Econstudentlog

Adipose tissue and cancer (3)

I’ve finished the book.

It’s a Springer book, so those of you who’ve encountered these books before will know that this is not an easy-to-read popular-science book. The general level is high and occasionally I felt almost completely lost; chapter 8 for example was very technical. As I’ve pointed out before, I don’t like to fault authors for not taking into account the possibility that their books may also be picked up by ignorant fools who don’t know anything, but if you have a hard time understanding what the author is getting at it will affect your reading experience in a negative manner. It should be noted, though, that although it’s not an easy book to read you’ll learn a lot of stuff if you put in some effort (…and/but if you don’t put in some effort you’ll never finish it, and you’ll get nothing out of it at all).

Some of the chapters deal with similar stuff, and I got the impression a couple of times that the authors of a specific chapter had not read the other chapters. On the other hand it’s very clear in other chapters/contexts that they most certainly did, but even so there are a few things which are repeated a few times along the way which perhaps did not need to be repeated. On the third hand the book is structured in such a way that each chapter is pretty much self-contained (which is presumably part of the explanation for the occasional repetitions), and the fact that you probably don’t necessarily need to read it cover to cover from chapter one to chapter 9 the way I did to get a lot out of the book would presumably be appealing to some people.

I gave it four stars on goodreads, because of the high quality of the material included.

Some stuff from the last chapters, with some hopefully helpful links added to make the passages easier to understand (perhaps needless to say no such links are included in the book, so if you find the links helpful you’ll probably need to look up some stuff along the way if you decide to read it yourself…) as well as some comments here and there:

“Emerging studies clearly indicate that a bidirectional crosstalk is established between all cellular components of AT [adipose tissue, US] and cancer cells and that the tumor-surrounding AT contributes to inflammation, extracellular matrix remodeling as well as energy supply within the tumors. In this chapter, we present evidences showing how AT locally affects tumor progression in given types of tumors and how these results might be attractive to explain the link between obesity and the poor prognosis of some cancers. This will be preceded by the overall description of AT composition and function with special emphasis on the specificity of adipose depots, key aspects that need to be taken in account when paracrine effects of AT on tumor progression is considered. […]

The past two decades have provided substantial evidence for the major role of the tissue local environment for tumor progression. Cancer is now considered as a tissue-based disease in which malignant cells interact dynamically with the surrounding supportive tissue, the tumor stroma, composed by multiple normal cell types such as fibroblasts, infiltrating immune cells, and endothelial cells within the context of extracellular matrix [1]. This stroma/tumor cell interaction involves constant bidirectional crosstalk between normal and malignant cells. Cancer cells usually generate a supportive microenvironment by activating the wound-healing response of the host [2]. Conversely, the stromal cells, such as for example, cancerassociated fibroblasts (CAFs) or tumor-associated macrophages (TAMs), promote tumor progression through different mechanisms including enhancement of tumor survival, growth, and spread, by secreting growth factors, chemokines, extracellular matrix (ECM) components, and ECM-modifying enzymes [3,4]. Constituents of the tumor microenvironment can arise from two major sources: recruitment from nearby local tissue or systemic recruitment from distant tissues via circulation. Among the different cell types frequently found at close proximity of evolving tumors, little attention has been given to cells that compose the adipose tissue (AT) although a growing interest can be noted in recent years. Throughout the body, AT is mainly described as subcutaneous (i.e., superficial and deep hypodermic location) and visceral depots. Visceral adipose tissue (VAT) surrounds the inner organs and can be divided into omental, mesenteric, retroperitoneal (surrounding the kidney), gonadal, perivascular, and pericardial depots [5]. Of note, AT is also present in the breast (mammary adipose tissue or MAT) and in the bone marrow (BM). All these specific regional depots exhibit differences in structure, function, composition, and secretion profiles [6]. […] The cellular heterogeneity of AT adds an additional degree of complexity when AT/cancer cells crosstalk is considered. […] All the cells from adipose tissue (including mature adipocytes) produces a large number of secretory bioactive substances, such as hormones, growth factors, chemokines, proangiogenic or proinflammatory molecules [8], which could directly affect adjacent tumors. AT is therefore an excellent candidate to influence tumor behavior through heterotypic paracrine signaling processes and might prove to be critical for tumor survival, growth, local, and distant invasion. […] Fat depots from different region of the body have different incidence in pathology because they display distinct functional and structural properties in terms of energy metabolism and bioactive molecule (adipokines) release as well. Regional heterogeneity plays a central role in mammalian AT homeostasis.” (I talked about these aspects in the last post, but I figured I should give at least part of the ‘medical textbook version’ here..) […]

