Econstudentlog

Origin and Evolution of Planetary Atmospheres – Implications for Habitability

I recently finished this book. I gave the book two stars on goodreads, however I also added this comment to the information about the book on my 2014 book list: “Close to three stars, but the poor language of the publication made it difficult for me to justify giving it that rating.” I liked reading the book, but I do not condone sloppy and/or unclear language and this is something I’ll usually punish.

When I started reading the book I’d assumed there might be some overlap with Gale’s book, which I haven’t covered here, but that actually turned out not really to be the case; the two books focus on different things even if a few of the questions they ask are quite similar, and so the coverage of the two books actually don’t much overlap. Most of this was new stuff, which was nice. The book is in my opinion more technical and harder to read than was Gale’s book, but again, they deal with different stuff so I’m not sure how much sense it makes to compare them. Lammer doesn’t shy away from covering relevant math formulas where they might be helpful to improve understanding, and/but some of these are not easy to understand if you do not have a background in physics; you need to know some stuff about things like electromagnetism, thermodynamics, and plasma physics to understand all of the stuff in this book. I didn’t – I certainly didn’t know ‘enough’ – but his coverage is fortunately such that even if you mentally skip a few formulas without really understanding the details of the dynamics they model, you’ll usually still be able to figure out roughly how they work wrt. the specific issue at hand because he also talks about how they work and which conclusions to draw; though you’ll likely still need to look up some unfamiliar terms along the way in order not to be completely confused.

I should make clear that although it may sound from the above as if this is really a rather dull book about mathematical formulas and complicated physics, one thing I find it really hard to term this book is ‘boring’. The book talks about what the Earth was like back when Earth was covered by magma oceans. Freaking magma oceans! It talks about how the Earth was quite likely early on in its ‘lifetime’ (before life on the planet, it should perhaps be noted) covered by a huge hydrogen atmosphere, and how that early atmosphere was blown away by a Sun which was spinning much faster than it does today, bombarding the early proto-atmospheres of the newly formed planets with huge numbers of highly charged particles despite the sun shining ‘less brightly’ back then than it does now. It talks about how a slightly different atmospheric composition back then, with more hydrogen, might have lead to the Earth being unable to get rid of all that hydrogen, most likely leading to the Earth having ended up as a ‘waterworld’ without continents, completely covered by water. It talks about how the Sun slowed down after what was most likely just a few million years, and how it has since then been doing things quite differently from the way it did things in the beginning. Phenomena such as outgassing and impact events are discussed. The book talks about how conditions were different on Mars and Venus from the way they were on Earth, and what role various factors might have played in terms of explaining how the atmospheres got to be the way they are now, and why those planets turned out quite different. The role of gravity, the role of a magnetosphere, which concrete processes lead to loss of (/which) atmospheric components. There’s a lot of stuff in this book, and much of it I found really quite interesting. But it is also hard to read, sometimes hard to understand, and certainly far from always particularly well-written. The topics covered I found quite interesting though.

I was wondering how to cover this book, but I decided early on that given how many things I was looking up along the way it would make a lot of sense to bookmark some relevant links and add them to this post; so below I have added a list of terms and concepts covered in the book. Some of the concepts are much better covered in the book than in the links (the wiki article on atmospheric escape for example has very little stuff on this topic compared to the stuff included in the book about this topic), but in other cases there’s a lot of stuff in the wiki article which was not included in the book (naturally, or it would not have made sense for me to look up stuff there). So the stuff in the links don’t add up to the material covered in the book, but the articles should give you a clue what kind of book this is. Below the list I have added a few quotes from the book. As should be obvious from the number of links, the book has a lot of content despite the relatively low page-count.

Atmosphere of Earth.
Troposphere.
Atmospheric escape.
Hydrodynamic escape.
Maxwell–Boltzmann distribution.
Noachian.
Exosphere.
Outflow channels.
Scale height.
Larmor radius.
Adiabatic process.
Energetic neutral atom.
Magnetopause.
Bow shock.
Lyman series.
Heliosphere.
Roche lobe.
Plasma (physics).
Astrophysical plasma.
Photoionization.
Nebular hypothesis.
Stellar evolution.
Protostar.
Protoplanetary disk
.
Solar wind.
Hydrostatic equilibrium.
Kelvin–Helmholtz instability.
Polar wind.

“As contrasted to meteorology which studies the properties and behavior of the lower atmosphere between the surface and the tropopause where the weather phenomena are generated, aeronomy is a division of atmospheric science that studies physics and chemistry of the upper atmosphere that extends from above the troposphere up to the altitudes where it is modified by the solar wind plasma. […] The central part of [this] monograph presents a detailed discussion of the atmospheric loss mechanisms due to the action of various thermal and non-thermal escape processes for the neutral and ionized particles from a hot, extended atmospheric corona. Scenarios for the formation and evolution of the atmospheres of Earth, Venus, and Mars, that is, the planets orbiting within the habitable zone around the Sun, are considered. A crucial role of the magnetosphere of a planet in protecting its hot, extended, and partially ionized corona from the solar wind erosion is discussed. […] The book presents a brief review of the present state of knowledge of the aeronomy of planetary atmospheres and of their evolution during the lifetime of their host stars by taking into account conventionally accepted concepts, as well as recent observational and theoretical results.”

“the classical concept of the habitable zone and its related questions of what makes a planet habitable is much more complex than having a big rocky body located at the right distance from its host star. […] A careful study of various astrophysical and geophysical aspects indicate that Earth-analogue class I habitats have to be located at the right distance of the habitable zone from their host stars, must lose their protoatmospheres during the right time period, should maintain plate tectonics over the planet’s lifetime, should have nitrogen as the main atmospheric species after the stellar activity decreased to moderate values and finally, the planet’s interior should have developed conditions that an intrinsic strong global magnetic field could evolve.” [I should probably add here that this specific stuff is covered extensively in Gale’s book, but doesn’t make up too much of the coverage of this book].

“The mantle solidification of a magma ocean is a fast process and ends at ∼105 years for Earth-size planets with low volatile contents and at ≤3Myr [million years, US] for planets with higher volatile contents and magma ocean depths of ≤2,000km […] During the magma ocean solidification process, H2O and CO2 molecules can enter the solidifying minerals in relative low quantities [8, 9]. As a result the H2O/CO2 volatiles will degas into dense steam atmospheres […] If the early Earth would have obtained slightly more material from water-rich planetesimals, its CO2 content would have been much higher and Earth’s oceans could have been tens to hundreds of kilometers deep […]. Such environmental conditions would have resulted in a globally covered water world [43, 44] which is surrounded by a Venus-type dense CO2 atmosphere and a hydrogen envelope.” [I tried while reading this to imagine a magma ocean which was something like 2000 kilometers deep, but I failed to do so. Just think about this…]

“There is observational evidence from solar proxies with younger age compared to the present Sun, that during the early history of the Solar System the EUV flux was up to∼100 times larger as it is today […] The evolution of planetary atmospheres can only be understood if one considers that the radiation and particle environment of the Sun or a planet’s host star changed during their life time. The magnetic activity of solar-type stars declines steadily during their evolution on the Zero-Age-Main-Sequence (ZAMS). According to the solar standard model, the Sun’s photospheric luminosity was ∼30 % lower ∼4.5 Gyr ago […] when the Sun arrived on the ZAMS compared to present levels. The observed faster rotation of young stars is responsible for an enhanced magnetic activity and related heating processes in the chromosphere, X-ray emissions are ≥1,000, and EUV, and UV ∼100 and ∼10 times higher compared to today’s solar values. Moreover, the production rate of high-energy particles is orders of magnitude higher at young stars, and from observable stellar mass loss-activity relations one can also expect a much stronger solar/stellar wind during the active stellar phase.”

“The nuclear evolution of the Sun is well known from stellar evolutionary theory and backed by helioseismological observations of the internal solar structure [10]. The results of these evolutionary solar models, indicate that the young Sun was ∼10% cooler and ∼15% smaller compared to the modern Sun ∼4.6Gyr ago. According to the solar standard model, due to accelerating nuclear reactions in the Sun’s core, the Sun is a slowly evolving variable G-type star that has undergone an ∼30% increase in luminosity over the past ∼4.5Gyr. […] the outward flowing plasma carries away angular momentum from the star [which explains] the observed spin-down to slower rotation of young stars after their arrival at the ZAMS [the book mentions elsewhere that it’s been estimated based on observations of other star systems that the young sun was rotating more than 10 times as fast as it does now]. […] the early Earth may have lost during [the first 100 million years] an amount of hydrogen equivalent of ∼20EOs [Earth Oceans] thermally […] after the loss of [a large amount of the original steam atmosphere,] the Earth’s atmosphere environment near the surface reached the critical temperature of ∼650 K. After reaching this temperature the remaining H2O-vapor of ∼1EO could condense and collapsed into the liquid water ocean [84]. Additional amount[s] of water could have been delivered also continuously via impacts, but the bulk of the early Earth’s initial water inventory is most likely a by-product of a condensed fraction of the catastrophically outgassed steam atmosphere. […] One should […] note that in the case of the early Earth due to the Moon forming impact a fraction of ≤30% of atmosphere could have also been lost to space [113].”

“The present average atmospheric mass loss of hydrogen, oxygen, and nitrogen ions from the Earth is ∼ 1.3 × 103 g s-1

“The first protoatmosphere will be captured and accumulated hydrogen- and helium-rich gas envelopes from the nebula. Depending on the planetary formation time, the nebula dissipation time, the numbers of additional planets including gas giants in the system, the protoplanet’s gravity, its orbit location, and the host star’s radiation and plasma environment terrestrial planets may capture tens or even several hundreds of the Earth ocean equivalent amounts of hydrogen around its rocky core.
The second protoatmosphere depends on the initial volatile content of the protoplanet when accretion finished. During the magma ocean solidification […] steam atmospheres with surface pressures ranging from∼100 to several 104 bar can be catastrophically outgassed.
Finally, secondary atmospheres will be produced by tectonic activity such as volcanos and by the delivery of volatiles via large impacts. The origin and initial state of a planet’s protoatmosphere, therefore, determines a planet’s atmospheric evolution and finally if the planet will evolve to an Earth-analog class I habitat or not. […] The efficiency of the solar/stellar forcing is essentially inversely proportional to the square of the distance to the planet’s host star. From that, it follows that the closer a planet orbits around its host star, the more efficient are the atmospheric escape processes. The main effects caused by the stellar radiation and plasma environment on the atmospheres of an effected planet are to ionize, chemically modify, heated, expand, and slowly erode the upper atmosphere throughout the lifetime of a planet. The highest thermal and non-thermal atmospheric escape rates are obtained during the early active phase of the planet’s host star […] Besides the orbital location, a planet’s gravity constitutes an additional major protection mechanism especially for thermal escape of its atmosphere, while the nonthermal escape processes are affected on a weaker scale.”

December 11, 2014 - Posted by | Astronomy, Books, Geology, Physics

No comments yet.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.