse being first crossed with a female-ass, and then a male-ass with a mare: these two species may then be said to have been reciprocally crossed. There is often the widest possible difference in the facility of making reciprocal crosses. Such cases are highly important, for they prove that the capacity in any two species to cross is often completely independent of their systematic affinity, or of any recognisable difference in their whole organisation. On the other hand, these cases clearly show that the capacity for crossing is connected with constitutional differences imperceptible by us, and confined to the reproductive system. […] fertility in the hybrid is independent of its external resemblance to either pure parent. […] The foregoing rules and facts […] appear to me clearly to indicate that the sterility both of first crosses and of hybrids is simply incidental or dependent on unknown differences, chiefly in the reproductive systems, of the species which are crossed. […] Laying aside the question of fertility and sterility, in all other respects there seems to be a general and close similarity in the offspring of crossed species, and of crossed varieties. If we look at species as having been specially created, and at varieties as having been produced by secondary laws, this similarity would be an astonishing fact. But it harmonizes perfectly with the view that there is no essential distinction between species and varieties. […] the facts briefly given in this chapter do not seem to me opposed to, but even rather to support the view, that there is no fundamental distinction between species and varieties.”

“Believing, from reasons before alluded to, that our continents have long remained in nearly the same relative position, though subjected to large, but partial oscillations of level, I am strongly inclined to…” (…’probably get some things wrong…’, US)

“In considering the distribution of organic beings over the face of the globe, the first great fact which strikes us is, that neither the similarity nor the dissimilarity of the inhabitants of various regions can be accounted for by their climatal and other physical conditions. Of late, almost every author who has studied the subject has come to this conclusion. […] A second great fact which strikes us in our general review is, that barriers of any kind, or obstacles to free migration, are related in a close and important manner to the differences between the productions of various regions. […] A third great fact, partly included in the foregoing statements, is the affinity of the productions of the same continent or sea, though the species themselves are distinct at different points and stations. It is a law of the widest generality, and every continent offers innumerable instances. Nevertheless the naturalist in travelling, for instance, from north to south never fails to be struck by the manner in which successive groups of beings, specifically distinct, yet clearly related, replace each other. […] We see in these facts some deep organic bond, prevailing throughout space and time, over the same areas of land and water, and independent of their physical conditions. The naturalist must feel little curiosity, who is not led to inquire what this bond is.  This bond, on my theory, is simply inheritance […] The dissimilarity of the inhabitants of different regions may be attributed to modification through natural selection, and in a quite subordinate degree to the direct influence of different physical conditions. The degree of dissimilarity will depend on the migration of the more dominant forms of life from one region into another having been effected with more or less ease, at periods more or less remote; on the nature and number of the former immigrants; and on their action and reaction, in their mutual struggles for life; the relation of organism to organism being, as I have already often remarked, the most important of all relations. Thus the high importance of barriers comes into play by checking migration; as does time for the slow process of modification through natural selection. […] On this principle of inheritance with modification, we can understand how it is that sections of genera, whole genera, and even families are confined to the same areas, as is so commonly and notoriously the case.”

“the natural system is founded on descent with modification […] and […] all true classification is genealogical; […] community of descent is the hidden bond which naturalists have been unconsciously seeking, […] not some unknown plan or creation, or the enunciation of general propositions, and the mere putting together and separating objects more or less alike.”

September 27, 2015 - Posted by | Biology, Books, Botany, Evolutionary biology, Genetics, Geology, Zoology

No comments yet.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.