“Ovarian cancer is a highly fatal disease, with only about 40 % of women with ovarian cancer still alive more than 5 years postdiagnosis. This poor survival is largely attributable to the fact that a majority of ovarian cancer in developed countries is diagnosed with metastatic spread. The omentum, a peritoneal organ rich in AT and immune cells, has been shown to be a preferred site of metastatic dissemination in ovarian cancer patients. Omental dissemination, which is often accompanied by ascites, facilitates the further spread of the tumors [66].” […]

“Prostate cancer is the most common malignancy in males in Western countries, representing the second leading cause of cancer death. Prostate is surrounded by AT and tumor admixed with periprostatic fat is the most easily recognized manifestation of extraprostatic extension, a well-established adverse prognostic factor for prostate cancer [79,80]. Periprostatic AT (PPAT) is considered as VAT, but the specificities of this depot in terms of metabolism and adipokines secretion remain largely unknown. At laboratory levels, the contribution of this tissue to cancer progression has been first suggested by the report of Finley et al. that analyzed the PPAT features in patients undergoing prostatectomy for cancer [51]. In this study, the authors found that the level of IL-6 secreted by PPAT-conditioned medium (CM) was almost 375 times greater than the circulating levels of the cytokine in the same patient. Both IL-6 levels in PPAT and activation of IL-6 related signaling pathways were correlated to tumor aggressiveness [51]. Therefore, this study strongly suggests that PPAT represents an important source of IL-6 that favors tumor progression. Interestingly, several studies already reported that increased serum IL-6 and soluble interleukin-6 receptor levels are associated with aggressiveness of the disease and with a poor prognosis in prostate cancer patients, underlying the importance of this pathway in PC progression (for review see [81]). […] Recent studies suggest that, like in breast cancer, a bidirectional crosstalk exists between PC cells and surrounding AT.” […]

“During the last decade, pancreatic cancer has become the fourth leading cause of cancer-related death in the USA and the sixth leading cause in Europe. Despite major advances in surgical techniques and adjuvant therapies, overall 5-year survival remains under 5 %. While very few, if any, laboratory studies have been performed to date on the crosstalk between pancreatic cancers and AT, several clinical data have suggested that an adipose-rich environment leads to a deleterious outcome on this disease. […] it has been demonstrated that peripancreatic fat invasion is correlated to a poorer survival for pancreatic cancers [107]. Recent epidemiologic studies also suggest that obesity doubles the relative risk of pancreatic cancer [98]. In addition, central adiposity has been shown to be an independent risk factor in development of pancreatic cancer as well as to contribute to a poorer survival [108]. Interestingly, it has been demonstrated that increased pancreatic fat (pancreatic steatosis) promotes dissemination and lethality of pancreatic cancer [109].” […]

“The relationship between AT and cancer is complex and involves both paracrine and endocrine effects whose relative contribution to tumor progression remains to be determined. Regarding paracrine effects, we have underlined in this chapter the need to consider the appropriate neighboring AT for each cancer subtypes in experimental studies. […] there is clear variations between the different AT in terms of secretion and sensitivity to lipolysis […] Nevertheless, regarding AT/cancer crosstalk, there are common features found in several cancer subtypes. […] it is very important to underline that adipose cells are not inert to their surrounding and that their phenotype are profoundly modified by cancer cell secretions.” […]

“Present data suggest caution about the clinical use of lipotransfer-derived WAT cells for breast reconstruction in patients with breast cancer [15,16].”

I thought I should make a brief stop here to cover the observation above in a little more detail, because I think it’s a good illustration of why the finer details of how these things work actually matter. Now, one might well be tempted to say that if we know that fat people get cancer more often and have worse prognoses (this is, incidentally, a gross oversimplification – as should be clear from the posts), well – do we really need to know all that much more about how it all works out at the microscopical level and so on? Why not just tell people to lose weight and just leave it at that? Findings like the ones in [15,16] above indicate that it matters what goes on in these tissues. What did the studies tell us? Well, it has been observed that female breast cancer survivors who have undergone a specific type of reconstructive surgery (‘lipotransfer procedure for esthetical purposes’) had higher cancer recurrence risk than did females who had not undergone such a procedure; this is important information with clinical relevance. One basic idea behind what may be happening is that the adipose tissue that is transplanted into the reconstructed breast(/s) may work as a fuel source for any remaining cancerous cells still hiding in the tissues (/and it may spark new tumor development through the crosstalk and paracrine signalling mechanisms already mentioned). Note that this information may not yet be well known – see e.g. this webpage about reconstructive breast surgery from the website of Johns Hopkins University, which is hardly an institution to be found at the bottom of the barrel: “we try to give women the look and feel of an actual breast, using creative techniques such as fat grafting, also known as lipofilling or fat transfer. Fat can be taken from another part of your body, possibly the abdomen or somewhere on your buttocks, through liposuction. The fat will be purified and carefully layered within the new breast to create the desired shape. Our surgeons are experienced at these techniques.” They may want to reconsider at the very least the extent to which they are using these techniques. Anyway, back to the book:

“surgical options for treatment of the severely obese population have increased in popularity over the last few decades, with an estimated 344,000 cases performed globally in 2008 [40,41]. As previously noted, lifestyle therapy for weight loss intervention is generally insufficient for extremely obese patients and effective long-term weight loss using pharmacological therapy has been limited, leaving bariatric surgery as the only medical intervention providing substantial, long-term weight loss for most severely obese patients. […] Because post-bariatric surgical patients generally experience significant and sustained weight loss [2,47], they represent a unique population to study the relationship between voluntary weight loss and cancer risk. […] Generally, 80 % of patients who seek bariatric surgery are female.” […]

“Since 2009, there have been five reviews exploring the potential relationship between bariatric surgery and subsequent cancer risk [22,40,59–61], and two additional reviews of cancer risk associated with either weight loss from bariatric surgery or nonsurgical weight loss therapies [11,20]. […] [the following are some results from these studies:] Reported cancers subsequent to bariatric surgery were 117 cancers in the surgical group compared to 169 cancers among the control groups, representing an HR of 0.67 (95 % CI 0.53–0.85; p=0.0009). For female participants only, the surgical group had a reported 79 cancers compared to 130 cancers in the control females, giving an HR value of 0.58 (95 % CI 0.44–0.77; p = 0.0001). […] After a maximum of 5-year followup, the reported number of visits to the physician/hospital that led to a cancer-related diagnosis for the weight loss surgical group was 21 visits (2.0 %) compared with 487 visits (8.5 %) among the control group. This difference was reported to have a relative risk of 0.22 (95% CI 0.14–0.35; p=0.001) [55]. […] the relative risk for breast cancer was 0.17 (95% CI 0.01–0.31; p=0.001). […] For cancer deaths, the bariatric surgical group was 60 % lower when compared the control group ( p = 0.001; 31 deaths among surgical group compared to 73 deaths in control groups). […] For all cancers combined, there was a 24 % reduction in cancer incidence among the surgical group compared to controls (HR 0.76, 95% CI, 0.65–0.89; p=0.0006). […] Based upon these analyses, it was estimated that about 71 gastric bypass surgeries would be necessary to prevent one incident cancer [52]. […] [And so they conclude:] there are now studies that demonstrate a reduction in cancer mortality among postbariatric patients compared to severely obese, nonoperated controls. In addition, one prospective study (SOS study) and a few observational studies have also demonstrated a reduction in cancer incidence following metabolic surgery. To date, the reduced cancer risk benefits have been limited to females and there appears to be a stronger correlation of benefit associated with cancers that are “likely” to be obesity related. Given these limitations, the general consensus is that intentional weight loss does lead to a reduction in cancer incidence [11].” […]

“Multiple reviews have been published on the effect of metabolic surgery on diabetes, including a meta-analysis by Buchwald et al., which reported a 78.1 % remission of diabetes and an 86.6 % improvement or remission in diabetes following bariatric surgery [81]. The intriguing element related to diabetes remission is that a significant number of bariatric surgical patients (i.e., gastric bypass patients) have discarded their antidiabetic medication and returned to a normal blood glucose by the time they are discharged from the hospital following their metabolic surgery (i.e., 2–3 days after surgery) and long before significant weight loss has occurred [82]. Again, mechanisms accounting for this remarkable remittance or improvement of diabetes following surgery are multiple. In an analogous way, the reduced risk of cancer following metabolic surgery is also likely to be linked with several biological mechanisms, which may or may not be directly associated with weight loss.”

October 5, 2013 - Posted by | biology, books, cancer, diabetes, medicine

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: