Econstudentlog

Diabetes and the Brain (II)

Here’s my first post about the book, which I recently finished – here’s my goodreads review. I added the book to my list of favourite books on goodreads, it’s a great textbook. Below some observations from the first few chapters of the book.

“Several studies report T1D [type 1 diabetes] incidence numbers of 0.1–36.8/100,000 subjects worldwide (2). Above the age of 15 years ketoacidosis at presentation occurs on average in 10% of the population; in children ketoacidosis at presentation is more frequent (3, 4). Overall, publications report a male predominance (1.8 male/female ratio) and a seasonal pattern with higher incidence in November through March in European countries. Worldwide, the incidence of T1D is higher in more developed countries […] After asthma, T1D is a leading cause of chronic disease in children. […]  twin studies show a low concordant prevalence of T1D of only 30–55%. […] Diabetes mellitus type 1 may be sporadic or associated with other autoimmune diseases […] The latter has been classified as autoimmune polyglandular syndrome type II (APS-II). APS-II is a polygenic disorder with a female preponderance which typically occurs between the ages of 20 and 40 years […] In clinical practice, anti-thyroxine peroxidase (TPO) positive hypothyroidism is the most frequent concomitant autoimmune disease in type 1 diabetic patients, therefore all type 1 diabetic patients should annually be screened for the presence of anti-TPO antibodies. Other frequently associated disorders are atrophic gastritis leading to vitamin B12 deficiency (pernicious anemia) and vitiligo. […] The normal human pancreas contains a superfluous amount of β-cells. In T1D, β-cell destruction therefore remains asymptomatic until a critical β-cell reserve is left. This destructive process takes months to years […] Only in a minority of type 1 diabetic patients does the disease begin with diabetic ketoacidosis, the majority presents with a milder course that may be mistaken as type 2 diabetes (7).”

“Insulin is the main regulator of glucose metabolism by stimulating glucose uptake in tissues and glycogen storage in liver and muscle and by inhibiting gluconeogenesis in the liver (11). Moreover, insulin is a growth factor for cells and cell differentiation, and acting as anabolic hormone insulin stimulates lipogenesis and protein synthesis. Glucagon is the counterpart of insulin and is secreted by the α-cells in the pancreatic islets in an inversely proportional quantity to the insulin concentration. Glucagon, being a catabolic hormone, stimulates glycolysis and gluconeogenesis in the liver as well as lipolysis and uptake of amino acids in the liver. Epinephrine and norepinephrine have comparable catabolic effects […] T1D patients lose the glucagon response to hypoglycemia after several years, when all β-cells are destructed […] The risk of hypoglycemia increases with improved glycemic control, autonomic neuropathy, longer duration of diabetes, and the presence of long-term complications (17) […] Long-term complications are prevalent in any population of type 1 diabetic patients with increasing prevalence and severity in relation to disease duration […] The pathogenesis of diabetic complications is multifactorial, complicated, and not yet fully elucidated.”

“Cataract is much more frequent in patients with diabetes and tends to become clinically significant at a younger age. Glaucoma is markedly increased in diabetes too.” (I was unaware of this).

“T1D should be considered as an independent risk factor for atherosclerosis […] An older study shows that the cumulative mortality of coronary heart disease in T1D was 35% by the age 55 (34). In comparison, the Framingham Heart Study showed a cardiovascular mortality of 8% of men and 4% of women without diabetes, respectively. […] Atherosclerosis is basically a systemic disease. Patients with one clinically apparent localization are at risk for other manifestations. […] Musculoskeletal disease in diabetes is best viewed as a systemic disorder with involvement of connective tissue. Potential pathophysiological mechanisms that play a role are glycosylation of collagen, abnormal cross-linking of collagen, and increased collagen hydration […] Dupuytren’s disease […] may be observed in up to 42% of adults with diabetes mellitus, typically in patients with long-standing T1D. Dupuytren’s is characterized by thickening of the palmar fascia due to fibrosis with nodule formation and contracture, leading to flexion contractures of the digits, most commonly affecting the fourth and fifth digits. […] Foot problems in diabetes are common and comprise ulceration, infection, and gangrene […] The lifetime risk of a foot ulcer for diabetic patients is about 15% (42). […] Wound depth is an important determinant of outcome (46, 47). Deep ulcers with cellulitis or abscess formation often involve osteomyelitis. […] Radiologic changes occur late in the course of osteomyelitis and negative radiographs certainly do not exclude it.”

“Education of people with diabetes is a comprehensive task and involves teamwork by a team that comprises at least a nurse educator, a dietician, and a physician. It is, however, essential that individuals with diabetes assume an active role in their care themselves, since appropriate self-care behavior is the cornerstone of the treatment of diabetes.” (for much more on these topics, see Simmons et al.)

“The International Diabetes Federation estimates that more than 245 million people around the world have diabetes (4). This total is expected to rise to 380 million within 20 years. Each year a further 7 million people develop diabetes. Diabetes, mostly type 2 diabetes (T2D), now affects 5.9% of the world’s adult population with almost 80% of the total in developing countries. […] According to […] 2007 prevalence data […] [a]lmost 25% of the population aged 60 years and older had diabetes in 2007. […] It has been projected that one in three Americans born in 2000 will develop diabetes, with the highest estimated lifetime risk among Latinos (males, 45.4% and females, 52.5%) (6). A rise in obesity rates is to blame for much of the increase in T2D (7). Nearly two-thirds of American adults are overweight or obese (8). [my bold, US]

“In the natural history of progression to diabetes, β-cells initially increase insulin secretion in response to insulin resistance and, for a period of time, are able to effectively maintain glucose levels below the diabetic range. However, when β-cell function begins to decline, insulin production is inadequate to overcome the insulin resistance, and blood glucose levels rise. […] Insulin resistance, once established, remains relatively stable over time. […] progression of T2D is a result of worsening β-cell function with pre-existing insulin resistance.”

“Lifestyle modification (i.e., weight loss through diet and increased physical activity) has proven effective in reducing incident T2D in high-risk groups. The Da Qing Study (China) randomly allocated 33 clinics (557 persons with IGT) to 1 of 4 study conditions: control, diet, exercise, or diet plus exercise (23). Compared with the control group, the incidence of diabetes was reduced in the three intervention groups by 31, 46, and 42%, respectively […] The Finnish Diabetes Prevention Study evaluated 522 obese persons with IGT randomly allocated on an individual basis to a control group or a lifestyle intervention group […] During the trial, the incidence of diabetes was reduced by 58% in the lifestyle group compared with the control group. The US Diabetes Prevention Program is the largest trial of primary prevention of diabetes to date and was conducted at 27 clinical centers with 3,234 overweight and obese participants with IGT randomly allocated to 1 of 3 study conditions: control, use of metformin, or intensive lifestyle intervention […] Over 3 years, the incidence of diabetes was reduced by 31% in the metformin group and by 58% in the lifestyle group; the latter value is identical to that observed in the Finnish Study. […] Metformin is recommended as first choice for pharmacologic treatment [of type 2 diabetes] and has good efficacy to lower HbA1c […] However, most patients will eventually require treatment with combinations of oral medications with different mechanisms of action simultaneously in order to attain adequate glycemic control.”

CVD [cardiovascular disease, US] is the cause of 65% of deaths in patients with T2D (31). Epidemiologic studies have shown that the risk of a myocardial infarction (MI) or CVD death in a diabetic individual with no prior history of CVD is comparable to that of an individual who has had a previous MI (32, 33). […] Stroke is the second leading cause of long-term disability in high-income countries and the second leading cause of death worldwide. […] Stroke incidence is highly age-dependent. The median stroke incidence in persons between 15 and 49 years of age is 10 per 100,000 per year, whereas this is 2,000 per 100,000 for persons aged 85 years or older. […] In Western communities, about 80% of strokes are caused by focal cerebral ischemia, secondary to arterial occlusion, 15% by intracerebral hemorrhage, and 5% by subarachnoid hemorrhage (2). […] Patients with ischemic stroke usually present with focal neurological deficit of sudden onset. […] Common deficits include dysphasia, dysarthria, hemianopia, weakness, ataxia, sensory loss, and cognitive disorders such as spatial neglect […] Mild-to-moderate headache is an accompanying symptom in about a quarter of all patients with ischemic stroke […] The risk of symptomatic intracranial hemorrhage after thrombolysis is higher with more severe strokes and higher age (21). [worth keeping in mind when in the ‘I-am-angry-and-need-someone-to-blame-for-the-death-of-individual-X-phase’ – if the individual died as a result of the treatment, the prognosis was probably never very good to start with..] […] Thirty-day case fatality rates for ischemic stroke in Western communities generally range between 10 and 17% (2). Stroke outcome strongly depends not only on age and comorbidity, but also on the type and cause of the infarct. Early case fatality can be as low as 2.5% in patients with lacunar infarcts (7) and as high as 78% in patients with space-occupying hemispheric infarction (8).”

“In the previous 20 years, ten thousands of patients with acute ischemic stroke have participated in hundreds of clinical trials of putative neuroprotective therapies. Despite this enormous effort, there is no evidence of benefit of a single neuroprotective agent in humans, whereas over 500 have been effective in animal models […] the failure of neuroprotective agents in the clinic may […] be explained by the fact that most neuroprotectants inhibit only a single step in the broad cascade of events that lead to cell death (9). Currently, there is no rationale for the use of any neuroprotective medication in patients with acute ischemic stroke.”

“Between 5 and 10% of patients with ischemic stroke suffer from epileptic seizures in the first week and about 3% within the first 24 h […] Post-stroke seizures are not associated with a higher mortality […] About 1 out of every 11 patient with an early epileptic seizure develops epilepsy within 10 years after stroke onset (51) […] In the first 12 h after stroke onset, plasma glucose concentrations are elevated in up to 68% of patients, of whom more than half are not known to have diabetes mellitus (53). An initially high blood glucose concentration in patients with acute stroke is a predictor of poor outcome (53, 54). […] Acute stroke is associated with a blood pressure higher than 170/110 mmHg in about two thirds of patients. Blood pressure falls spontaneously in the majority of patients during the first week after stroke. High blood pressure during the acute phase of stroke has been associated with a poor outcome (56). It is unclear how blood pressure should be managed during the acute phase of ischemic stroke. […] routine lowering of the blood pressure is not recommended in the first week after stroke, except for extremely elevated values on repeated measurements […] Urinary incontinence affects up to 60% of stroke patients admitted to hospital, with 25% still having problems on hospital discharge, and around 15% remaining incontinent at 1 year. […] Between 22 and 43% of patients develop fever or subfebrile temperatures during the first days after stroke […] High body temperature in the first days after stroke is associated with poor outcome (42, 67). There is currently no evidence from randomized trials to support the routine lowering of body temperature above 37◦C.”

December 28, 2016 Posted by | Books, Cardiology, Diabetes, Epidemiology, Immunology, Medicine, Neurology | Leave a comment

Diabetes and the brain (I)

I recently learned that the probability that I have brain-damage as a result of my diabetes is higher than I thought it was.

I first took note of the fact that there might be a link between diabetes and brain development some years ago, but this is a topic I knew very little about before reading the book I’m currently reading. Below I have added some relevant quotes from chapters 10 and 11 of the book:

“Cognitive decrements [in adults with type 1 diabetes] are limited to only some cognitive domains and can best be characterised as a slowing of mental speed and a diminished mental flexibility, whereas learning and memory are generally spared. […] the cognitive decrements are mild in magnitude […] and seem neither to be progressive over time, nor to be substantially worse in older adults. […] neuroimaging studies […] suggest that type 1 diabetic patients have relatively subtle reductions in brain volume but these structural changes may be more pronounced in patients with an early disease onset.”

“With the rise of the subspecialty area ‘medical neuropsychology’ […] it has become apparent that many medical conditions may […] affect the structure and function of the central nervous system (CNS). Diabetes mellitus has received much attention in that regard, and there is now an extensive literature demonstrating that adults with type 1 diabetes have an elevated risk of CNS anomalies. This literature is no longer limited to small cross-sectional studies in relatively selected populations of young adults with type 1 diabetes, but now includes studies that investigated the pattern and magnitude of neuropsychological decrements and the associated neuroradiological changes in much more detail, with more sensitive measurements, in both younger and older patients.”

“Compared to non-diabetic controls, the type 1 diabetic group [in a meta-analysis including 33 studies] demonstrated a significant overall lowered performance, as well as impairment in the cognitive domains intelligence, implicit memory, speed of information processing, psychomotor efficiency, visual and sustained attention, cognitive flexibility, and visual perception. There was no difference in explicit memory, motor speed, selective attention, or language function. […] These results strongly support the hypothesis that there is a relationship between cognitive dysfunction and type 1 diabetes. Clearly, there is a modest, but statistically significant, lowered cognitive performance in patients with type 1 diabetes compared to non-diabetic controls. The pattern of cognitive findings does not suggest decline in all cognitive domains, but is characterised by a slowing of mental speed and a diminished mental flexibility. Patients with type 1 diabetes seem to be less able to flexibly apply acquired knowledge in a new situation. […] In all, the cognitive problems we see in type 1 diabetes mimics the patterns of cognitive ageing. […] One of the problems with much of this research is that it is conducted in patients who are seen in specialised medical centres where care is very good. Other aspects of population selection may also have affected the results. Persons who participate in research projects that include a detailed work-up at a hospital tend to be less affected than persons who refuse participation. Possibly, specific studies that recruit type 1 adults from the community, with individuals being in poorer health, would result in greater cognitive deficits”.

“[N]eurocognitive research suggests that type 1 diabetes is primarily associated with psychomotor slowing and reductions in mental efficiency. This pattern is more consistent with damage to the brain’s white matter than with grey-matter abnormalities. […] A very large neuroimaging literature indicates that adults with either type 1 or type 2 diabetes manifest structural changes in a number of brain regions […]. MRI changes in the brain of patients with type 1 diabetes are relatively subtle. In terms of effect sizes, these are at best large enough to distinguish the patient group from the control group, but not large enough to classify an individual subject as being patient or control.”

“[T]he subtle cognitive decrements in speed of information processing and mental flexibility found in diabetic patients are not merely caused by acute metabolic derangements or psychological factors, but point to end-organ damage in the central nervous system. Although some uncertainty remains about the exact pathogenesis, several mechanisms through which diabetes may affect the brain have now been identified […] The issue whether or not repeated episodes of severe hypoglycaemia result in permanent mild cognitive impairment has been debated extensively in the literature. […] The meta-analysis on the effect of type 1 diabetes on cognition (1) does not support the idea that there are important negative effects from recurrent episodes of severe hypoglycaemia on cognitive functioning, and large prospective studies did not confirm the earlier observations […] there is no evidence for a linear relationship between recurrent episodes of hypoglycaemia and permanent brain dysfunction in adults. […] Cerebral microvascular pathology in diabetes may result in a decrease of regional cerebral blood flow and an alteration in cerebral metabolism, which could partly explain the occurrence of cognitive impairments. It could be hypothesised that vascular pathology disrupts white-matter integrity in a way that is akin to what one sees in peripheral neuropathy and as such could perhaps affect the integrity of neurotransmitter systems and as a consequence limits cognitive efficiency. These effects are likely to occur diffusely across the brain. Indeed, this is in line with MRI findings and other reports.”

“[An] important issue is the interaction between different disease variables. In particular, patients with diabetes onset before the age of 5 […] and patients with advanced microangiopathy might be more sensitive to the effects of hypoglycaemic episodes or elevated HbA1c levels. […] decrements in cognitive function have been observed as early as 2 years after the diagnosis (63). It is important to consider the possibility that the developing brain is more vulnerable to the effect of diabetes […] Diabetes has a marked effect on brain function and structure in children and adolescents. As a group, diabetic children are more likely to perform more poorly than their nondiabetic peers in the classroom and earn lower scores on measures of academic achievement and verbal intelligence. Specialized neuropsychological testing reveals evidence of dysfunction in a variety of cognitive domains, including sustained attention, visuoperceptual skills, and psychomotor speed. Children diagnosed early in life – before 7 years of age – appear to be most vulnerable, showing impairments on virtually all types of cognitive tests, with learning and memory skills being particularly affected. Results from neurophysiological, cerebrovascular, and neuroimaging studies also show evidence of CNS anomalies. Earlier research attributed diabetes-associated brain dysfunction to episodes of recurrent hypoglycemia, but more recent studies have generally failed to find strong support for that view.”

“[M]ethodological issues notwithstanding, extant research on diabetic children’s brain function has identified a number of themes […]. All other things being equal, children diagnosed with type 1 diabetes early in life – within the first 5–7 years of age – have the greatest risk of manifesting neurocognitive dysfunction, the magnitude of which is greater than that seen in children with a later onset of diabetes. The development of brain dysfunction seems to occur within a relatively brief period of time, often appearing within the first 2–3 years following diagnosis. It is not limited to performance on neuropsychological tests, but is manifested on a wide range of electrophysiological measures as marked neural slowing. Somewhat surprisingly, the magnitude of these effects does not seem to worsen appreciably with increasing duration of diabetes – at least through early adulthood. […] As a group, diabetic children earn somewhat lower grades in school as compared to their nondiabetic classmates, are more likely to fail or repeat a grade, perform more poorly on formal tests of academic achievement, and have lower IQ scores, particularly on tests of verbal intelligence.”

The most compelling evidence for a link between diabetes and poorer school outcomes has been provided by a Swedish population-based register study involving 5,159 children who developed diabetes between July 1997 and July 2000 and 1,330,968 nondiabetic children […] Those who developed diabetes very early in life (diagnosis before 2 years of age) had a significantly increased risk of not completing school as compared to either diabetic patients diagnosed after that age or to the reference population. Small, albeit statistically reliable between-group differences were noted in school marks, with diabetic children, regardless of age at diagnosis, consistently earning somewhat lower grades. Of note is their finding that the diabetic sample had a significantly lower likelihood of getting a high mark (passed with distinction or excellence) in two subjects and was less likely to take more advanced courses. The authors conclude that despite universal access to active diabetes care, diabetic children – particularly those with a very early disease onset – had a greatly increased risk of somewhat lower educational achievement […] Similar results have been reported by a number of smaller studies […] in the prospective Melbourne Royal Children’s Hospital (RCH) cohort study (22), […] only 68% of [the] diabetic sample completed 12 years of school, as compared to 85% of the nondiabetic comparison group […] Children with diabetes, especially those with an earlier onset, have also been found to require more remedial educational services and to be more likely to repeat a grade (25–28), to earn lower school grades over time (29), to experience somewhat greater school absenteeism (28, 30–32), to have a two to threefold increase in rates of depression (33– 35), and to manifest more externalizing behavior problems (25).”

“Children with diabetes have a greatly increased risk of manifesting mild neurocognitive dysfunction. This is an incontrovertible fact that has emerged from a large body of research conducted over the past 60 years […]. There is, however, less agreement about the details. […] On standardized tests of academic achievement, diabetic children generally perform somewhat worse than their healthy peers […] Performance on measures of verbal intelligence – particularly those that assess vocabulary knowledge and general information about the world – is frequently compromised in diabetic children (9, 14, 26, 40) and in adults (41) with a childhood onset of diabetes. The few studies that have followed subjects over time have noted that verbal IQ scores tend to decline as the duration of diabetes increases (13, 15, 29). These effects appear to be more pronounced in boys and in those children with an earlier onset of diabetes. Whether this phenomenon is a marker of cognitive decline or whether it reflects a delay in cognitive development cannot yet be determined […] it is possible, but remains unproven, that psychosocial processes (e.g., school absence, depression, distress, externalizing problems) (42), and/or multiple and prolonged periods of classroom inattention and reduced motivation secondary to acute and prolonged episodes of hypoglycemia (43–45) may be contributing to the poor academic outcomes characteristic of children with diabetes. Although it may seem more reasonable to attribute poorer school performance and lower IQ scores to diabetes-associated disruption of specific neurocognitive processes (e.g., attention, learning, memory) secondary to brain dysfunction, there is little compelling evidence to support that possibility at the present time.”

“Children and adults who develop diabetes within the first 5–7 years of life may show moderate cognitive dysfunction that can affect all cognitive domains, although the specific pattern varies, depending both on the cognitive domain assessed and on the child’s age at assessment. Data from a recent meta-analysis of 19 pediatric studies have indicated that effect sizes tend to range between ∼ 0.4 and 0.5 for measures of learning, memory, and attention, but are lower for other cognitive domains (47). For the younger child with an early onset of diabetes, decrements are particularly pronounced on visuospatial tasks that require copying complex designs, solving jigsaw puzzles, or using multi-colored blocks to reproduce designs, with girls more likely to earn lower scores than boys (8). By adolescence and early adulthood, gender differences are less apparent and deficits occur on measures of attention, mental efficiency, learning, memory, eye–hand coordination, and “executive functioning” (13, 26, 40, 48–50). Not only do children with an early onset of diabetes often – but not invariably – score lower than healthy comparison subjects, but a subset earn scores that fall into the “clinically impaired” range […]. According to one estimate, the prevalence of clinically significant impairment is approximately four times higher in those diagnosed within the first 6 years of life as compared to either those diagnosed after that age or to nondiabetic peers (25 vs. 6%) (49). Nevertheless, it is important to keep in mind that not all early onset diabetic children show cognitive dysfunction, and not all tests within a particular cognitive domain differentiate diabetic from nondiabetic subjects.”

“Slowed neural activity, measured at rest by electroencephalogram (EEG) and in response to sensory stimuli, is common in children with diabetes. On tests of auditory- or visual-evoked potentials (AEP; VEP), children and adolescents with more than a 2-year history of diabetes show significant slowing […] EEG recordings have also demonstrated abnormalities in diabetic adolescents in very good metabolic control. […] EEG abnormalities have also been associated with childhood diabetes. One large study noted that 26% of their diabetic subjects had abnormal EEG recordings, as compared to 7% of healthy controls […] diabetic children with EEG abnormalities recorded at diagnosis may be more likely to experience a seizure or coma (i.e., a severe hypoglycemic event) when blood glucose levels subsequently fall […] This intriguing possibility – that seizures occur in some diabetic children during hypoglycemia because of the presence of pre-existing brain dysfunction – requires further study.” 

“A very large body of research on adults with diabetes now demonstrates that the risk of developing a wide range of neurocognitive changes – poorer cognitive function, slower neural functioning, abnormalities in cerebral blood flow and brain metabolites, and reductions or alterations in gray and white-brain matter – is associated with chronically elevated blood glucose values […] Taken together, the limited animal research on this topic […] provides quite compelling support for the view that even relatively brief bouts of chronically elevated blood glucose values can induce structural and functional changes to the brain. […] [One pathophysiological model proposed is] the “diathesis” or vulnerability model […] According to this model, in the very young child diagnosed with diabetes, chronically elevated blood glucose levels interfere with normal brain maturation at a time when those neurodevelopmental processes are particularly labile, as they are during the first 5–7 years of life […]. The resulting alterations in brain organization that occur during this “sensitive period” will not only lead to delayed cognitive development and lasting cognitive dysfunction, but may also induce a predisposition or diathesis that increases the individual’s sensitivity to subsequent insults to the brain, as could be initiated by the prolonged neuroglycopenia that occurs during an episode of hypoglycemia. Data from most, but not all, research are consistent with that view. […] Research is only now beginning to focus on plausible pathophysiological mechanisms.”

After having read these chapters, I’m now sort-of-kind-of wondering to which extent my autism was/is also at least partly diabetes-mediated. There’s no evidence linking autism and diabetes presented in the chapters, but you do start to wonder even so – the central nervous system is complicated.. If diabetes did play a role there, that would probably be an argument for not considering potential diabetes-mediated brain changes in me as ‘minor’ despite my somewhat higher than average IQ (just to be clear, a high observed IQ in an individual does not preclude the possibility that diabetes had a negative IQ-effect – we don’t observe the counterfactual – but a high observed IQ does make a potential IQ-lowering effect less likely to have happened, all else equal).

December 21, 2016 Posted by | Books, Diabetes, Epidemiology, Medicine, Neurology, Personal | Leave a comment

Integrated Diabetes Care (II)

Here’s my first post about the book. In this post I’ll provide some coverage of the last half of the text.

Some stuff from the chapters dealing with the UK:

“we now know that reducing the HbA1c too far and fast in some patients can be harmful [7]. This is a particularly important issue, where primary care is paid through the Quality Outcomes Framework (QoF), a general practice “pay for performance” programme [8]. A major item within QoF, is the proportion of patients below HbA1c criteria: such reporting is not linked to rates of hypoglycaemia, ambulance call outs or hospitalisation, i.e., a practice could receive a high payment through achieving the QoF target, but with a high hospitalisation/ambulance callout rate.”

“nationwide audit data for England 2009–2010 showed that […] targets for HbA1c (≤7.5%/58.5 mmol/mol), blood pressure (BP) (<140/80 mmHg) and total cholesterol (

One thing that is perhaps worth noting here before moving any further is that the fact that you have actual data on this stuff is in itself indicative of an at least reasonable standard of care, compared to many places; in a lot of countries you just don’t have data on this kind of stuff, and it seems highly unlikely to me that the default assumption should be that things are going great in places where you do not have data on this kind of thing. Denmark also, incidentally, has a similar audit system, the results of which I’ve discussed in some detail before here on the blog).

“Our local audit data shows that approximately 85–90 % of patients with diabetes are managed by GPs and practice nurses in Coventry and Warwickshire. Only a small proportion of newly diagnosed patients with T2D (typically around 5–10 %) who attend the DESMOND (Diabetes Education and Self-Management for Ongoing and Newly Diagnosed) education programme come into contact with some aspect of the specialist services [12]. […] Payment by results (PBR) has […] actively, albeit indirectly, disincentivised primary care to seek opinion from specialist services [13]. […] Large volumes of data are collected by various services ranging between primary care, local laboratory facilities, ambulance services, hospital clinics (of varying specialties), retinal screening services and several allied healthcare professionals. However, the majority of these systems are not unified and therefore result in duplication of data collection and lack of data utilisation beyond the purpose of collection. This can result in missed opportunities, delayed communication, inability to use electronic solutions (prompts, alerts, algorithms etc.), inefficient use of resources and patient fatigue (repeated testing but no apparent benefit). Thus, in the majority of the regions in England, the delivery of diabetes care is disjointed and lacks integration. Each service collects and utilises data for their own “narrow” purpose, which could be used in a holistic way […] Potential consequences of the introduction of multiple service providers are fragmentation of care, reductions in continuity of care and propagation of a reluctance to refer on to a more specialist service [9]. […] There are calls for more integration and less fragmentation in health-care [30], yet so far, the major integration projects in England have revealed negligible, if any, benefits [25, 32]. […] to provide high quality care and reduce the cost burden of diabetes, any integrated diabetes care models must prioritise prevention and early aggressive intervention over downstream interventions (secondary and tertiary prevention).”

“It is estimated that 99 % of diabetes care is self-management […] people with diabetes spend approximately only 3 h a year with healthcare professionals (versus 8757 h of self-management)” [this is a funny way of looking at things, which I’d never really considered before.]

“In a traditional model of diabetes care the rigid divide between primary and specialist care is exacerbated by the provision of funding. For example the tariff system used in England, to pay for activity in specialist care, can create incentives for one part of the system to “hold on” to patients who might be better treated elsewhere. This system was originally introduced to incentivise providers to increase elective activity and reduce waiting times. Whilst it has been effective for improving access to planned care, it is not so well suited to achieving the continuity of care needed to facilitate integrated care [37].”

“Currently in the UK there is a miss-match between what the healthcare policies require and what the workforce is actually being trained for. […]  For true integrated care in diabetes and the other long term condition specialties to work, the education and training needs for both general practitioners and hospital specialists need to be more closely aligned.”

The chapter on Germany (Baden-Württemberg):

“An analysis of the Robert Koch-Institute (RKI) from 2012 shows that more than 50 % of German people over 65 years suffer from at least one chronic disease, approximately 50 % suffer from two to four chronic diseases, and over a quarter suffer from five or more diseases [3]. […] Currently the public sector covers the majority (77 %) of health expenditures in Germany […] An estimated number of 56.3 million people are living with diabetes in Europe [16]. […]  The mean age of the T2DM-cohort [from Kinzigtal, Germany] in 2013 was 71.2 years and 53.5 % were women. In 2013 the top 5 co-morbidities of patients with T2DM were essential hypertension (78.3 %), dyslipidaemia (50.5 %), disorders of refraction and accommodation (38.2 %), back pain (33.8 %) and obesity (33.3 %). […] T2DM in Kinzigtal was associated with mean expenditure of 5,935.70 € per person in 2013 (not necessarily only for diabetes care ) including 40 % from inpatient stays, 24 % from drug prescriptions, 19 % from physician remuneration in ambulatory care and the rest from remedies and adjuvants (e.g., insulin pen systems, wheelchairs, physiotherapy, etc.), work incapacity or rehabilitation.”

-ll- Netherlands:

“Zhang et al. [10] […] reported that globally, 12 % of health expenditures […] per person were spent on diabetes in 2010. The expenditure varies by region, age group, gender, and country’s income level.”

“Over the years many approaches [have been] introduced to improve the quality and continuity of care for chronic diseases. […] the Dutch minister of health approved, in 2007, the introduction of bundled-care (known is the Netherlands as a ‘chain-of-care’) approach for integrated chronic care, with special attention to diabetes. […] With a bundled payment approach – or episode-based payment – multiple providers are reimbursed a single sum of money for all services related to an episode of care (e.g., hospitalisation, including a period of post-acute care). This is in contrast to a reimbursement for each individual service (fee-for-service), and it is expected that this will reduce the volume of services provided and consequently lead to a reduction in spending. Since in a fee-for-service system the reimbursement is directly related to the volume of services provided, there is little incentive to reduce unnecessary care. The bundled payment approach promotes [in theory… – US] a more efficient use of services [26] […] As far as efficiency […] is concerned, after 3 years of evaluation, several changes in care processes have been observed, including task substitution from GPs to practice nurses and increased coordination of care [31, 36], thus improving process costs. However, Elissen et al. [31] concluded that the evidence relating to changes in process and outcome indicators, remains open to doubt, and only modest improvements were shown in most indicators. […] Overall, while the Dutch approach to integrated care, using a bundled payment system with a mixed payer approach, has created a limited improvement in integration, there is no evidence that the approach has reduced morbidity and premature mortality: and it has come at an increased cost.”

-ll- Sweden:

“In 2013 Sweden spent the equivalent of 4,904 USD per capita on health [OECD average: 3,453 USD], with 84 % of the expenditure coming from public sources [OECD average: 73 %]. […] Similarly high proportions [of public spending] can be found in the Netherlands (88 %), Norway (85 %) and Denmark (84 %) [11]. […] Sweden’s quality registers, for tracking the quality of care that patients receive and the corresponding outcomes for several conditions, are among the most developed across the OECD [17]. Yet, the coordination of care for patients with complex needs is less good. Only one in six patients had contact with a physician or specialist nurse after discharge from hospital for stroke, again with substantial variation across counties. Fewer than half of patients with type 1 diabetes […] have their blood pressure adequately controlled, with a considerable variation (from 26 % to 68 %) across counties [17]. […] at 260 admissions per 100,000 people aged over 80, avoidable hospital admissions for uncontrolled diabetes in Sweden’s elderly population are the sixth highest in the OECD, and about 1.5 times higher than in Denmark.”

“Waiting times [in Sweden] have long been a cause of dissatisfaction [19]. In an OECD ranking of 2011, Sweden was rated second worst [20]. […] Sweden introduced a health-care guarantee in 2005 [guaranteeing fast access in some specific contexts]. […] Most patients who appeal under the health-care guarantee and [are] prioritised in the “queue” ha[ve] acute conditions rather than medical problems as a consequence of an underlying chronic disease. Patients waiting for a hip replacement or a cataract surgery are cured after surgery and no life-long follow-up is needed. When such patients are prioritised, the long-term care for patients with chronic diseases is “crowded out,” lowering their priority and risking worse outcomes. The health-care guarantee can therefore lead to longer intervals between checkups, with difficulties in accessing health care if their pre-existing condition has deteriorated.”

“Within each region / county council the care of patients with diabetes is divided. Patients with type 1 diabetes get their care at specialist clinics in hospitals and the majority of patients with type 2 diabetes in primary care . Patients with type 2 diabetes who have severe complications are referred to the Diabetes Clinics at the hospital. Approximately 10 % of all patients with type 2 continue their care at the hospital clinics. They are almost always on insulin in high doses often in combination with oral agents but despite massive medication many of these patients have difficulties to achieve metabolic balance. Patients with advanced complications such as foot ulcers, macroangiopathic manifestations and treatment with dialysis are also treated at the hospitals.”

Do keep in mind here that even if only 10% of type 2 patients are treated in a hospital setting, type 2 patients may still make up perhaps half or more of the diabetes patients treated in a hospital setting; type 2 prevalence is much, much higher than type 1 prevalence. Also, in view of such treatment- and referral patterns the default assumption when doing comparative subgroup analyses should always be that the outcomes of type 2 patients treated in a hospital setting should be expected to be much worse than the outcomes of type 2 patients treated in general practice; they’re in much poorer health than the diabetics treated in general practice, or they wouldn’t be treated in a hospital setting in the first place. A related point is that regardless of how great the hospitals are at treating the type 2 patients (maybe in some contexts there isn’t actually much of a difference in outcomes between these patients and type 2 patients treated in general practice, even though you’d expect there to be one?), that option will usually not be scalable. Also, it’s to be expected that these patients are more expensive than the default type 2 patient treated by his GP [and they definitely are: “Only if severe complications arise [in the context of a type 2 patient] is the care shifted to specialised clinics in hospitals. […] these patients have the most expensive care due to costly treatment of for example foot ulcers and renal insufficiency”]; again, they’re sicker and need more comprehensive care. They would need it even if they did not get it in a hospital setting, and there are costs associated with under-treatment as well.

“About 90 % of the children [with diabetes in Sweden] are classified as having Type 1 diabetes based on positive autoantibodies and a few percent receive a diagnosis of “Maturity Onset Diabetes of the Young” (MODY) [39]. Type 2 diabetes among children is very rare in Sweden.”

Lastly, some observations from the final chapter:

“The paradox that we are dealing with is that in spite of health professionals wanting the best for their patients on a patient by patient basis, the way that individuals and institutions are organised and paid, directly influences the clinical decisions that are made. […] Naturally, optimising personal care and the provider/purchaser-commissioner budget may be aligned, but this is where diabetes poses substantial problems from a health system point of view: The majority of adverse diabetes outcomes […] are many years in the future, so a system based on this year’s budget will often not prioritise the future […] Even for these adverse “diabetes” outcomes, other clinical factors contribute to the end result. […]  attribution to diabetes may not be so obvious to those seeking ways to minimise expenditure.”

[I incidentally tried to get this point across in a recent discussion on SSC, but I’m not actually sure the point was understood, presumably because I did not explain it sufficiently clearly or go into enough detail. It is my general impression, on a related note, that many people who would like to cut down on the sort of implicit public subsidization of unhealthy behaviours that most developed economies to some extent engage in these days do not understand well enough the sort of problems that e.g. the various attribution problems and how to optimize ‘post-diagnosis care’ (even if what you want to optimize is the cost minimization function…) cause in specific contexts. As I hope my comments indicate in that thread, I don’t think these sorts of issues can be ignored or dealt with in some very simple manner – and I’m tempted to say that if you think they can, you don’t know enough about these topics. I say that as one of those people who would like people who engage in risky behaviours to pay a larger (health) risk premium than they currently do].

[Continued from above, …problems from a health system point of view:]
“Payment for ambulatory diabetes care , which is essentially the preventative part of diabetes care, usually sits in a different budget to the inpatient budget where the big expenses are. […] good evidence for reducing hospitalisation through diabetes integrated care is limited […] There is ample evidence [11, 12] where clinicians own, and profit from, other services (e.g., laboratory, radiology), that referral rates are increased, often inappropriately […] Under the English NHS, the converse exists, where GPs, either holding health budgets, or receiving payments for maintaining health budgets [13], reduce their referrals to more specialist care. While this may be appropriate in many cases, it may result in delays and avoidance of referrals, even when specialist care is likely to be of benefit. [this would be the under-treatment I was talking about above…] […] There is a mantra that fragmentation of care and reductions in continuity of care are likely to harm the quality of care [14], but hard evidence is difficult to obtain.”

“The problems outlined above, suggest that any health system that fails to take account of the need to integrate the payment system from both an immediate and long term perspective, must be at greater risk of their diabetes integration attempts failing and/or being unsustainable. […] There are clearly a number of common factors and several that differ between successful and less successful models. […] Success in these models is usually described in terms of hospitalisation (including, e.g., DKA, amputation, cardiovascular disease events, hypoglycaemia, eye disease, renal disease, all cause), metabolic outcomes (e.g., HbA1c ), health costs and access to complex care. Some have described patient related outcomes, quality of life and other staff satisfaction, but the methodology and biases have often not been open to scrutiny. There are some methodological issues that suggest that many of those with positive results may be illusory and reflect the pre-existing landscape and/or wider changes, particular to that locality. […] The reported “success” of intermediate diabetes clinics run by English General Practitioners with a Special Interest led to extension of the model to other areas. This was finally tested in a randomised controlled trial […] and shown to be a more costly model with no real benefit for patients or the system. Similarly in East Cambs and Fenland, the 1 year results suggested major reductions in hospitalisation and costs in practices participating fully in the integrated care initiative, compared with those who “engaged” later [9]. However, once the trends in neighbouring areas and among those without diabetes were accounted for, it became clear that the benefits originally reported were actually due to wider hospitalisation reductions, not just in those with diabetes. Studies of hospitalisation /hospital costs that do not compare with rates in the non-diabetic population need to be interpreted with caution.”

“Kaiser Permanente is often described as a great diabetes success story in the USA due to its higher than peer levels of, e.g., HbA1c testing [23]. However, in the 2015 HEDIS data, levels of testing, metabolic control achieved and complication rates show quality metrics lower than the English NHS, in spite of the problems with the latter [23]. Furthermore, HbA1c rates above 9 % remain at approximately 20 %, in Southern California [24] or 19 % in Northern California [25], a level much higher than that in the UK […] Similarly, the Super Six model […] has been lauded as a success, as a result of reductions in patients with, e.g., amputations. However, these complications were in the bottom quartile of performance for these outcomes in England [26] and hence improvement would be expected with the additional diabetes resources invested into the area. Amputation rates remain higher than the national average […] Studies showing improvement from a low baseline do not necessarily provide a best practice model, but perhaps a change from a system that required improvement. […] Several projects report improvements in HbA1c […] improvements in HbA1c, without reports of hypoglycaemia rates and weight gain, may be associated with worse outcomes as suggested from the ACCORD trial [28].”

December 18, 2016 Posted by | Books, Diabetes, Economics, Epidemiology, Medicine | Leave a comment

The Ageing Immune System and Health (I)

as we age, we observe a greater heterogeneity of ability and health. The variation in, say, walking speed is far greater in a group of 70 year olds, than in a group on 20 year olds. This makes the study of ageing and the factors driving that heterogeneity of health and functional ability in old age vital. […] The study of the immune system across the lifespan has demonstrated that as we age the immune system undergoes a decline in function, termed immunosenescence. […] the decline in function is not universal across all aspects of the immune system, and neither is the magnitude of functional loss similar between individuals. The theory of inflammageing, which represents a chronic low grade inflammatory state in older people, has been described as a major consequence of immunosenescence, though lifestyle factors such as reduced physical activity and increased adiposity also play a major role […] In poor health, older people accumulate disease, described as multimorbidity. This in turn means traditional single system based health care becomes less valid as each system affected by disease impacts on other systems. This leads some older people to be at greater risk of adverse events such as disability and death. The syndrome of this increased vulnerability is described as frailty, and increasing fundamental evidence is emerging that suggests immunosenescence and inflammageing may underpin frailty […] Thus frailty is seen as one clinical manifestation of immunosenescence.”

The above quotes are from the book‘s preface. I gave it 3 stars on goodreads. I should probably, considering that this topic is mentioned in the preface, mention explicitly that the book doesn’t actually go into a lot of details about the downsides of ‘traditional single system based health care’; the book is mainly about immunology and related topics, and although it provides coverage of intervention studies etc., it doesn’t really provide detailed coverage about issues like the optimization of organizational structures/systems analysis etc.. The book I was currently reading while I started out writing this post – Integrated Diabetes Care – A Multidisciplinary Approach (blog coverage here) – is incidentally pretty much exclusively devoted to providing coverage of these sorts of topics (and it did a fine job).

If you have never read any sort of immunology text before the book will probably be unreadable to you – “It is aimed at fundamental scientists and clinicians with an interest in ageing or the immune system.” In my coverage below I have not made any efforts towards picking out quotes which would be particularly easy for the average reader to read and understand; this is another way of saying that the post is mainly written for my own benefit, perhaps even more so than is usually the case, not for the benefit of potential readers reading along here.

“Physiological ageing is associated with significant re-modelling of the immune system. Termed immunosenescence, age-related changes have been described in the composition, phenotype and function of both the innate and adaptive arms of the immune system. […] Neutrophils are the most abundant leukocyte in circulation […] The first step in neutrophil anti-microbial defence is their extravasation from the bloodstream and migration to the site of infection. Whilst age appears to have no effect upon the speed at which neutrophils migrate towards chemotactic signals in vitro [15], the directional accuracy of neutrophil migration to inflammatory agonists […] as well as bacterial peptides […] is significantly reduced [15]. […] neutrophils from older adults clearly exhibit defects in several key defensive mechanisms, namely chemotaxis […], phagocytosis of opsonised pathogens […] and NET formation […]. Given this near global impairment in neutrophil function, alterations to a generic signalling element rather than defects in molecules specific to each anti-microbial defence strategy is likely to explain the aberrations in neutrophil function that occur with age. In support of this idea, ageing in rodents is associated with a significant increase in neutrophil membrane fluidity, which coincides with a marked reduction in neutrophil function […] ageing results in a reduction in NK cell production and proliferation […] Numerous studies have examined the impact of age […], with the general consensus that at the single cell level, NK cell cytotoxicity (NKCC) is reduced with age […] retrospective and prospective studies have reported relationships between low NK cell activity in older adults and (1) a past history of severe infection, (2) an increased risk of future infection, (3) a reduced probability of surviving infectious episodes and (4) infectious morbidity [49–51]. Related to this increased risk of infection, reduced NKCC prior to and following influenza vaccination in older adults has been shown to be associated with reduced protective anti-hemagglutinin titres, worsened health status and an increased incidence of respiratory tract infection […] Whilst age has no effect upon the frequency or absolute number of monocytes [54, 55], the composition of the monocyte pool is markedly different in older adults, who present with an increased frequency of non-classical and intermediate monocytes, and fewer classical monocytes when compared to their younger counterparts”.

“Via their secretion of growth factors, pro-inflammatory cytokines, and proteases, senescent cells compromise tissue homeostasis and function, and their presence has been causally implicated in the development of such age-associated conditions as sarcopenia and cataracts [92]. Several studies have demonstrated a role for innate immune cells in the recognition and clearance of senescent cells […] ageing is associated with a low-grade systemic up-regulation of circulating inflammatory mediators […] Results from longitudinal-based studies suggest inflammageing is deleterious to human health with studies in older cohorts demonstrating that low-grade increases in the circulating levels of TNF-α [103], IL-6 […] and CRP [105] are associated with both all-cause […] and cause-specific […] mortality. Furthermore, inflammageing is a predictor of frailty [106] and is considered a major factor in the development of several age-related pathologies, such as atherosclerosis [107], Alzheimer’s disease [100] and sarcopenia [108].”

“Persistent viral infections, reduced vaccination responses, increased autoimmunity, and a rise in inflammatory syndromes all typify immune ageing. […] These changes can be in part attributed to the accumulation of highly differentiated senescent T cells, characterised by their decreased proliferative capacity and the activation of senescence signaling pathways, together with alterations in the functional competence of regulatory cells, allowing inflammation to go unchecked. […] Immune senescence results from defects in different leukocyte populations, however the dysfunction is most profound in T cells [6, 7]. The responses of T cells from aged individuals are typically slower and of a lower magnitude than those of young individuals […] while not all equally affected by age, the overall T cell number does decline dramatically as a result of thymic atrophy […] T cell differentiation is a highly complex process controlled not only by costimulation but also by the strength and duration of T cell receptor (TCR) signalling [34]. Nearly all TCR signalling pathways have been found altered during ageing […] two phenotypically distinct subsets of B cells […] have been demonstrated to exert immunosuppressive functions. The frequency and function of both these Breg subsets declines with age”.

“The immune impairments in patients with chronic hyperglycemia resemble those seen during ageing, namely poor control of infections and reduced vaccination response [99].” [This is hardly surprising. ‘Hyperglycemia -> accelerated ageing’ seems generally to be a good (over-)simplified model in many contexts. To give another illustrative example from Czernik & Fowlkes text, “approximately 4–6 years of diabetes exposure in some children may be sufficient to increase skin AGEs to levels that would naturally accumulate only after ~25 years of chronological aging”].

“The term “immunosenescence” is commonly taken to mean age-associated changes in immune parameters hypothesized to contribute to increased susceptibility and severity of the older adult to infectious disease, autoimmunity and cancer. In humans, it is characterized by lower numbers and frequencies of naïve T and B cells and higher numbers and frequencies of late-differentiated T cells, especially CD8+ T cells, in the peripheral blood. […] Low numbers of naïve cells render the aged highly susceptible to pathogens to which they have not been previously exposed, but are not otherwise associated with an “immune risk profile” predicting earlier mortality. […] many of the changes, or most often, differences, in immune parameters of the older adult relative to the young have not actually been shown to be detrimental. The realization that compensatory changes may be developing over time is gaining ground […] Several studies have now shown that lower percentages and absolute numbers of naïve CD8+ T cells are seen in all older subjects whereas the accumulation of very large numbers of CD8+ late-stage differentiated memory cells is seen in a majority but not in all older adults [2]. The major difference between this majority of subjects with such accumulations of memory cells and those without is that the former are infected with human herpesvirus 5 (Cytomegalovirus, CMV). Nevertheless, the question of whether CMV is associated with immunosenescence remains so far uncertain as no causal relationship has been unequivocally established [5]. Because changes are seen rapidly after primary infection in transplant patients [6] and infants [7], it is highly likely that CMV does drive the accumulation of CD8+ late-stage memory cells, but the relationship of this to senescence remains unclear. […] In CMV-seropositive people, especially older people, a remarkably high fraction of circulating CD8+ T lymphocytes is often found to be specific for CMV. However, although the proportion of naïve CD8+ T cells is lower in the old than the young whether or not they are CMV-infected, the gross accumulation of late-stage differentiated CD8+ T cells only occurs in CMV-seropositive individuals […] It is not clear whether this is adaptive or pathological […] The total CMV-specific T-cell response in seropositive subjects constitutes on average approximately 10 % of both the CD4+ and CD8+ memory compartments, and can be far greater in older people. […] there are some published data suggesting that that in young humans or young mice, CMV may improve immune responses to some antigens and to influenza virus, probably by way of increased pro-inflammatory responses […] observations suggest that the effect of CMV on the immune system may be highly dependent also on an individuals’ age and circumstances, and that what is viewed as ageing is in fact later collateral damage from immune reactivity that was beneficial in earlier life [47, 48]. This is saying nothing more than that the same immune pathology that always accompanies immune responses to acute viruses is also caused by CMV, but over a chronic time scale and usually subclinical. […] data suggest that the remodeling of the T-cell compartment in the presence of a latent infection with CMV represents a crucial adaptation of the immune system towards the chronic challenge of lifelong CMV.”

The authors take issue with using the term ‘senescence’ to describe some of the changes discussed above, because this term by definition should be employed only in the context of changes that are demonstrably deleterious to health. It should be kept in mind in this context that insufficient immunological protection against CMV in old age could easily be much worse than the secondary inflammatory effects, harmful though these may well be; CMV in the context of AIDS, organ transplantation (“CMV is the most common and single most important viral infection in solid organ transplant recipients” – medscape) and other disease states involving compromised immune systems can be really bad news (“Disease caused by human herpesviruses tends to be relatively mild and self-limited in immunocompetent persons, although severe and quite unusual disease can be seen with immunosuppression.” Holmes et al.)

“The role of CMV in the etiology of […] age-associated diseases is currently under intensive investigation […] in one powerful study, the impact of CMV infection on mortality was investigated in a cohort of 511 individuals aged at least 65 years at entry, who were then followed up for 18 years. Infection with CMV was associated with an increased mortality rate in healthy older individuals due to an excess of vascular deaths. It was estimated that those elderly who were CMV- seropositive at the beginning of the study had a near 4-year reduction in lifespan compared to those who were CMV-seronegative, a striking result with major implications for public health [59]. Other data, such as those from the large US NHANES-III survey, have shown that CMV seropositivity together with higher than median levels of the inflammatory marker CRP correlate with a significantly lower 10-year survival rate of individuals who were mostly middle-aged at the start of the study [63]. Further evidence comes from a recently published Newcastle 85+ study of the immune parameters of 751 octogenarians investigated for their power to predict survival during a 65-month follow-up. It was documented that CMV-seropositivity was associated with increased 6-year cardiovascular mortality or death from stroke and myocardial infarction. It was therefore concluded that CMV-seropositivity is linked to a higher incidence of coronary heart disease in octogenarians and that senescence in both the CD4+ and CD8+ T-cell compartments is a predictor of overall cardiovascular mortality”.

“The incidence and severity of many infections are increased in older adults. Influenza causes approximately 36,000 deaths and more than 100,000 hospitalizations in the USA every year […] Vaccine uptake differs tremendously between European countries with more than 70 % of the older population being vaccinated against influenza in The Netherlands and the United Kingdom, but below 10 % in Poland, Latvia and Estonia during the 2012–2013 season […] several systematic reviews and meta-analyses have estimated the clinical efficacy and/or effectiveness of a given influenza vaccine, taking into consideration not only randomized trials, but also cohort and case-control studies. It can be concluded that protection is lower in the old than in young adults […] [in one study including “[m]ore than 84,000 pneumococcal vaccine-naïve persons above 65 years of age”] the effect of age on vaccine efficacy was studied and the statistical model showed a decline of vaccine efficacy for vaccine-type CAP and IPD [Invasive Pneumococcal Disease] from 65 % (95 % CI 38–81) in 65-year old subjects, to 40 % (95 % CI 17–56) in 75-year old subjects […] The most effective measure to prevent infectious disease is vaccination. […] Over the last 20–30 years tremendous progress has been achieved in developing novel/improved vaccines for children, but a lot of work still needs to be done to optimize vaccines for the elderly.”

December 12, 2016 Posted by | Books, Cardiology, Diabetes, Epidemiology, Immunology, Infectious disease, Medicine, Microbiology | Leave a comment

Integrated Diabetes Care (I)

I’ll start out by quoting from my goodreads review of the book:

The book provides a good overview of studies and clinical trials which have attempted to improve the coordination of diabetes treatment in specific areas. The book covers research from all over the world – the UK, the US, Hong Kong, South Africa, Germany, Netherlands, Sweden, Australia. The language of the publication is quite good, considering the number of non-native English speaking contributors. An at least basic understanding of medical statistics is probably required for one to properly read and understand this book in full.

The book is quite good if you want to understand how people have tried to improve (mainly type 2) diabetes treatment ‘from an organizational point of view’ (the main focus here is not on new treatment options, but on how to optimize care delivery and make the various care providers involved work better together, in a way that improves outcomes for patients (at an acceptable cost?), which is to a large extent an organizational problem), but it’s actually also probably quite a nice book if you simply want to know more about how diabetes treatment systems differ across countries; the contributors don’t assume that the readers know how e.g. the Swedish approach to diabetes care differs from that of e.g. Pennsylvania, so many chapters contain interesting details on how specific countries/health care providers handle specific aspects of e.g. care delivery or finance.

What people mean by ‘integrated care’ varies a bit depending on whom you ask (patients and service providers may emphasize different dimensions when thinking about these topics), as should also be clear from the quotes below; however I assumed it might be a good idea to start out the post with the quote above, so that people who might have no idea what ‘integrated diabetes care’ is did not start out reading the post completely in the dark. In short, a big problem in health service delivery contexts is that care provision is often fragmented and uncoordinated, for many reasons. Ideally you might like doctors working in general practice to collaborate smoothly and efficiently with hospital staff and various other specialists involved in diabetes care (…and perhaps also with social services and mental health care providers…), but that kind of coordination often doesn’t happen, leading to what may well be sub-optimal care provision. Collaboration and a ‘desirable’ (whatever that might mean) level of coordination between service providers doesn’t happen automatically; it takes money, effort and a lot of other things (that the book covers in some detail…) to make it happen – and so often it doesn’t happen, at least there’s a lot of room for improvement even in places where things work comparatively well. Some quotes from the book on these topics:

“it is clear that in general, wherever you are in the world, service delivery is now fragmented [2]. Such fragmentation is a manifestation of organisational and financial barriers, which divide providers at the boundaries of primary and secondary care, physical and mental health care, and between health and social care. Diverse specific organisational and professional cultures, and differences in terms of governance and accountability also contribute to this fragmentation [2]. […] Many of these deficiencies are caused by organisational problems (barriers, silo thinking, accountability for budgets) and are often to the detriment of all of those involved: patients, providers and funders – in extreme cases – leading to lose-lose-lose-situations […] There is some evidence that integrated care does improve the quality of patient care and leads to improved health or patient satisfaction [10, 11], but evidence of economic benefits remain an issue for further research [10]. Failure to improve integration and coordination of services along a “care continuum” can result in suboptimal outcomes (health and cost), such as potentially preventable hospitalisation, avoidable death, medication errors and adverse drug events [3, 12, 13].”

Integrated care is often described as a continuum [10, 24], actually depicting the degree of integration. This degree can range from linkage, to coordination and integration [10], or segregation (absence of any cooperation) to full integration [25], in which the integrated organisation is responsible for the full continuum of care responsible for the full continuum of care […] this classification of integration degree can be expanded by introducing a second dimension, i.e., the user needs. User need should be defined by criteria, like stability and severity of condition, duration of illness (chronic condition), service needed and capacity for self-direction (autonomy). Accordingly, a low level of need will not require a fully integrated system, then [10, 24] […] Kaiser Permanente is a good example of what has been described as a “fully integrated system. […] A key element of Kaiser Permanente’s approach to chronic care is the categorisation of their chronically ill patients into three groups based on their degree of need“.

It may be a useful simplification to think along the lines of: ‘Higher degree of need = a higher level of integration becomes desirable/necessary. Disease complexity is closely related to degree of need.’ Some related observations from the book:

“Diabetes is a condition in which longstanding hyperglycaemia damages arteries (causing macrovascular, e.g., ischaemic heart, peripheral and cerebrovascular disease, and microvascular disease, e.g., retinopathy, nephropathy), peripheral nerves (causing neuropathy), and other structures such as skin (causing cheiroarthropathy) and the lens (causing cataracts). Different degrees of macrovascular, neuropathic and cutaneous complications lead to the “diabetic foot.” A proportion of patients, particularly with type 2 diabetes have metabolic syndrome including central adiposity, dyslipidaemia, hypertension and non alcoholic fatty liver disease. Glucose management can have severe side effects, particularly hypoglycaemia and weight gain. Under-treatment is not only associated with long term complications but infections, vascular events and increased hospitalisation. Absence of treatment in type 1 diabetes can rapidly lead to diabetic keto-acidosis and death. Diabetes doubles the risk for depression, and on the other hand, depression may increase the risk for hyperglycaemia and finally for complications of diabetes [41]. Essentially, diabetes affects every part of the body once complications set in, and the crux of diabetes management is to normalise (as much as possible) the blood glucose and manage any associated risk factors, thereby preventing complications and maintaining the highest quality of life. […] glucose management requires minute by minute, day by day management addressing the complexity of diabetes, including clinical and behavioural issues. While other conditions also have the patient as therapist, diabetes requires a fully empowered patient with all of the skills, knowledge and motivation every hour of the waking day. A patient that is fully engaged in self-management, and has support systems, is empowered to manage their diabetes and will likely experience better outcomes compared with those who do not have access to this support. […] in diabetes, the boundaries between primary care and secondary care are blurred. Diabetes specialist services, although secondary care, can provide primary care, and there are GPs, diabetes educators, and other ancillary providers who can provide a level of specialist care.”

In short, diabetes is a complex disease – it’s one of those diseases where a significant degree of care integration is likely to be necessary in order to achieve even close to optimal outcomes. A little more on these topics:

“The unique challenge to providers is to satisfy two specific demands in diabetes care. The first is to anticipate and recognize the onset of complications through comprehensive diabetes care, which demands meticulous attention to a large number of process-of-care measures at each visit. The second, arguably greater challenge for providers is to forestall the development of complications through effective diabetes care, which demands mastery over many different skills in a variety of distinct fields in order to achieve performance goals covering multiple facets of management. Individually and collectively, these dual challenges constitute a virtually unsustainable burden for providers. That is because (a) completing all the mandated process measures for comprehensive care requires far more time than is traditionally available in a single patient visit; and (b) most providers do not themselves possess skills in all the ancillary disciplines essential for effective care […] Diabetes presents patients with similarly unique dual challenges in mastering diabetes self-management with self-awareness, self-empowerment and self-confidence. Comprehensive Diabetes Self-Management demands the acquisition of a variety of skills in order to fulfil a multitude of tasks in many different areas of daily life. Effective Diabetes Self-Management, on the other hand, demands constant vigilance, consistent discipline and persistent attention over a lifetime, without respite, to nutritional self-discipline, monitoring blood glucose levels, and adherence to anti-diabetic medication use. Together, they constitute a burden that most patients find difficult to sustain even with expert assistance, and all-but-impossible without it.”

“Care coordination achieves critical importance for diabetes, in particular, because of the need for management at many different levels and locations. At the most basic level, the symptomatic management of acute hypo- and hyperglycaemia often devolves to the PCP [primary care provider], even when a specialist oversees more advanced strategies for glycaemic management. At another level, the wide variety of chronic complications requires input from many different specialists, whereas hospitalizations for acute emergencies often fall to hospitalists and critical care specialists. Thus, diabetes care is fraught with the potential for sometimes conflicting, even contradictory management strategies, making care coordination mandatory for success.”

“Many of the problems surrounding the provision of adequate person-centred care for those with diabetes revolve around the pressures of clinical practice and a lack of time. Good diabetes management requires attention to a number of clinical parameters
1. (Near) Normalization of blood glucose
2. Control of co-morbidities and risk factors
3. Attainment of normal growth and development
4. Prevention of Acute Complications
5. Screening for Chronic Complications
To fit all this and a holistic, patient-centred collaborative approach into a busy general practice, the servicing doctor and other team members must understand that diabetes cannot be “dealt with” coincidently during a patient consultation for an acute condition.”

“Implementation of the team model requires sharing of tasks and responsibilities that have traditionally been the purview of the physician. The term “team care” has traditionally been used to indicate a group of health-care professionals such as physicians, nurses, pharmacists, or social workers, who work together in caring for a group of patients. In a 2006 systematic review of 66 trials testing 11 strategies for improving glycaemic control for patients with diabetes, only team care and case management showed a significant impact on reducing HbA1c levels [18].”

Moving on, I found the chapter about Hong Kong interesting, for several reasons. The quality of Scandinavian health registries are probably widely known in the epidemiological community, but I was not aware of Hong Kong’s quality of diabetes data, and data management strategies, which seems to be high. Nor was I aware of some of the things they’ve discovered while analyzing those data. A few quotes from that part of the coverage:

“Given the volume of patients in the clinics, the team’s earliest work from the HKDR [Hong Kong Diabetes Registry, US] prioritized the development of prediction models, to allow for more efficient, data-driven risk stratification of patients. After accruing data for a decade on over 7000 patients, the team established 5-year probabilities for major diabetes-related complications as defined by the International Code for Diseases retrieved from the CMS [Clinical Management System, US]. These included end stage renal disease [7], stroke [8], coronary heart disease [9], heart failure [10], and mortality [11]. These risk equations have a 70–90 % sensitivity and specificity of predicting outcomes based on the parameters collected in the registry.”

“The lifelong commitments to medication adherence and lifestyle modification make diabetes self-management both physically and emotionally taxing. The psychological burdens result from insulin injection, self-monitoring of blood glucose, dietary restriction, as well as fear of complications, which may significantly increase negative emotions in patients with diabetes. Depression, anxiety, and distress are prevalent mental afflictions found in patients with diabetes […] the prevalence of depression was 18.3 % in Hong Kong Chinese patients with type 2 diabetes. Furthermore, depression was associated with poor glycaemic control and self-reported hypoglycaemia, in part due to poor adherence […] a prospective study involving 7835 patients with type 2 diabetes without cardiovascular disease (CVD) at baseline […] found that [a]fter adjusting for conventional risk factors, depression was independently associated with a two to threefold increase in the risk of incident CVD [22].”

“Diabetes has been associated with increased cancer risk, but the underlying mechanism is poorly understood. The linkage between the longitudinal clinical data within the HKDR and the cancer outcome data in the CMS has provided important observational findings to help elucidate these connections. Detailed pharmacoepidemiological analyses revealed attenuated cancer risk in patients treated with insulin and oral anti-diabetic drugs compared with non-users of these drugs”

“Among the many challenges of patient self-management, lack of education and empowerment are the two most cited barriers [59]. Sufficient knowledge is unquestionably important in self-care, especially in people with low health literacy and limited access to diabetes education. Several systematic reviews [have] showed that self-management education with comprehensive lifestyle interventions improved glycaemic and cardiovascular risk factor control [60–62].”

“Clinical trials are expensive because of the detail and depth of data required on each patient, which often require separate databases to be developed outside of the usual-care electronic medical records or paper-based chart systems. These databases must be built, managed, and maintained from scratch every time, often requiring double-entry of data by research staff. The JADE [Joint Asia Diabetes Evaluation] programme provides a more efficient means of collecting the key clinical variables in its comprehensive assessments, and allows researchers to add new fields as necessary for research purposes. This obviates the need for redundant entry into non-clinical systems, as the JADE programme is simultaneously a clinical care tool and prospective database. […] A large number of trials fail because of inadequate recruitment [67]. The JADE programme has allowed for ready identification of eligible clinical trial participants because of its detailed clinical database. […] One of the greatest challenges in clinical trials is maintaining the contact between researchers and patients over many years. […] JADE facilitates long-term contact with the patient, as part of routine periodic follow-up. This also allows researchers to evaluate longer term outcomes than many previous trials, given the great expense in maintaining databases for the tracking of longitudinal outcomes.”

Lastly, some stuff on cost and related matters from the book:

“Diabetes imposes a massive economic burden on all healthcare systems, accounting for 11 % of total global healthcare expenditure on adults in 2013.”

“Often, designated service providers institute managed care programmes to standardize and control care rendered in a safe and cost-effective manner. However, many of these programmes concentrate on cost-savings rather than patient service utilization and improved clinical outcomes. [this part of the coverage is from South Africa, but these kinds of approaches are definitely not limited to SA – US] […] While these approaches may save some costs in the short-term, Managed Care Programmes which do not address patient outcomes nor reduce long term complications, ignore the fact that that the majority of the costs for treating diabetes, even in the medium term, are due to the treatment of acute and chronic complications and for inpatient hospital care [14]. Additionally, it is well established that poor long-term clinical outcomes increase the cost burden of managing the patient with diabetes by up to 250 %. […] overall, the costs of medication, including insulin, accounts for just 7 % of all healthcare costs related to diabetes [this number varies across countries, I’ve seen estimates of 15% in the past – and as does the out-pocket share of that cost – but the costs of medications constitute a relatively small proportion of the total costs of diabetes everywhere you look, regardless of health care system and prevalence. If you include indirect costs as well, which you should, this becomes even more obvious – US]”

“[A] study of the Economic Costs of Diabetes in the U.S. in 2012 [25] showed that for people with diabetes, hospital inpatient care accounted for 43 % of the total medical cost of diabetes.”

“There is some evidence of a positive impact of integrated care programmes on the quality of patient care [10, 34]. There is also a cautious appraisal that warns that “Even in well-performing care groups, it is likely to take years before cost savings become visible” […]. Based on a literature review from 1996 to 2004 Ouwens et al. [11] found out that integrated care programmes seemed to have positive effects on the quality of care. […] because of the variation in definitions of integrated care programmes and the components used cover a broad spectrum, the results should be interpreted with caution. […] In their systematic review of the effectiveness of integrated care Ouwens et al. [11] could report on only seven (about 54 %) reviews which had included an economic analysis. Four of them showed financial advantages. In their study Powell Davies et al. [34] found that less than 20 % of studies that measured economic outcomes found a significant positive result. Similarly, de Bruin et al. [37] evaluated the impact of disease management programmes on health-care expenditures for patients with diabetes, depression, heart failure or chronic obstructive pulmonary disease (COPD). Thirteen studies of 21 showed cost savings, but the results were not statistically significant, or not actually tested for significance. […] well-designed economic evaluation studies of integrated care approaches are needed, in particular in order to support decision-making on the long-term financing of these programmes [30, 39]. Savings from integrated care are only a “hope” as long as there is no carefully designed economic analysis with a kind of full-cost accounting.”

“The cost-effectiveness of integrated care for patients with diabetes depends on the model of integrated care used, the system in which it is used, and the time-horizon chosen [123]. Models of cost benefit for using health coaching interventions for patients with poorly controlled diabetes have generally found a benefit in reducing HbA1c levels, but at the cost of paying for the added cost of health coaching which is not offset in the short term by savings from emergency department visits and hospitalizations […] An important question in assessing the cost of integrated care is whether it needs to be cost-saving or cost-neutral to be adopted, or is it enough to increase quality-adjusted life years (QALYs) at a “reasonable” cost (usually pegged at between $30,000 and $60,000 per QALY saved). Most integrated care programmes for patients with diabetes that have been evaluated for cost-effectiveness would meet this more liberal criterion […] In practice, integrated care programmes for patients with diabetes are often part of generalized programmes of care for patients with other chronic medical conditions, making the allocation of costs and savings with respect to integrated care for diabetes difficult to estimate. At this point, integrated care for patients with diabetes appears to be a widely accepted goal. The question becomes: which model of integrated care is most effective at reasonable cost? Answering this question depends both on what costs are included and what outcomes are measured; the answers may vary among different patient populations and different care systems.”

December 6, 2016 Posted by | Books, Diabetes, Economics, Medicine, Pharmacology | Leave a comment

Role of Biomarkers in Medicine

“The use of biomarkers in basic and clinical research has become routine in many areas of medicine. They are accepted as molecular signatures that have been well characterized and repeatedly shown to be capable of predicting relevant disease states or clinical outcomes. In Role of Biomarkers in Medicine, expert researchers in their individual field have reviewed many biomarkers or potential biomarkers in various types of diseases. The topics address numerous aspects of medicine, demonstrating the current conceptual status of biomarkers as clinical tools and as surrogate endpoints in clinical research.”

The above quote is from the preface of the book. Here’s my goodreads review. I have read about biomarkers before – for previous posts on this topic, see this link. I added the link in part because the coverage provided in this book is in my opinion generally of a somewhat lower quality than is the coverage that has been provided in some of the other books I’ve read on these topics. However the fact that the book is not amazing should probably not keep me from sharing some observations of interest from the book, which I have done in this post.

we suggest more precise studies to establish the exact role of this hormone […] additional studies are necessary […] there are conflicting results […] require further investigation […] more intervention studies with long-term follow-up are required. […] further studies need to be conducted […] further research is needed (There are a lot of comments like these in the book, I figured I should include a few in my coverage…)

“Cancer biomarkers (CB) are biomolecules produced either by the tumor cells or by other cells of the body in response to the tumor, and CB could be used as screening/early detection tool of cancer, diagnostic, prognostic, or predictor for the overall outcome of a patient. Moreover, cancer biomarkers may identify subpopulations of patients who are most likely to respond to a given therapy […] Unfortunately, […] only very few CB have been approved by the FDA as diagnostic or prognostic cancer markers […] 25 years ago, the clinical usefulness of CB was limited to be an effective tool for patient’s prognosis, surveillance, and therapy monitoring. […] CB have [since] been reported to be used also for screening of general population or risk groups, for differential diagnosis, and for clinical staging or stratification of cancer patients. Additionally, CB are used to estimate tumor burden and to substitute for a clinical endpoint and/or to measure clinical benefit, harm or lack of benefit, or harm [4, 18, 30]. Among commonly utilized biomarkers in clinical practice are PSA, AFP, CA125, and CEA.”

“Bladder cancer (BC) is the second most common malignancy in the urologic field. Preoperative predictive biomarkers of cancer progression and prognosis are imperative for optimizing […] treatment for patients with BC. […] Approximately 75–85% of BC cases are diagnosed as nonmuscle-invasive bladder cancer (NMIBC) […] NMIBC has a tendency to recur (50–70%) and may progress (10–20%) to a higher grade and/or muscle-invasive BC (MIBC) in time, which can lead to high cancer-specific mortality [2]. Histological tumor grade is one of the clinical factors associated with outcomes of patients with NMIBC. High-grade NMIBC generally exhibits more aggressive behavior than low-grade NMIBC, and it increases the risk of a poorer prognosis […] Cystoscopy and urine cytology are commonly used techniques for the diagnosis and surveillance of BC. Cystoscopy can identify […] most papillary and solid lesions, but this is highly invasive […] urine cytology is limited by examiner experience and low sensitivity. For these reasons, some tumor markers have been investigated […], but their sensitivity and specificity are limited [5] and they are unable to predict the clinical outcome of BC patients. […] Numerous efforts have been made to identify tumor markers. […] However, a serum marker that can serve as a reliable detection marker for BC has yet to be identified.”

“Endometrial cancer (EmCa) is the most common type of gynecological cancer. EmCa is the fourth most common cancer in the United States, which has been linked to increased incidence of obesity. […] there are no reliable biomarker tests for early detection of EmCa and treatment effectiveness. […] Approximately 75% of women with EmCa are postmenopausal; the most common symptom is postmenopausal bleeding […] Approximately 15% of women diagnosed with EmCa are younger than 50 years of age, while 5% are diagnosed before the age of 40 [29]. […] Roughly, half of the EmCa cases are linked to obesity. Obese women are four times more likely to develop EmCa when compared to normal weight women […] Obese individuals oftentimes exhibit resistance to leptin and show high levels of the adipokine in blood, which is known as leptin resistance […] prolonged exposure of leptin damages the hypothalamus causing it to become insensitive to the effects of leptin […] Evidence shows that leptin is an important pro-inflammatory, pro-angiogenic, and mitogenic factor for cancer. Leptin produced by cancer cells acts in an autocrine and paracrine manner to promote tumor cell proliferation, migration and invasion, pro-inflammation, and angiogenesis [58, 70]. High levels of leptin […] are associated with metastasis and decreased survival rates in breast cancer patients [58]. […] Metabolic syndrome including obesity, hypertension, insulin resistance, diabetes, and dyslipidemia increase the risk of developing multiple malignancies, particularly EmCa [30]. Younger women diagnosed with EmCa are usually obese, and their carcinomas show a well-differentiated histology [20].

“Normally, tumor suppressor genes act to inhibit or arrest cell proliferation and tumor development [37]. However; when mutated, tumor suppressors become inactive, thus permitting tumor growth. For example, mutations in p53 have been determined in various cancers such as breast, colon, lung, endometrium, leukemias, and carcinomas of many tissues. These p53 mutations are found in approximately 50% of all cancers [38]. Roughly 10–20% of endometrial carcinomas exhibit p53 mutations [37]. […] overexpression of mutated tumor suppressor p53 has been associated with Type II EmCa (poor histologic grade, non-endometrioid histology, advanced stage, and poor survival).”

“Increasing data indicate that oxidative stress is involved in the development of DR [diabetic retinopathy] [16–19]. The retina has a high content of polyunsaturated fatty acids and has the highest oxygen uptake and glucose oxidation relative to any other tissue. This phenomenon renders the retina more susceptible to oxidative stress [20]. […] Since long-term exposure to oxidative stress is strongly implicated in the pathogenesis of diabetic complications, polymorphic genes of detoxifying enzymes may be involved in the development of DR. […] A meta-analysis comprising 17 studies, including type 1 and type 2 diabetic patients from different ethnic origins, implied that the C (Ala) allele of the C47T polymorphism in the MnSOD gene had a significant protective effect against microvascular complications (DR and diabetic nephropathy) […] In the development of DR, superoxide levels are elevated in the retina, antioxidant defense system is compromised, MnSOD is inhibited, and mitochondria are swollen and dysfunctional [77,87–90]. Overexpression of MnSOD protects [against] diabetes-induced mitochondrial damage and the development of DR [19,91].”

Continuous high level of blood glucose in diabetes damages micro and macro blood vessels throughout the body by altering the endothelial cell lining of the blood vessels […] Diabetes threatens vision, and patients with diabetes develop cataracts at an earlier age and are nearly twice as likely to get glaucoma compared to non-diabetic[s] [3]. More than 75% of patients who have had diabetes mellitus for more than 20 years will develop diabetic retinopathy (DR) [4]. […] DR is a slow progressive retinal disease and occurs as a consequence of longstanding accumulated functional and structural impairment of the retina by diabetes. It is a multifactorial condition arising from the complex interplay between biochemical and metabolic abnormalities occurring in all cells of the retina. DR has been classically regarded as a microangiopathy of the retina, involving changes in the vascular wall leading to capillary occlusion and thereby retinal ischemia and leakage. And more recently, the neural defects in the retina are also being appreciated […]. Recently, various clinical investigators [have detected] neuronal dysfunction at very early stages of diabetes and numerous abnormalities in the retina can be identified even before the vascular pathology appears [76, 77], thus suggesting a direct effect of diabetes on the neural retina. […] An emerging issue in DR research is the focus on the mechanistic link between chronic low-grade inflammation and angiogenesis. Recent evidence has revealed that extracellular high-mobility group box-1 (HMGB1) protein acts as a potent proinflammatory cytokine that triggers inflammation and recruits leukocytes to the site of tissue damage, and exhibits angiogenic effects. The expression of HMGB1 is upregulated in epiretinal membranes and vitreous fluid from patients with proliferative DR and in the diabetic retina. […] HMGB1 may be a potential biomarker [for diabetic retinopathy] […] early blockade of HMGB1 may be an effective strategy to prevent the progression of DR.”

“High blood pressure is one of the leading risk factors for global mortality and is estimated to have caused 9.4 million deaths in 2010. A meta‐analysis which includes 1 million individuals has indicated that death from both CHD [coronary heart disease] and stroke increase progressively and linearly from BP levels as low as 115 mmHg systolic and 75 mmHg diastolic upwards [138]. The WHO [has] pointed out that a “reduction in systolic blood pressure of 10 mmHg is associated with a 22% reduction in coronary heart disease, 41% reduction in stroke in randomized trials, and a 41–46% reduction in cardiometabolic mortality in epidemiological studies” [139].”

Several reproducible studies have ascertained that individuals with autism demonstrate an abnormal brain 5-HT system […] peripheral alterations in the 5-HT system may be an important marker of central abnormalities in autism. […] In a recent study, Carminati et al. [129] tested the therapeutic efficacy of venlafaxine, an antidepressant drug that inhibits the reuptake of 5-HT, and [found] that venlafaxine at a low dose [resulted in] a substantial improvement in repetitive behaviors, restricted interests, social impairment, communication, and language. Venlafaxine probably acts via serotonergic mechanisms  […] OT [Oxytocin]-related studies in autism have repeatedly reported lower blood OT level in autistic patients compared to age- and gender-matched control subjects […] autistic patients demonstrate an altered neuroinflammatory response throughout their lives; they also show increased astrocyte and microglia inflammatory response in the cortex and the cerebellum  [47, 48].”

November 3, 2016 Posted by | autism, Books, Cancer/oncology, Cardiology, Diabetes, Epidemiology, Genetics, Immunology, Medicine, Neurology, Pharmacology | Leave a comment

Diabetic nephropathies

Bakris et al.‘s text on this topic is the first book I’ve read specifically devoted to the topic of DN. As I pointed out on goodreads, “this is a well-written and interesting work which despite the low page count cover quite a bit of ground. A well-sourced and to-the-point primer on these topics.” Below I have added a few observations from the book.

“Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is one of the most important long-term complications of diabetes and the most common cause of endstage renal disease (ESRD) worldwide. DKD […] is defined as structural and functional renal damage manifested as clinically detected albuminuria in the presence of normal or abnormal glomerular filtration rate (GFR). […] Patients with DKD […] account for one-third of patients demanding renal transplantation. […] in the United States, Medicare expenditure on treating ESRD is approximately US $33 billion (as of 2010), which accounts for 8–9 % of the total annual health-care budget […] According to the United States Renal Data System […], the incidence of ESRD requiring RRT [in 2012] was 114,813 patients, with 44 % due to DKD [9]. A registry report from Japan revealed a nearly identical relative incidence, with 44.2 % of the patients with ESRD caused by diabetes”

Be careful not to confuse incidence and prevalence here; the proportion of diabetics diagnosed with ESDR in any given year is almost certainly higher than the proportion of people with ESDR who have diabetes, because diabetics with kidney failure die at a higher rate than do other people with kidney failure. This problem/fact tends to make some questions hard to answer; to give an example, how large a share of the total costs that diabetics contribute to the whole kidney disease component of medical costs seems to me to be far from an easy question to answer, because you in some sense are not really making an apples-to-apples comparison, and a lot might well depend on the chosen discount rate and how to address the excess mortality in the diabetes sample; and even ‘simply’ adding up medical outlays for the diabetes- and non-diabetes samples would require a lot of data (which may not be available) and work. You definitely cannot just combine the estimates provided above, and assume that the 44% incidence translates into 44% of people with ESDR having diabetes; it’s not clear in the text where the ‘one-third of patients’ number above comes from, but if that’s also US data then it should be obvious from the difference between these numbers that there’s a lot of excess mortality here in the diabetes sample (I have included specific data from the publication on these topics below). The book also talks about the fact that the type of dialysis used in a case of kidney failure will to some extent depend on the health status of the patient, and that diabetes is a significant variable in that context; this means that the available/tolerable treatment options for the kidney disease component may not be the same in the case of a diabetic and a case of a patient with, say, lupus nephritis, and it also means that the patient groups most likely are not ‘equally sick’, so basing cost estimates on cost averages might lead to misleading results if severity of disease and (true) treatment costs are related, as they usually are.

“A recent analysis revealed an estimated diabetes prevalence of 12–14 % among adults in the United States […] In the age group ≥65 years, this amounts to more than 20 %”.

It should be emphasized in the context of the above numbers that the prevalence of DKD is highly variable across countries/populations – the authors also include in the book the observation that: “Over a period of 20 years, 32 studies from 16 countries revealed a prevalence ranging from 11 to 83 % of patients with diabetes”. Some more prevalence data:

“DKD affects about 30 % of patients with type 1 diabetes and 25–40 % of the patients with type 2 diabetes. […] The global prevalence of micro- and macroalbuminuria is estimated at 39 % and 10 %, respectively […] (NHANES III) […] reported a prevalence of 35 % (microalbuminuria) and 6 % (macroalbuminuria) in patients with T2DM aged ≥40 years [24]. In another study, this was reported to be 43 % and 12 %, respectively, in a Japanese population [23]. According to the European Diabetes (EURODIAB) Prospective Complications Study Group, in patients with T1DM, the incidence of microalbuminuria was 12.6 % (over 7.3 years) [25]. This prevalence was further estimated at 33 % in an 18-year follow-up study in Denmark […] In the United Kingdom Prospective Diabetes Study (UKPDS), proteinuria [had] a peak incidence after around 15–20 years after diabetes diagnosis.”

I won’t cover the pathophysiology parts in too much detail here, but a few new things I learned does need to be mentioned:

“A natural history of DKD was first described in the 1970s by Danish physicians [32]. It was characterized by a long silent period without overt clinical signs and symptoms of nephropathy and progression through various stages, starting from hyperfiltration, microalbuminuria, macroalbuminuria, and overt renal failure to ESRD. Microalbuminuria (30–300 mg/day of albumin in urine) is a sign of early DKD, whereas macroalbuminuria (>300 mg/day) represents DKD progression. [I knew this stuff. The stuff that follows below was however something I did not know:]
However, this ‘classical’ natural evolution of urinary albumin excretion and change in GFR is not present in many patients with diabetes, especially those with type 2 diabetes [34]. These patients can have reduction or disappearance of proteinuria over time or can develop even overt renal disease in the absence of proteinuria [30, 35]. […] In the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) of patients with T2DM, 45.2 % of participants developed albuminuria, and 29 % developed renal impairment over a 15-year follow-up period [37]. Of those patients who developed renal impairment, 61 % did not have albuminuria beforehand, and 39 % never developed albuminuria during the study. Of the patients that developed albuminuria, only 24 % subsequently developed renal impairment during the study. A significant degree of discordance between development of albuminuria and renal impairment is apparent [37]. These data, thus, do not support the classical paradigm of albuminuria always preceding renal impairment in the progression of DKD. […] renal hyperfiltration and rapid GFR decline are considered stronger predictors of nephropathy progression in type 1 diabetes than presence of albuminuria [67]. The annual eGFR loss in patients with DKD is >3 mL/min/1.73 m2 or 3.3 % per year.”

As for the last part about renal hyperfiltration, they however also note later in the coverage in a different chapter that “recent long-term prospective surveys cast doubt on the validity of glomerular hyperfiltration being predictive of renal outcome in patients with type 1 diabetes”. Various factors mentioned in the coverage – some of which are very hard to avoid and some of which are actually diabetes-specific – contribute to measurement error, which may be part of the explanation for the sub-optimal performance of the prognostic markers employed.

An important observation I think I have mentioned before here on the blog is that diabetic nephropathy is not just bad because people who develop this complication may ultimately develop kidney failure, but is also bad because diabetics may die before they even do that; diabetics with even moderate stages of nephropathy have high mortality from cardiovascular disease, so if you only consider diabetics who actually develop kidney failure you may miss some of the significant adverse health effects of this complication; it might be argued that doing this would be a bit like analyzing the health outcomes of smokers while only tallying the cancer cases, and ignoring e.g. the smoking-associated excess deaths from cardiovascular disease. Some observations from the book on this topic:

“Comorbid DM and DKD are associated with high cardiovascular morbidity and mortality. The risk of cardiovascular disease is disproportionately higher in patients with DKD than patients with DM who do not have kidney disease [76]. The incident dialysis rate might even be higher after adjusting for patients dying from cardiovascular disease before reaching ESRD stage [19]. The United States Renal Data System (USRDS) data shows that elderly patients with a triad of DM, chronic kidney disease (CKD), and heart failure have a fivefold higher chance of death than progression to CKD and ESRD [36]. The 5-year survival rate for diabetic patients with ESRD is estimated at 20 % […] This is higher than the mortality rate for many solid cancers (including prostate, breast, or renal cell cancer). […] CVD accounts for more than half of deaths of patients undergoing dialysis […] the 5-year survival rate is much lower in diabetic versus nondiabetic patients undergoing hemodialysis […] Adler et al. tested whether HbA1c levels were associated with death in adults with diabetes starting HD or peritoneal dialysis [38]. Of 3157 patients observed for a median time of 2.7 years, 1688 died. [this example provided, I thought, a neat indication of what sort of data you end up with when you look at samples with a 20% 5-year survival rate] […] Despite modern therapies […] most patients continue to show progressive renal damage. This outcome suggests that the key pathogenic mechanisms involved in the induction and progression of DN remain, at least in part, active and unmodified by the presently available therapies.” (my emphasis)

The link between blood glucose (Hba1c) and risk of microvascular complications such as DN is strong and well-documented, but Hba1c does not explain everything:

“Only a subset of individuals living with diabetes […] develop DN, and studies have shown that this is not just due to poor blood glucose control [50–54]. DN appears to cluster in families […] Several consortia have investigated genetic risk factors […] Genetic risk factors for DN appear to differ between patients with type 1 and type 2 diabetes […] The pathogenesis of DN is complex and has not yet been completely elucidated […] [It] is multifactorial, including both genetic and environmental factors […]. Hyperglycemia affects patients carrying candidate genes associated with susceptibility to DN and results in metabolic and hemodynamic alterations. Hyperglycemia alters vasoactive regulators of glomerular arteriolar tone and causes glomerular hyperfiltration. Production of AGEs and oxidative stress interacts with various cytokines such as TGF-β and angiotensin II to cause kidney damage. Additionally, oxidative stress can cause endothelial dysfunction and systemic hypertension. Inflammatory pathways are also activated and interact with the other pathways to cause kidney damage.”

“An early clinical sign of DN is moderately increased urinary albumin excretion, referred to as microalbuminuria […] microalbuminuria has been shown to be closely associated with an increased risk of cardiovascular morbidity and mortality [and] is [thus] not only a biomarker for the early diagnosis of DN but also an important therapeutic target […] Moderately increased urinary albumin excretion that progresses to severely increased albuminuria is referred to as macroalbuminuria […] Severely increased albuminuria is defined as an ACR≥300 mg/g Cr; it leads to a decline in renal function, which is defined in terms of the GFR [8] and generally progresses to ESRD 6–8 years after the onset of overt proteinuria […] patients with type 1 diabetes are markedly younger than type 2 patients. The latter usually develop ESRD in their mid-fifties to mid-sixties. According to a small but carefully conducted study, both type 1 and type 2 patients take an average of 77–81 months from the stage of producing macroproteinuria with near-normal renal function to developing ESRD [17].”

“Patients with diabetes and kidney disease are at increased risk of hypoglycemia due to decreased clearance of some of the medications used to treat diabetes such as insulin, as well as impairment of renal gluconeogenesis from having a lower kidney mass. As the kidney is responsible for about 30–80 % of insulin removal, reduced kidney function is associated with a prolonged insulin half-life and a decrease in insulin requirements as estimated glomerular filtration rate (eGFR) decline […] Metformin [a first-line drug for treating type 2 diabetes, US] should be avoided in patients with an eGFR < 30 mL/min /1.73 m2. It is recommended that metformin is stopped in the presence of situations that are associated with hypoxia or an acute decline in kidney function such as sepsis/shock, hypotension, acute myocardial infarction, and use of radiographic contrast or other nephrotoxic agents […] The ideal medication regimen is based on the specific needs of the patient and physician experience and should be individualized, especially as renal function changes. […] Lower HbA1c levels are associated with higher risks of hypoglycemia so the HbA1c target should be individualized […] Whereas patients with mild renal insufficiency can receive most antihyperglycemic treatments without any concern, patients with CKD stage 3a and, in particular, with CKD stages 3b, 4, and 5 often require treatment adjustments according to the degree of renal insufficiency […] Higher HbA1c targets should be considered for those with shortened life expectancies, a known history of severe hypoglycemia or hypoglycemia unawareness, CKD, and children.”

“In cases where avoidance of development of DKD has failed, the second approach is slowing disease progression. The most important therapeutic issues at this stage are control of hypertension and hyperglycemia. […] Hypertension is present in up to 85 % of patients with DN/ DKD, depending on the duration and stage (e.g., higher in more progressive cases). […] In a recent meta-analysis, the efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease was analyzed […] In total, 157 studies comprising 43,256 participants, mostly with type 2 diabetes and CKD, were included in the network meta-analysis. No drug regimen was found to be more effective than placebo for reducing all-cause mortality. […] DKD is accompanied by abnormalities in lipid metabolism related to decline in kidney function. The association between higher low-density lipoprotein cholesterol (LDL-C) and risk of myocardial infarction is weaker for people with lower baseline eGFR, despite higher absolute risk of myocardial infarction [53]. Thus, increased LDL-C seems to be less useful as a marker of coronary risk among people with CKD than in the general population.”

“An analysis of the USRDS data revealed an RR of 0.27 (95 % CI, 0.24–0.30) 18 months after transplantation in patients with diabetes in comparison to patients on dialysis on a transplant waiting list [76]. The gain in projected years of life with transplantation amounted to 11 years in patients with DKD in comparison to patients without transplantation.”

October 27, 2016 Posted by | Books, Cardiology, Diabetes, Epidemiology, Medicine, Nephrology, Pharmacology | Leave a comment

Diabetes and the Metabolic Syndrome in Mental Health (II)

Here’s my first post about the book. This will be my last post about the book. In the coverage below I’ll include some quotes from the second half of the publication, as well as some comments.

“To date, no prospective study has directly compared the efficacy and tolerability of selective serotonin reuptake inhibitors (SSRIs), serotonin/ norepinephrine reuptake inhibitors (SNRIs), or other second-generation antidepressants in patients with diabetes versus patients without diabetes.”

“Weight is a common and well-known adverse effect of short-term and long-term treatment with TCAs, primarily as a result of excessive appetite. […] weight gain is the most common cause for premature discontinuation of all TCAs. […] TCAs are […] likely to impair diabetes control, because they increase serum glucose levels by up to 150%, increase appetite (particularly carbohydrate craving), and reduce the metabolic rate. […] SSRIs have been associated with both weight gain and weight loss. […] Weight gain is less likely with SSRIs when they are used short term — for 6 months or less. Contradictory evidence exists about whether an increase in body weight occurs in patients using SSRIs for 1 year or longer. […] The mean incidence of weight gain across comparative randomized controlled trials ranges from 4.1% for fluoxetine, 7.6% for sertraline, and 9.6% for paroxetine. […] SSRIs may reduce serum glucose by up to 30% and cause appetite suppression, resulting in weight loss. Fluoxetine should be used cautiously in patients with diabetes, because of its increased potential for hypoglycemia […]. Its side effects of tremor, nausea, sweating, and anxiety may also be misinterpreted as due to hypoglycemia.”

“Prior to the development of the second-generation antipsychotics (SGAs), or atypical antipsychotics, phenothiazines were the dominant therapy for schizophrenia. Numerous studies at this time began documenting that the use of phenothiazines led to aggravation of preexisting diabetes and the development of new-onset type 2 diabetes. […] high-potency neuroleptics […] appeared to be less implicated in the development of diabetes. These drugs eventually became the predominant form of therapy for schizophrenia […] Unfortunately, the high-potency neuroleptics are also associated with a high rate of occurrence of extrapyramidal symptoms, tardive dyskinesia, and subsequent noncompliance […]  In the late 1980s, a new class of antipsychotics, the thiobenzodiazepines or “atypical antipsychotics,” was introduced. […] One major advantage of these agents was a marked reduction in the occurrence of extrapyramidal symptoms. […] However, the atypical antipsychotics have also proven to carry their own unique side-effect profile. Side effects include substantial weight gain […] lipid abnormalities […] Hyperglycemia and diabetes are strongly associated with some of the newer atypical antipsychotics […] Thus, many psychiatrists are finding themselves in the difficult position of trading efficacy in the treatment of schizophrenia for an array of adverse metabolic side effects.”

“Weight gain is one of the more noticeable effects of all of the psychotropics. Although the SGAs appear to be a major culprit, TCAs, lithium, and mood stabilizers such as valproic acid or divalproex sodium and carbamazepine are also associated with weight gain. […] A range of evidence suggests that treatment with certain antipsychotic medications is associated with an increased risk of insulin resistance, hyperglycemia, and type 2 diabetes, compared with no treatment or treatment with alternative antipsychotics. […] A growing body of evidence supports the key observation that treatments producing the greatest increases in body weight and adiposity are also associated with a consistent pattern of clinically significant adverse effects on insulin resistance and changes in blood glucose and lipid levels. However, there are a growing number of cases of antipsychotic-associated hyperglycemia that involve patients without substantial weight gain, and reports that involve patients who improve when the offending agent is discontinued or who experience deterioration of glycemic control when re-challenged with the drug. […] Antipsychotics may lead to diabetes in susceptible individuals by causing decreased insulin secretion, increased insulin resistance, or a combination of both. Data suggest, however, that insulin resistance is primarily the responsible mechanism. […] The mechanism through which antipsychotics lead to insulin resistance is not clear.

“Many drugs may influence glucose insulin homeostasis. Commonly prescribed drugs that may have adverse effects on carbohydrate metabolism, especially in patients with diabetes mellitus or those at risk of developing glucose intolerance, include diuretics, beta-blockers, sympathomimetics, corticosteroids, and sex hormones”.

The book’s Table 4.11 include a really nice list of drugs, or drug classes, that can increase blood glucose levels, which includes quite a few commonly used drugs. A couple of to me surprising culprits on that list were marijuana and oral contraceptives; the oral contraceptives one certainly makes a lot of sense in retrospect (I don’t really know much about the metabolism of marijuana/cannabis, all I’ve ever learned about that stuff includes what was covered in the appendix of Coleman’s excellent textbook – and I have no personal experience…), I just hadn’t thought about the fact that very commonly used drugs like these may also have side effects of this nature).

“Patients with depression or bipolar depression may lack interest in their well-being and suffer from difficulty maintaining focus. Furthermore, many depressed patients suffer from decreased energy, psychomotor retardation, and changes in appetite, which may further promote weight gain. All of these make it very challenging to successfully implement a weight loss program in depressed patients. […] In addition, many patients with mental illnesses such as depression […] often state that eating is one of the few highlights of their day.” (So it’s probably a good idea to avoid giving these people drugs which will cause them to gain a substantial amount of weight/increase appetite/increase carbohydrate cravings, to the extent that this is possible…)

“Diabetes is considered a coronary artery disease equivalent by the National Cholesterol Education Panel (NCEP) […] Aspirin therapy is considered a routine part of secondary prevention in people with diabetes and a history of cardiovascular disease, and it is also recommended as part of primary prevention for cardiovascular disease in all patients with diabetes older than 40 years of age; additionally treatment with 75 to 325 mg/day of aspirin should be considered in patients 30 to 40 years of age with one additional cardiovascular risk factor.1,13 […] for all people older than 40 years of age with diabetes, statin therapy is recommended to lower the LDL by 30% to 40%, regardless of baseline levels.14 […] Lowering triglycerides to levels less than 150 mg/dL also confers cardiovascular benefit.1,14 However, hyperglycemia and hypertriglyceridemia are intricately linked, likely through elevations of free fatty acids. Free fatty acids are potent inhibitors of insulin action and transport, and act to disrupt glucose transport into skeletal muscle. Thus, triglyceride goals are often difficult to attain in uncontrolled diabetes.”

In some weird way some aspects of the last part of the book’s coverage was quite funny. So you have a diabetic whose disease has caused extensive damage to the nervous system leading to painful neuropathy. How do you treat the (in general difficult to treat) symptoms of neuropathy? Why, you give him tricyclic antidepressants (which will of course make his diabetes harder to treat, and cause him to gain weight). No, I’m not making this up:

“The most widely used medical treatments for symptoms of diabetic neuropathy include gabapentin and tricyclic antidepressants.”

Or how about this one – you have a type 2 diabetic who’s most likely overweight and who could probably benefit quite a bit from losing weight; why, let’s treat his diabetes with a drug that causes him to gain weight! People actually do this: “Thiazolidinediones (rosiglitazone, pioglitazone) act as agonists of the peroxisome proliferator-activator receptor gamma and improve insulin sensitivity at the tissue level. These agents are contraindicated in patients with heart failure and can worsen peripheral edema. Unfortunately, a common side effect of the glitazone class of agents is weight gain.” They’re not first-line agents, but they are used in diabetics. Just to make things even better, these drugs also seem to increase the risk of osteoporosis, a risk which is already somewhat elevated in type 2 diabetics: “Additionally, these drugs [thiazolidinediones] appear to decrease appendicular bone mass with associated increased risk of fractures.34

…or perhaps now some people might start thinking here: ‘Is stuff like this actually part of the explanation for Vestergaard’s findings described in the link above?’ I should add to these people that this is unlikely to be the case, especially considering the big difference between the (really quite substantial) type 1- and (significantly lower) type 2 fracture risk elevation; thiazolidinediones are not used in the treatment of type 1, and it’s not even a first-line treatment of type 2 – other explanations, such as those covered in Czernik & Fowlkes’s text, seem much more likely to matter (though in the context of a few individuals these drugs may still be of relevance).

“In addition to glycemic goals, nonglycemic treatment goals of blood pressure control, lipid management, and initiation of aspirin therapy are often necessary. For many patients, the diagnosis of diabetes results in multidrug therapy. For patients with mental illness who are likely to already be on multiple medications, the addition of several new agents can be difficult. Several studies have suggested that medication adherence in patients with psychiatric illness is poor at baseline,38 and may worsen when an increasing number of medications are prescribed.”

It’s also worth remembering here that “asymptomatic and chronic diseases needing long-term treatment […] result in poorer compliance”, although on the other hand “patient-controlled non-compliance [is] lower in treatment for diseases in which the relationship between non-compliance and recurrence is very clear, such as diabetes, compared to treatment for diseases in which this relationship is less clear” (Kermani and Davies). Combine psychiatric disease with chronic illnesses of a different kind and potential polypharmacy and non-compliance certainly becomes an issue worth taking into account when considering what might be the optimal treatment regime. It’s also worth keeping in mind that even in people without psychiatric problems adherence tends to be low in the case of antihypertensives and lipid-lowering drugs – again I refer to Kermani and Davies’ text:

“Chapman et al. (2005) recently examined compliance with concomitant antihypertensive and lipid-lowering drug therapy in 8406 enrollees in a US-managed care plan […] Less than half of patients (44.7 per cent) were adherent with both therapies three months after medication initiation, a figure that decreased to 35.8 per cent at 12 months.”

September 7, 2016 Posted by | Books, Cardiology, Diabetes, Medicine, Pharmacology | Leave a comment

Random Stuff

i. On the youtube channel of the Institute for Advanced Studies there has been a lot of activity over the last week or two (far more than 100 new lectures have been uploaded, and it seems new uploads are still being added at this point), and I’ve been watching a few of the recently uploaded astrophysics lectures. They’re quite technical, but you can watch them and follow enough of the content to have an enjoyable time despite not understanding everything:


This is a good lecture, very interesting. One major point made early on: “the take-away message is that the most common planet in the galaxy, at least at shorter periods, are planets for which there is no analogue in the solar system. The most common kind of planet in the galaxy is a planet with a radius of two Earth radii.” Another big take-away message is that small planets seem to be quite common (as noted in the conclusions, “16% of Sun-like stars have an Earth-sized planet”).


Of the lectures included in this post this was the one I liked the least; there are too many (‘obstructive’) questions/interactions between lecturer and attendants along the way, and the interactions/questions are difficult to hear/understand. If you consider watching both this lecture and the lecture below, I would say that it would probably be wise to watch the lecture below this one before you watch this one; I concluded that in retrospect some of the observations made early on in the lecture below would have been useful to know about before watching this lecture. (The first half of the lecture below was incidentally to me somewhat easier to follow than was the second half, but especially the first half hour of it is really quite good, despite the bad start (which one can always blame on Microsoft…)).

ii. Words I’ve encountered recently (…or ‘recently’ – it’s been a while since I last posted one of these lists): Divagationsperiphrasis, reedy, architravesettpedipalp, tout, togs, edentulous, moue, tatty, tearaway, prorogue, piscine, fillip, sop, panniers, auxology, roister, prepossessing, cantle, catamite, couth, ordure, biddy, recrudescence, parvenu, scupper, husting, hackle, expatiate, affray, tatterdemalion, eructation, coppice, dekko, scull, fulmination, pollarding, grotty, secateurs, bumf (I must admit that I like this word – it seems fitting, somehow, to use that word for this concept…), durophagy, randy, (brief note to self: Advise people having children who ask me about suggestions for how to name them against using this name (or variants such as Randi), it does not seem like a great idea), effete, apricity, sororal, bint, coition, abaft, eaves, gadabout, lugubriously, retroussé, landlubber, deliquescence, antimacassar, inanition.

iii. “The point of rigour is not to destroy all intuition; instead, it should be used to destroy bad intuition while clarifying and elevating good intuition. It is only with a combination of both rigorous formalism and good intuition that one can tackle complex mathematical problems; one needs the former to correctly deal with the fine details, and the latter to correctly deal with the big picture. Without one or the other, you will spend a lot of time blundering around in the dark (which can be instructive, but is highly inefficient). So once you are fully comfortable with rigorous mathematical thinking, you should revisit your intuitions on the subject and use your new thinking skills to test and refine these intuitions rather than discard them. One way to do this is to ask yourself dumb questions; another is to relearn your field.” (Terry Tao, There’s more to mathematics than rigour and proofs)

iv. A century of trends in adult human height. A figure from the paper (Figure 3 – Change in adult height between the 1896 and 1996 birth cohorts):

elife-13410-fig3-v1

(Click to view full size. WordPress seems to have changed the way you add images to a blog post – if this one is even so annoyingly large, I apologize, I have tried to minimize it while still retaining detail, but the original file is huge). An observation from the paper:

“Men were taller than women in every country, on average by ~11 cm in the 1896 birth cohort and ~12 cm in the 1996 birth cohort […]. In the 1896 birth cohort, the male-female height gap in countries where average height was low was slightly larger than in taller nations. In other words, at the turn of the 20th century, men seem to have had a relative advantage over women in undernourished compared to better-nourished populations.”

I haven’t studied the paper in any detail but intend to do so at a later point in time.

v. I found this paper, on Exercise and Glucose Metabolism in Persons with Diabetes Mellitus, interesting in part because I’ve been very surprised a few times by offhand online statements made by diabetic athletes, who had observed that their blood glucose really didn’t drop all that fast during exercise. Rapid and annoyingly large drops in blood glucose during exercise have been a really consistent feature of my own life with diabetes during adulthood. It seems that there may be big inter-individual differences in terms of the effects of exercise on glucose in diabetics. From the paper:

“Typically, prolonged moderate-intensity aerobic exercise (i.e., 30–70% of one’s VO2max) causes a reduction in glucose concentrations because of a failure in circulating insulin levels to decrease at the onset of exercise.12 During this type of physical activity, glucose utilization may be as high as 1.5 g/min in adolescents with type 1 diabetes13 and exceed 2.0 g/min in adults with type 1 diabetes,14 an amount that quickly lowers circulating glucose levels. Persons with type 1 diabetes have large interindividual differences in blood glucose responses to exercise, although some intraindividual reproducibility exists.15 The wide ranging glycemic responses among individuals appears to be related to differences in pre-exercise blood glucose concentrations, the level of circulating counterregulatory hormones and the type/duration of the activity.2

August 13, 2016 Posted by | Astronomy, Demographics, Diabetes, language, Lectures, Mathematics, Physics, Random stuff | Leave a comment

Diabetes and the Metabolic Syndrome in Mental Health (I)

As I stated in my goodreads review, ‘If you’re a schizophrenic and/or you have a strong interest in e.g. the metabolic effects of various anti-psychotics, the book is a must-read’. If that’s not true, it’s a different matter. One reason why I didn’t give the book a higher rating is that many of the numbers in there are quite dated, which is a bit annoying because it means you might feel somewhat uncertain about how valid the estimates included still are at this point.

As pointed out in my coverage of the human drug metabolism text there are a lot of things that can influence the way that drugs are metabolized, and this text includes some details about a specific topic which may help to illustrate what I meant by stating in that post that people ‘self-experimenting’ may be taking on risks they may not be aware of. Now, diabetics who need insulin injections are taking a drug with a narrow therapeutic index, meaning that even small deviations from the optimal dose may have serious repercussions. A lot of things influence what is actually the optimal dose in a specific setting; food (“food is like a drug to a person with diabetes”, as pointed out in Matthew Neal’s endocrinology text, which is yet another text I, alas, have yet to cover here), sleep patterns, exercise (sometimes there may be an impact even days after you’ve exercised), stress, etc. all play a role, and even well-educated diabetics may not know all the details.

A lot of drugs also affect glucose metabolism and insulin sensitivity, one of the best known drug types of this nature probably being the corticosteroids because of their widespread use in a variety of disorders, including autoimmune disorders which tend to be more common in autoimmune forms of diabetes (mainly type 1). However many other types of drugs can also influence blood glucose, and on the topic of antidepressants and antipsychotics we actually know some stuff about these things and about how various medications influence glucose levels; it’s not a big coincidence that people have looked at this, they’ve done that because it has become clear that “[m]any medications, in particular psychotropics, including antidepressants, antipsychotics, and mood stabilizers, are associated with elevations in blood pressure, weight gain, dyslipidemias, and/or impaired glucose homeostasis.” (p. 49). Which may translate into an increased risk of type 2 diabetes, and impaired glucose control in diabetics. Incidentally the authors of this text observes in the text that: “Our research group was among the first in the field to identify a possible link between the development of obesity, diabetes, and other metabolic derangements (e.g., lipid abnormalities) and the use of newer, second-generation antipsychotic medications.” Did the people who took these drugs before this research was done/completed know that their medications might increase their risk of developing diabetes? No, because the people prescribing it didn’t know, nor did the people who developed the drugs. Some probably still don’t know, including some of the medical people prescribing these medications. But the knowledge is out there now, and the effect size is in the case of some drugs argued to be large enough to be clinically relevant. In the context of a ‘self-experimentation’-angle the example is also interesting because the negative effect in question here is significantly delayed; type 2 diabetes takes time to develop, and this is an undesirable outcome which you’re not going to spot the way you might link a headache the next day to a specific drug you just started out with (another example of a delayed adverse event is incidentally cancer). You’re not going to spot dyslipidemia unless you keep track of your lipid levels on your own or e.g. develop xanthomas as a consequence of it, leading you to consult a physician. It helps a lot if you have proper research protocols and large n studies with sufficient power when you want to discover things like this, and when you want to determine whether an association like this is ‘just an association’ or if the link is actually causal (and then clarifying what we actually mean by that, and whether the causal link is also clinically relevant and/or for whom it might be clinically relevant). Presumably many people taking all kinds of medical drugs these days are taking on risks which might in a similar manner be ‘hidden from view’ as was the risk of diabetes in people taking second-generation antipsychotics in the near-past; over time epidemiological studies may pick up on some of these risks, but many will probably remain hidden from view on account of the amount of complexity involved. Even if a drug ‘works’ as intended in the context of the target variable in question, you can get into a lot of trouble if you only focus on the target variable (“if a drug has no side effects, then it is unlikely to work“). People working in drug development know this.

The book has a lot of blog-worthy stuff so I decided to include some quotes in the coverage below. The quotes are from the first half of the book, and this part of the coverage actually doesn’t talk much about the effects of drugs; it mainly deals with epidemiology and cost estimates. I thus decided to save the ‘drug coverage’ to a later post. It should perhaps be noted that some of the things I’d hoped to learn from Ru-Band Lu et al.’s book (blog coverage here) was actually included in this one, which was nice.

“Those with mental illness are at higher risk and are more likely to suffer the severe consequences of comorbid medical illness. Adherence to treatment is often more difficult, and other factors such as psychoneuroendocrine interactions may complicate already problematic treatments. Additionally, psychiatric medications themselves often have severe side effects and can interact with other medications, rendering treatment of the mental illness more complicated. Diabetes is one example of a comorbid medical illness that is seen at a higher rate in people with mental illness.”

“Depression rates have been studied and are increased in type 1 and type 2 diabetes. In a meta-analysis, Barnard et al. reviewed 14 trials in which patients with type 1 diabetes were surveyed for rates of depression.16 […] subjects with type 1 diabetes had a 12.0% rate of depression compared with a rate of 3.4% in those without diabetes. In noncontrolled trials, they found an even higher rate of depression in patients with type 1 diabetes (13.4%). However, despite these overall findings, in trials that were considered of an adequate design, and with a substantially rigorous depression screening method (i.e., use of structured clinical interview rather than patient reported surveys), the rates were not statistically significantly increased (odds ratio [OR] 2.36, 95% confidence interval [CI] 0.69–5.4) but had such substantial variation that it was not sufficient to draw a conclusion regarding type 1 diabetes. […] When it comes to rates of depression, type 2 diabetes has been studied more extensively than type 1 diabetes. Anderson et al. compiled a large metaanalysis, looking at 42 studies involving more than 21,000 subjects to assess rates of depression among patients with type 1 versus type 2 diabetes mellitus.18 Regardless of how depression was measured, type 1 diabetes was associated with lower rates of depression than type 2 diabetes. […] Depression was significantly increased in both type 1 and type 2 diabetes, with increased ORs for subjects with type 1 (OR = 2.9, 95% CI 1.6 –5.5, […] p=0.0003) and type 2 disease (OR = 2.9, 95% CI 2.3–3.7, […] p = 0.0001) compared with controls. Overall, with multiple factors controlled for, the risk of depression in people with diabetes was approximately twofold. In another large meta-analysis, Ali et al. looked at more than 51,000 subjects in ten different studies to assess rates of depression in type 2 diabetes mellitus. […] the OR for comorbid depression among the diabetic patients studied was higher for men than for women, indicating that although women with diabetes have an overall increased prevalence of depression (23.8 vs. 12.8%, p = 0.0001), men with diabetes have an increased risk of developing depression (men: OR = 1.9, 95% CI = 1.7–2.1 vs. women: OR = 1.3, 95% CI = 1.2–1.4). […] Research has shown that youths 12–17 years of age with type 1 diabetes had double the risk of depression compared with a teenage population without diabetes.21 This amounted to nearly 15% of children meeting the criteria for depression.

As many as two-thirds of patients with diabetes and major depression have been ill with depression for more than 2 years.44 […] Depression has been linked to decreased adherence to self-care regimens (exercise, diet, and cessation of smoking) in patients with diabetes, as well as to the use of diabetes control medications […] Patients with diabetes and depression are twice as likely to have three or more cardiac risk factors such as smoking, obesity, sedentary lifestyle, or A1c > 8.0% compared with patients with diabetes alone.47 […] The costs for individuals with both major depression and diabetes are 4.5 times greater than for those with diabetes alone.53

“A 2004 cross-sectional and longitudinal study of data from the Health and Retirement Study demonstrated that the cumulative risk of incident disability over an 8-year period was 21.3% for individuals with diabetes versus 9.3% for those without diabetes. This study examined a cohort of adults ranging in age from 51 to 61 years from 1992 through 2000.”

Although people with diabetes comprise just slightly more than 4% of the U.S. population,3 19% of every dollar spent on health care (including hospitalizations, outpatient and physician visits, ambulance services, nursing home care, home health care, hospice, and medication/glucose control agents) is incurred by individuals with diabetes” (As I noted in the margin, these are old numbers, and prevalence in particular is definitely higher today than it was when that chapter was written, so diabetics’ proportion of the total cost is likely even higher today than it was when that chapter was written. As observed multiple times previously on this blog, most of these costs are unrelated to the costs of insulin treatment and oral anti-diabetics like metformin, and indirect costs make out a quite substantial proportion of the total costs).

In 1997, only 8% of the population with a medical claim of diabetes was treated for diabetes alone. Other conditions influenced health care spending, with 13.8% of the population with one other condition, 11.2% with two comorbidities, and 67% with three or more related conditions.6 Patients with diabetes who suffer from comorbid conditions related to diabetes have a greater impact on health services compared with those patients who do not have comorbid conditions. […] Overall, comorbid conditions and complications are responsible for 75% of total medical expenditures for diabetes.” (Again, these are old numbers)

“Heart disease and stroke are the largest contributors to mortality for individuals with diabetes; these two conditions are responsible for 65% of deaths. Death rates from heart disease in adults with diabetes are two to four times higher than in adults without diabetes. […] Adults with diabetes are more than twice as likely to have multiple diagnoses related to macrovascular disease compared to patients without diabetes […] Although the prevalence of cardiovascular disease increases with age for both diabetics and nondiabetics, adults with diabetes have a significantly higher rate of disease. […] The management of macrovascular disease, such as heart attacks and strokes, represents the largest factor driving medical service use and related costs, accounting for 52% of costs to treat diabetes over a lifetime. The average costs of treating macrovascular disease are $24,330 of a total of $47,240 per person (in year 2000 dollars) over the course of a lifetime.17 Moreover, macrovascular disease is an important determinant of cost at an earlier time than other complications, accounting for 85% of the cumulative costs during the first 5 years following diagnosis and 77% over the initial decade. [Be careful here: This is completely driven by type 2 diabetics; a 10-year old newly diagnosed type 1 diabetic does not develop heart disease in the first decade of disease – type 1s are also at high risk of cardiovascular disease, but the time profile here is completely different] […] Cardiovascular disease in the presence of diabetes affects not only cost but also the allocation of health care resources. Average annual individual costs attributed to the treatment of diabetes with cardiovascular disease were $10,172. Almost 51% of costs were for inpatient hospitalizations, 28% were for outpatient care, and 21% were for pharmaceuticals and related supplies. In comparison, the average annual costs for adults with diabetes and without cardiovascular disease were $4,402 for management and treatment of diabetes. Only 31.2% of costs were for inpatient hospitalizations, 40.3% were for outpatient care, and 28.6% were for pharmaceuticals.16

Of individuals with diabetes, 2% to 3% develop a foot ulcer during any given year. The lifetime incidence rate of lower extremity ulcers is 15% in the diabetic population.20 […] The rate of amputation in individuals with diabetes is ten times higher than in those without diabetes.5 Diabetic lower-extremity ulcers are responsible for 92,000 amputations each year,21 accounting for more than 60% of all nontraumatic amputations.5 The 10-year cumulative incidence of lower-extremity amputation is 7% in adults older than 30 years of age who are diagnosed with diabetes.22 […] Following amputation, the 5-year survival rate is 27%.23 […] The majority of annual costs associated with treating diabetic peripheral neuropathy are associated with treatment of ulcers […] Overall, inpatient hospitalization is a major driver of cost, accounting for 77% of expenditures associated with individual episodes of lower-extremity ulcers.24

By 2003, diabetes accounted for 37% of individuals being treated for renal disease in the United States. […] Diabetes is the leading cause of kidney failure, accounting for 44% of all newly diagnosed cases. […] The amount of direct medical costs for ESRD attributed to diabetes is substantial. The total adjusted costs in a 24-month period were 76% higher among ESRD patients with diabetes compared with those without diabetes. […] Nearly one half of the costs of ESRD are due to diabetes.27” [How much did these numbers change since the book was written? I’m not sure, but these estimates do provide some sort of a starting point, which is why I decided to include the numbers even though I assume some of them may have changed since the publication of the book]

Every percentage point decrease in A1c levels reduces the risk of microvascular complications such as retinopathy, neuropathy, and nephropathy by 40%.5 However, the trend is for A1c to drift upward at an average of 0.15% per year, increasing the risk of complications and costs.17 […] A1c levels also affect the cost of specific complications associated with diabetes. Increasing levels affect overall cost and escalate more dramatically when comorbidities are present. A1c along with cardiovascular disease, hypertension, and depression are significant independent predictors of health care
costs in adults with diabetes.”

August 10, 2016 Posted by | Books, Cardiology, Diabetes, Economics, Epidemiology, Medicine, Nephrology, Pharmacology, Psychiatry | Leave a comment

Eating disorders… (I)

“Dermatologists have an important role in the early diagnosis of eating disorders since skin signs are, at times, the only easily detectable symptoms of hidden anorexia and bulimia nervosa. Forty cutaneous signs have been recognized”

The full title of the book is Eating Disorders and the Skin, but there’s a lot of stuff about eating disorders in general in this book as well, and I figured I’d mostly focus on the ‘general stuff’ in this post. Here’s my goodreads review of the book, which I gave 3 stars.

Here are the DSM-IV-TR diagnostic criteria for anorexia nervosa:

“1. Refusal to maintain body weight at or above a minimally normal weight for age and height (e.g., weight loss leading to maintenance of body weight less than 85% of that expected, or failure to make expected weight gain during period of growth, leading to body weight less than 85% of that expected).

2. Intense fear of gaining weight or becoming fat even though underweight.

3. Disturbance in the way in which one’s body weight or shape is experienced, undue influence of body weight or shape on self-evaluation, or denial of the seriousness of the current low body weight.

4.4. In postmenarcheal females, amenorrhea, i.e., the absence of at least three consecutive menstrual cycles.”

Interestingly, aside from anorexia [-AN] and bulimia [-BN] (diagnostic criteria here), there’s also a big category called ED-NOS – Eating Disorder Not Otherwise Specified. That’s for cases that don’t really fit into the standard criteria for specific eating disorders; they note than an example of this type could be a female fitting all diagnostic criteria for AN except that she has regular menses. It is perhaps worth mentioning here that surprisingly enough (…to me), menstrual irregularities are not limited to cases of AN, thus: “In almost 50% of bulimic patients, menstrual irregularities, such as oligomenorrhea or amenorrhea, take place”. They note in the book that there’s been some concern about the validity of the ED-NOS category, which makes up almost 60% of patients with an eating disorder. Eating disorders are much more common in females than in males (“Males are generally reported to account for 5–10% of anorectics and 10–15% of bulimics identified in the general population”), and particular subgroups mentioned to be at high risk are athletes, models and dancers. It’s noted in the book that most epidemiological studies are conducted in high-risk settings, whereas epidemiological studies assessing risk in the general population are somewhat rarer. One problem complicating matters a little in terms of estimating risk is that an eating disorder cannot be diagnosed through a self-report questionnaire; you need a structured or semi-structured interview to make a diagnosis, which makes things more expensive. As in other contexts one way to get around this issue, at least to some extent, is to employ multi-step screening protocols – in this case a two-step procedure in which individuals at high risk are identified at the first step through inexpensive means, and these individuals are then later assessed more carefully in the second step, employing more accurate (and expensive) methods.

They note that in Western countries, point prevalence of AN in female adolescent (the highest risk sub-group) is estimated at 0.2-1% of the population, whereas the prevalence studies on bulimia nervosa indicates that this eating disorder is somewhat more common, with the majority of studies finding prevalences of 1.5-5%; do recall again that most studies as already mentioned look at high-risk subgroups, so total population prevalence is likely to be lower than this. They observe in the book that general-practice studies find that the incidence of anorexia nervosa is less than one in ten-thousand per year (8 per 100,000 per year); so full-blown AN certainly is likely quite rare in low-risk populations.

On lifetime risk, the book notes that:

“Most of the epidemiological studies on ED [eating disorders] have evaluated the prevalence of full syndromes of both AN [anorexia nervosa] and BN [bulimia nervosa]. The few studies that have evaluated partial or subclinical manifestations of EDs in young females, however, found lifetime prevalence rates of 5–12% for atypical AN and 1–4.8% for atypical BN and up to 14.6% in adolescent samples”.

A review of epidemiological studies concluded that there’s no evidence of either a secular increase in AN or BN over time; to the extent that the number of people with diagnosed BN has increased over time, changes in diagnostic and referral practices likely account for this. On a related topic it is noted in the book that “It is a common idea among clinicians that early-onset cases of anorexia nervosa (AN) are increasing, but few data in the literature are available to demonstrate this trend.”

AN most commonly present among females at the age of 15-19, whereas BN presents a little later, most commonly at the age of 20-24. But eating disorders are not limited to teenagers and young adults: “Even if anorexia nervosa and bulimia nervosa occur characteristically in females during adolescence and young adulthood, there have been case reports of illness beginning after the age of 25 and even after the menopause, and some authors suggest that the rates of eating disorders in older patients may be increasing [2]. Clinical impression suggests that the late-onset cases present with more depressive features than the adolescent counterpart. […] dieting is considered one of the most salient precipitating factors.”

Self-report metrics can only help you so much when you’re trying to assess risk; a major problem in this context is that denial of illness is a very common feature in these patient populations (so you certainly can’t just ask people if their relationship with food/exercise etc. might be unhealthy…): “typically, [the] course [of an eating disorder] is characterized by a high fluidity between the diagnostic classes; furthermore, the patient often denies even to himself the psychiatric nature of the disease” (recall also that “denial of the seriousness of the current low body weight” is included in the diagnostic criteria). The book covers a lot of symptoms which relate to low body weight – like cold intolerance, bradycardia (slow heart rate), acrocyanosis (bluish discoloration of the hands and feet, caused by slow circulation), systemic hypotension (low blood pressure), lots of skin signs (I haven’t decided yet how much detail I’ll go into, so let’s leave it at that now) – or e.g. to purging behaviours (throat and tooth pain due to vomiting and enamel erosion), but it would go much too far to discuss all these in detail here. One to me interesting aspect of the coverage was that whereas BMI is a useful sign, it’s not itself a diagnostic criterion; the authors note that a BMI below 18.5 is considered pathological, but when listing main signs of anorexia nervosa the most important diagnostic sign (or at least the first one listed) is a BMI below 17.5; I assume part of the discussion surrounding the validity of the ED-NOS category probably relate to individuals who’re in this ‘border area’; they likely have some symptoms due to low body mass (like e.g. cold intolerance), but they don’t have full-blown AN (there are a lot of things that can go wrong when you have low body mass – there are a lot of symptoms described in this book!). It’s also important to note that very different symptom patterns can be present at similar levels of BMI, as the severity of symptoms also relate to how fast body mass decreases – the body is actually capable of adjusting quite well to lower energy intake states (in the short run at least), and so “if weight loss is gradual, it is possible to maintain, even for a long time, an apparent metabolic equilibrium.”

Anorexics have high mortality rates: “From a meta-analysis of 119 studies involving 5,590 patients, Steinhausen reported a crude mortality rate of 5% which exceeded 9% in a followup of 10 years.” Remember when thinking about those estimates that most of the people in these studies were likely young women – these numbers are high, and the authors note that anorexia nervosa “represents the major cause of death of young women in the age between 12 and 25 years.”

Most deaths are due to ventricular arrhythmia; the book goes into some detail about how anorexia affects the cardiovascular system, but I won’t discuss this in detail. An important observation is that: “Cardiac findings tend to disappear with weight recovery.” I assume this comment relates mostly to findings like QTc prolongation, QTc dispersion, and mitral valve prolapse, all of which are found in anorexics, whereas I’d be surprised if cardiac abnormalities related to direct damage to the heart muscle resolve themselves after weight gain, but the book does not go into details on this topic, except in the sense that it is noted that heart failure is uncommon in anorexics. Among those who survive their illness, osteoporosis is a major irreversible long-term problem. People with higher body mass tend to have a higher bone mineral density and thus a lower risk of osteoporosis (unless they get type 2 diabetes, in which case the situation is, well, complicated), so perhaps it’s not really surprising that women with AN and very low body mass index tend to develop osteoporosis. They certainly do:

“Osteopenia and osteoporosis represent one of the most relevant and potentially not reversible complications of eating disorders. This complication is particularly severe when eating disorders have an early onset […] Bone loss is an early effect of the disease, already present after 6–12 months […] In untreated patients, bone loss ranges from 4% up to 10% per year […]. In case of recovery, the progressive loss of BMD [bone mineral density] stops, but in most cases, a normal bone mass is not restored [64].”

It’s noted that bone loss is due to both hormonal and metabolic factors; estrogen plays a role, and “BMD loss in AN is more rapid and severe than in other hypoestrogenic conditions”. Despite this observation weight gain is considered the primary treatment modality of osteoporosis in this context (i.e., not estrogen therapy), and research using estrogen therapy to try to boost bone mineral density in anorexics who did not also gain weight has not been successful.

A to me interesting aspect of the coverage which I could not help but discuss here is how eating disorders relate to diabetes; the book has a few remarks on this topic:

“The concurrence of an eating disorder with insulin-dependent diabetes has been outlined by several researchers: especially bulimia nervosa and disorder not otherwise specified (EDNOS) are reported to be significantly higher in females with type 1 diabetes […] In case of comorbidity, ED onset followed the diagnosis of IDDM in 70% of the patients [10]. Specific aspects of diabetes and its management could, in fact, potentially increase a particular susceptibility to the development of an eating disorder: weight gain, associated with initiation of insulin treatment and dietary restraint, might, in fact, trigger body dissatisfaction and the drive for thinness with consequent weight control behaviors ranging from healthy to very unhealthy behaviors […] insulin omission [is] a common weight loss behavior in girls with IDDM and eating disorder […] APA Guidelines 2006 suggest that insulin omission should be considered a specific type of purging behavior in the next DSM revision”.

I don’t know if this suggested change has been implemented at this point, but it would make a lot of sense. To people who don’t know what this ‘insulin omission’ they talk about is all about, the short version is that if you’re a type 1 diabetic in need of regular insulin injections, if you don’t take enough insulin you lose weight and you can eat pretty much whatever you like without gaining weight; which is of course an unfortunate though likely very attractive option for young women to have. The downside of engaging in systematic insulin omission behaviour of that kind is that you’ll likely go blind from your diabetes and/or die of kidney failure or DKA if you do that for an extended period of time.

January 2, 2016 Posted by | Books, Diabetes, Epidemiology, Medicine, Psychology | 4 Comments

Diabetic Bone Disease

This is an excellent book. I decided to include in this post the entire book description included on goodreads, even if it’s somewhat long, because I thought the description gave a good overview of the topics covered in this book:

“Providing the most up-to-date research and current clinical knowledge of diabetic bone disease and the challenges still facing the research and clinical care communities, this book unites insights from endocrinology and orthopedics to create a truly unique text. The first part covers clinical and pre-clinical applications and research. The first two chapters present the clinical and epidemiological data about diabetic bone disease, evaluated and reviewed for type 1 and type 2, respectively. This is followed by discussions of how the propensity to fracture in diabetic bone disease can impact fracture risk assessments and how it can be adjusted for using current clinically relevant fracture risk models. A comprehensive overview of orthopedic complications observed in diabetes is next, as well as a focus on the consequences of diabetes on periodontal disease. Other topics include the utility of skeletal biomarkers in assessing diabetic bone disease, how drugs used to treat diabetes may also have skeletal consequences, and the possibility that diabetes may fundamentally impact early progenitor cells of various bone lineages and thus globally impact bone. The second part covers biomechanics and bone quality in diabetes: how diabetes ultimately may impact the architecture, integrity, and quality of bone. Utilizing the expertise of top researcher and clinicians in diabetic bone disease in one comprehensive text, this volume will be a useful and thought-provoking resource for endocrinologists and orthopedic surgeons alike.”

I would note that the book is also a useful and thought-provoking resource if you’re just a random diabetic who happens to know enough about medicine and related topics to make sense of a book like this one – i.e. if you’re someone like me. A few related observations from the book’s preface:

“Historically, most attention has been focused on four major complications known to afflict many individuals with T1DM and T2DM: retinopathy, neuropathy, nephropathy, and cardiovascular disease. However, epidemiological data now show that other tissues and organs may be significantly impacted by the diabetic state—and the skeletal system is now emerging as a primary target of diabetes-mediated damage (i.e., diabetic bone disease).
Studies have demonstrated that osteopenia and osteoporosis may be frequent complications of T1D, both in children and adults, and that T1D is associated with decreased bone density and increased fracture risk. In contrast to T1D, T2D has typically not been associated with osteopenia or osteoporosis and, in fact, has been more often associated with increased BMD [bone mineral density]. However, newer data show that bone quality and bone microarchitecture may be compromised in both conditions, suggesting that underlying mechanisms related to increased risk to fracture may be contributory to both forms of diabetes.
In this volume, we provide the reader with up-to-date information about what is currently known about diabetic bone disease and what are the challenges still facing the research and clinical care communities.”

This was a topic about which I knew next to nothing, and one of emotional responses I had early on to some of the coverage in the book was to think along the lines of: ‘Ah, type 1 diabetes, the gift that keeps on giving…’ or perhaps: ‘How was I not told this???’ It reminded me a bit of how I felt back when I realized some years ago that my diabetes was probably also messing with my lungs, without me knowing about it and despite nobody having told me anything about that (for details on that topic, see e.g. this paper). As far as I can remember, bone health has never come up during conversations I have had over the years in the past with endocrinologists or diabetes nurses, nor has it ever been discussed in detail in publications I’ve read on diabetes-related topics; the closest I’ve got has probably been remarks about individuals developing diabetics during childhood being slightly shorter than non-diabetics on average, due to (non-specific) disease-related adverse effects on growth during childhood. Relevant mechanisms have not been discussed in any detail, and actually what I had read on the topic of diabetes and growth had basically lead me to believe that a slight growth disadvantage was really all there was to this topic, as a potential interaction between diabetes status and osteoporosis risk was never touched upon in these publications. To give a great illustrative example, Sperling et al.‘s comprehensive textbook (~600 pages) about type 1 diabetes includes exactly 3 hits for osteoporosis in the text, all of which relate to very specific subtopics and none of which even remotely relate to the highly increased risk of fractures which type 1 diabetes in particular confers – the authors of that text clearly had no idea that type 1 diabetes dramatically increases the risk of fractures and poor bone health; there are zero indications to the contrary. It’s probably not uncommon to see important information in textbooks which people forget about in clinical practice (perhaps because the people working in clinical practice read different textbooks, in which this information was not included…), but it’s certainly less common to see important information not included in textbooks because the textbook authors simply don’t know about them. It seems highly likely to me that a lot of health care providers involved in diabetes care currently do not know anything about the topics discussed in this publication; I hope this state of affairs will change in the future.

As also noted in the comments above, the relationship between diabetes and bone health is complicated and interacts with type; type 1 seems to be much worse for the bones than is type 2, and the relationship between in particular type 2 diabetes and bone health is not at all simple. Type 2 diabetics tend to have both some elevated non-diabetes-related risk factors for fractures (in one chapter the authors thus list in that category obesity, reduced muscle quality, poor balance, and falls – e.g. but not only hypoglycemia-related) and some diabetes-specific risk factors ((/very) poor glycemic control probably increases risk (but see also below), duration of disease increases risk, medications – e.g. the thiazolidinedione drug class used to treat type 2 diabetes), but these don’t fully account for the increased risk.

Most of the standard metrics used to assess fracture risk, such as FRAX, do not take diabetes status into account, which is a problem – “studies indicate that FRAX systematically underestimates fracture risk in patients with T2DM” (this problem is not just related to FRAX, thus elsewhere in the publication it is noted more generally that: “fracture prediction tools underestimate fracture risk in diabetes”). The only one of the widely used risk assessment tools which does take diabetes status into account is the QFracture tool, but this tool “has not been specifically evaluated with regard to calibration in individuals with diabetes”; so there is a lot of uncertainty here. This state of affairs is of course hardly ideal, especially not considering how the number of type 2 diabetics is projected to increase over time in the years to come. It is worth keeping in mind that the total population prevalence of type 2 can be deceiving people here into thinking this is less of a problem than it really is, as most people at increased risk of fractures are old people, and type 2 incidence/prevalence increases with age: “Type 2 diabetes affects over 25 % of older adults in the United States, including diagnosed and undiagnosed cases [11].” The hip fracture estimates included in Vestergaard’s meta-review discussed below indicate a relative risk of hip-fracture of ~1.4 in the type 2 diabetic sub-population, and if you multiply that number by the 25% prevalence among elderly people in the US, that’s more than a third of all fractures in older adults. That’s a lot of people, and a lot of risk not well accounted for.

A problem related to the above observations in the context of type 2 diabetes (and most of the research that has been done in this area has been done on type 2 diabetes, for reasons which should be obvious (“type 1 diabetes mellitus (T1D) accounts for dual-energy X-ray absorptiometry (DXA), a standard way to measure bone mineral density also used to diagnose osteoporosis, does not ‘pick up on’ the excess risk associated with T2DM; in type 2 individuals risk is elevated even when taking DXA measurements into account (this fact may actually be one argument why the QFracture tool may not be bad at all to apply to people in this patient subgroup; QFracture does not include DXA numbers, and if a substantial proportion of the risk is unrelated to the DXA estimates in type 2 anyway then maybe they’re not that important to include). The arguably poor performance of DXA in the context of fracture risk in type 2 diabetes have lead to the development of other tools which might be better at assessing risk in this patient population, and the authors of some of the later chapters of the book talk in some detail about these tools and the results derived from related studies using these tools. It should perhaps be noted in the context of DXA and bone mineral density numbers that one of the clear differences between type 1 and type 2 here is that bone mineral density tends to be decreased in type 1 diabetes, whereas it’s usually if anything increased in type 2 (but the increased, or at least not lowered, bone mineral density in type 2 does not translate into a lower risk of fracture; risk is still elevated, which is what is surprising and not easy to fully account for).

An interesting aspect of the coverage was that the relationship between glycemic control and bone health seems to not be completely clear; to me the coverage of this topic throughout the various chapters (many chapters cover closely related topics and there’s some coverage overlap, but I didn’t mind this at all) reminded much more of the typical coverage you see in publications discussing how the risk of macrovascular complications relate to glycemic control (…’it’s complicated’) than it reminded me of how the risk of microvascular complications relate to glycemic control (…’hyperglycemia increases risk and there’s a dose-response relationship between complication risk and the level of hyperglycemia’). One problem is that low Hba1c may increase the fall risk because of an increased risk of hypoglycemic episodes, increasing risk at the lower end of the spectrum.

The book has a lot of stuff about the specifics of what might be going on at the cellular level and so on, but I won’t talk much about that here even if I found it interesting (it would take a lot of time to go over the details here); one key point to take take away from that part of the coverage should however be mentioned here, and that is that that stuff thoroughly convinced me that there’s no way the increased fracture risks observed in the various epidemiological studies presented at the beginning of the publication are flukes. There are good reasons to think that diabetes may be bad for the bones, quite aside from the reason that they seem to break their bones more often than other people do.

I have included some data and key observations from the book below. As the post is rather long I decided to highlight/bold a few of the most important observations (they’re not bolded in the book).

In patients with T1D, an increased incidence of osteopenia and osteoporosis has been recognized for over three decades [10–14], occurring not only in adults, but in children as well [15–17]. Many more recent studies have since validated these early findings, demonstrating a reduced bone mineral density (BMD) in T1D [18–22]. Clinical factors associated with lower bone density include: male gender […]; longer duration of disease […]; younger age at diagnosis […]; lower endogenous insulin or C-peptide levels [27]; low body mass index (BMI) […]; and possibly the presence of chronic diabetes comorbidities or associated autoimmunity [29]. Some studies also suggest that greater longitudinal decrements in BMD occur over time in males [24]. […] In most studies, poor glycemic control does not seem to be strongly associated with a reduced BMD [18–20, 22, 23, 30, 31] […] T1D is […] associated with an increased risk for fracture, higher than the risk in type 2 diabetes (T2D)”

among risk factors for hip fracture in >33,000 middle-aged adults in Sweden (~25–60 years), the strongest risk factor for both women […] and men […] was diabetes [49], suggesting that the presence of diabetes was a major risk determinant for this age group. Similar findings had been reported years before in middle-aged Norwegian women and men […] Together, [studies conducted during the last 15 years on type 1 diabetics] demonstrate an unequivocally increased fracture risk at the hip [compared to non-diabetic controls], with most demonstrating a six to ninefold increase in relative risk. […] type I DM patients have hip fractures at a younger age on average, with a mean of 43 for women and 41 for men in one study. Almost 7 % of people with type I DM can be expected to have sustained a hip fracture by age 65 [7] […] Patients with DM and hip fracture are at a higher risk of mortality than patients without DM, with 1-year rates as high as 32 % vs. 13 % of nondiabetic patients […] Though only a very few studies have examined fracture risk at other skeletal sites [51, 54], an increased risk for vertebral fracture is also a consistent finding in studies that have quantified this. […] in one study, an approximate threefold increase in risk for all non-vertebral fractures was reported in men with T1D”.

“studies […] suggest that cumulative changes in bone architecture are beginning early in childhood, particularly in those diagnosed with T1D at very young ages [73]. Compared with nondiabetic children, reductions in BMD [68, 74–78] and bone size, specifically total cross-sectional area (CSA) [73, 79] and cortical area [15, 80], are relatively consistent findings. […] As a whole, […] studies suggest that systemic markers of bone formation in T1D are generally indicative of a condition in which bone formation is reduced. […] Taken together, it would appear that T1D is characterized best as a state of inappropriately lowered bone turnover which exists in conjunction with relative osteoblast dysfunction [90] and, hence, low bone formation […] serum AGE concentrations are clearly elevated in T1D during childhood [138], even during preschool and prepubertal years […] skin AGEs […] are increased in children with both T1D and T2D, to the extent that “approximately 4–6 years of diabetes exposure in some children may be sufficient to increase skin AGEs to levels that would naturally accumulate only after ~25 years of chronological aging””.

“diabetic bone has a greater propensity for fracture than is predicted by BMD […] A role for the skeletal accumulation of advanced glycation end products […], chronic hyperglycemia [30], oxidative stress [63], and microarchitectural bone defects [64] have all been proposed, and it is expected that the pathological mechanisms leading to bone fragility in T1D are multifactorial […] Beyond fragility fractures, other skeletal complications also occur disproportionately in persons with T1D, including fracture-healing complications (nonunion, malunion) [66], Charcot osteoarthropathy [67], osteomyelitis, and diabetic foot syndrome.”

“In orthopaedics, patients with diabetes have a number of associated disorders, and these present a challenge as many have an increased hospital stay, higher risk of infection, and higher risk of complications after orthopaedic treatment. The orthopaedic-related problems in diabetes are varied, and the true causal links between diabetes and the disorders are largely unknown. […] The incidence of trigger finger [/stenosing tenosynovitis] is 7–20 % of patients with diabetes comparing to only about 1–2 % in nondiabetic patients […] The prevalence of [carpal tunnel syndrome, CTS] in patients with diabetes has been estimated at 11–30 % [130, 133, 153, 156], and is dependent on the duration of diabetes. […] Type I DM patients have a high prevalence of CTS with increasing duration of disease, up to 85 % after 54 years of DM. However the prevalence does not seem to be associated with glycemic control”

“Diabetes increases the severity and risk of periodontitis, the most common lytic disease of bone and a frequent complication of diabetes […] The risk of periodontitis is increased approximately 2–4 times in diabetic versus nondiabetic subjects [4, 47]. In one study, periodontitis was found in 60 % of T1DM patients compared to 15 % without diabetes [48]. Patients with diabetes are at higher risk of severe periodontitis compared with nondiabetic subjects […] There is a direct link between persistent hyperglycemia, an exaggerated inflammatory response to periodontal pathogens and periodontal bone loss”.

Because diabetic bone disease in type 1 diabetes represents a deficit in osteoblast function and bone formation, antiresorptive therapies for osteoporosis (e.g., bisphosphonates, denosumab) may be ineffective in this form of secondary osteoporosis […] Calcium and vitamin D supplementation […] is considered standard-of-care for osteoporosis treatment [162]. Nonetheless, 1 year of calcitriol supplementation in young adults with recent-onset T1D did not significantly change circulating markers of bone turnover […] very little information from comparative effectiveness studies is available on the treatment of osteoporosis in T1D.”

Type 2 does not increase risk nearly as much as does type 1:

“In 2007 Vestergaard published a meta-analysis of hip fracture results that included eight studies and reported an age-adjusted summary relative risk for hip fracture of 1.38 (1.25–1.53), comparing those with and without T2D [14]. This increase in fracture risk with T2D occurred in spite of higher bone density in those with T2D. […] Most [15–21], but not all [22, 23], subsequent studies have reported increased rates of hip fracture with T2D in age-adjusted models. […] Evidence that more frequent falls do not fully account for increased fracture risk with T2D […], combined with evidence from rodent models [55], has led to the conclusion that diabetic bone is more fragile for a given BMD. Understanding the aspects of bone that are affected by diabetes and that result in fragile bone has been an important focus of research on diabetes and skeletal health.”

The effect of glycemic control on fracture risk, BMD, and falls remains poorly understood and controversial.

“Diabetic patients with multiple complications appear to be at higher risk of fracture, but results are mixed for the association between specific complications and fracture.”

“Our current understanding of the pathogenesis of skeletal fragility in [type 2] diabetes suggests a working model […], whereby poor glucose control in patients with T2DM leads to increases in AGEs that have negative effects on osteoblasts, which in turn causes a reduction in bone formation. This defect in bone formation subsequently results in low bone turnover in T2DM patients, which prolongs the lifespan of type I collagen in bone, thereby leaving it particularly vulnerable to damage from increased AGEs. Ultimately, this creates a “vicious cycle” that may contribute to reduced bone quality and increased fracture risk in patients with T2DM.”

As for an overall assessment of the book, I gave the book five stars on goodreads, because it’s basically to a significant extent written the way I’d like Springer publications like this one to be written. The language in one chapter (out of 11) was slightly sub-optimal, but aside from that chapter every single chapter was in my opinion well written, some of them very well written. Frequent discussions of the results of meta-analyses were included in the book. The authors seemed in general to be aware of potential problems with specific interpretations and to me seemed cautious about drawing strong conclusions from the data they had at hand; in terms of the analytical level of the coverage the publication for example included comments about problems with confounding by indication in cross section analyses. There were a couple of places in one of the later chapters where it was slightly difficult for me to figure out ‘what was going on’, but the coverage included in the next chapter of the book clarified these issues; I was not willing to subtract a star because of that.

December 3, 2015 Posted by | Books, Diabetes, Epidemiology, Medicine | Leave a comment

Effects of Antidepressants

I gave the book two stars on goodreads. The contributors to this volume are from Brazil, Spain, Mexico, Japan, Turkey, Denmark, and the Czech Republic; the editor is from Taiwan. In most chapters you can tell that the first language of these authors is not English; the language is occasionally quite bad, although you can usually tell what the authors are trying to say.

The book is open access and you can read it here. I have included some quotes from the book below:

“It is estimated that men and women with depression are 20.9 and 27 times, respectively, more likely to commit suicide than those without depression (Briley & Lépine, 2011).” [Well, that’s one way to communicate risk… See also this comment].

“depression is on average twice as common in women as in men (Bromet et al., 2011). […] sex differences have been observed in the prevalence of mental disorders as well as in responses to treatment […] When this [sexual] dimorphism is present [in rats, a common animal model], the drug effect is generally stronger in males than in females.”

“Several reports indicate that follicular stimulating and luteinizing hormones and estradiol oscillations are correlated with the onset or worsening of depression symptoms during early perimenopause […], when major depressive disorder incidence is 3-5 times higher than the male matched population of the same [age] […]. Several longitudinal studies that followed women across the menopausal transition indicate that the risk for significant depressive symptoms increases during the menopausal transition and then decreases in […] early postmenopause […] the impact of hormone oscillations during perimenopause transition may affect the serotonergic system function and increase vulnerability to develop depression.”

“The use of antidepressant drugs for treating patients with depression began in the late 1950s. Since then, many drugs with potential antidepressants have been made available and significant advances have been made in understanding their possible mechanisms of action […]. Only two classes of antidepressants were known until the 80’s: tricyclic antidepressants and monoamine oxidase inhibitors. Both, although effective, were nonspecific and caused numerous side effects […]. Over the past 20 years, new classes of antidepressants have been discovered: selective serotonin reuptake inhibitors, selective serotonin/norepinephrine reuptake inhibitors, serotonin reuptake inhibitors and alpha-2 antagonists, serotonin reuptake stimulants, selective norepinephrine reuptake inhibitors, selective dopamine reuptake inhibitors and alpha-2 adrenoceptor antagonists […] Neither the biological basis of depression […] nor the precise mechanism of antidepressant efficacy are completely understood […]. Indeed, antidepressants are widely prescribed for anxiety and disorders other than depression.”

“Taken together the TCAs and the MAO-Is can be considered to be non-selective or multidimensional drugs, comparable to a more or less rational polypharmacy at the receptor level. This is even when used as monotherapy in the acute therapy of major depression. The new generation of selective antidepressants (the selective serotonin reuptake inhibitors (SSRIs)), or the selective noradrenaline and serotonin reuptake inhibitors (SNRIs) have a selective mechanism of action, thus avoiding polypharmacy. However, the new generation antidepressants such as the SSRIs or SNRIs are less effective than the TCAs. […] The most selective second generation antidepressants have not proved in monotherapy to be more effective on the core symptoms of depression than the first generation TCAs or MAOIs. It is by their safety profiles, either in overdose or in terms of long term side effects, that the second generation antidepressants have outperformed the first generation.”

“Suicide is a serious global public health problem. Nearly 1 million individuals commit suicide every year. […] Suicide […] ranks among the top 10 causes of death in every country, and is one of the three leading causes of death in 15 to 35-year olds.”

“Considering patients that commit suicide, about half of them, at some point, had contact with psychiatric services, yet only a quarter had current or recent contact (Andersen et al., 2000; Lee et al., 2008). A study conducted by Gunnell & Frankel (1994) revealed that 20-25% of those committing suicide had contact with a health care professional in the week before death and 40% had such contact one month before death” (I’m assuming ‘things have changed’ during the last couple of decades, but it would be interesting to know how much they’ve changed).

“In cases of suicide by drug overdose, TCAs have the highest fatal toxicity, followed by serotonin and noradrenalin reuptake inhibitors (SNRIs), specific serotonergic antidepressants (NaSSA) and SSRIs […] SSRIs are considered to be less toxic than TCAs and MAOIs because they have an extended therapeutic window. The ingestion of up to 30 times its recommended daily dose produces little or no symptoms. The intake of 50 to 70 times the recommended daily dose can cause vomiting, mild depression of the CNS or tremors. Death rarely occurs, even at very high doses […] When we talk about suicide and suicide attempt with antidepressants overdose, we are referring mainly to women in their twenties – thirties who are suicide repeaters.”

“Physical pain is one of the most common somatic symptoms in patients that suffer depression and conversely, patients suffering from chronic pain of diverse origins are often depressed. […] While […] data strongly suggest that depression is linked to altered pain perception, pain management has received little attention to date in the field of psychiatric research […] The monoaminergic system influences both mood and pain […], and since many antidepressants modify properties of monoamines, these compounds may be effective in managing chronic pain of diverse origins in non-depressed patients and to alleviate pain in depressed patients. There are abundant evidences in support of the analgesic properties of tricyclic antidepressants (TCAs), particularly amitriptyline, and another TCA, duloxetine, has been approved as an analgesic for diabetic neuropathic pain. By contrast, there is only limited data regarding the analgesic properties of selective serotonin reuptake inhibitors (SSRIs) […]. In general, compounds with noradrenergic and serotonergic modes of action are more effective analgesics […], although the underlying mechanisms of action remain poorly understood […] While the utility of many antidepressant drugs in pain treatment is well established, it remains unclear whether antidepressants alleviate pain by acting on mood (emotional pain) or nociceptive transmission (sensorial pain). Indeed, in many cases, no correlation exists between the level of pain experienced by the patient and the effect of antidepressants on mood. […] Currently, TCAs (amitriptyline, nortriptiline, imipramine and clomipramine) are the most common antidepressants used in the treatment of neuropathic pain processes associated with diabetes, cancer, viral infections and nerve compression. […] TCAs appear to provide effective pain relief at lower doses than those required for their antidepressant effects, while medium to high doses of SNRIs are necessary to produce analgesia”. Do keep in mind here that in a neuropathy setting one should not expect to get anywhere near complete pain relief with these drugs – see also this post.

“Prevalence of a more or less severe depression is approximately double in patients with diabetes compared to a general population [for more on related topics, see incidentally this previous post of mine]. […] Diabetes as a primary disease is typically superimposed by depression as a reactive state. Depression is usually a result of exposure to psycho-social factors that are related to hardship caused by chronic disease. […] Several studies concerning comorbidity of type 1 diabetes and depression identified risk factors of depression development; chronic somatic comorbidity and polypharmacy, female gender, higher age, solitary life, lower than secondary education, lower financial status, cigarette smoking, obesity, diabetes complications and a higher glycosylated hemoglobin [Engum, 2005; Bell, 2005; Hermanns, 2005; Katon, 2004]”

November 11, 2015 Posted by | Books, Diabetes, Epidemiology, Medicine, Pharmacology, Psychiatry, Psychology | Leave a comment

Oxford Handbook of Clinical Medicine (II)

Here’s my first post about the book. I’ve read roughly 75% of the book at this point (~650 pages). The chapters I’ve read so far have dealt with the topics of: ‘thinking about medicine’ (an introductory chapter), ‘history and examination’, cardiovascular medicine, chest medicine, endocrinology, gastroenterology, renal medicine, haematology, infectious diseases, neurology, oncology and palliative care, rheumatology, and surgery (this last one is a long chapter – ~100 pages – which I have not yet finished). In my first post I (…mostly? I can’t recall if I included one or two observations made later in the coverage as well…) talked about observations included in the first 140 pages of the book, which relate only to the first three topics mentioned above; the chapter about chest medicine starts at page 154. In this post I’ll move on and discuss stuff covered in the chapters about cardiovascular medicine, chest medicine, and endocrinology.

In the previous post I talked a little bit about heart failure, acute coronary syndromes and a few related topics, but there’s a lot more stuff in the chapter about cardiovascular medicine and I figured I should add a few more observations – so let’s talk about aortic stenosis. The most common cause is ‘senile calcification’. The authors state that one should think of aortic stenosis in any elderly person with problems of chest pain, shortness of breath during exercise (exertional dyspnoea), and fainting episodes (syncope). Symptomatic aortic stenosis tends to be bad news; “If symptomatic, prognosis is poor without surgery: 2–3yr survival if angina/syncope; 1–2yr if cardiac failure. If moderate-to-severe and treated medically, mortality can be as high as 50% at 2yrs”. Surgery can improve the prognosis quite substantially; they note elsewhere in the coverage that a xenograft (e.g. from a pig) aortic valve replacement can last (“may require replacement at…”) 8-10 years, whereas a mechanical valve lasts even longer than that. Though it should also be noted in that context that the latter type requires life-long anticoagulation, whereas the former only requires this if there is atrial fibrilation.

Next: Infective endocarditis. Half of all cases of endocarditis occur on normal heart valves; the presentation in that case is one of acute heart failure. So this is one of those cases where your heart can be fine one day, and not many days later it’s toast and you’ll die unless you get treatment (often you’ll die even if you do get treatment as mortality is quite high: “Mortality: 5–50% (related to age and embolic events)”; mortality relates to which organism we’re dealing with: “30% with staphs [S. Aureus]; 14% if bowel organisms; 6% if sensitive streptococci.”). Multiple risk factors are known, but some of those are not easily preventable (renal failure, dermatitis, organ transplantation…); don’t be an IV drug (ab)user, and try to avoid getting (type 2) diabetes.. The authors note that: “There is no proven association between having an interventional procedure (dental or non-dental) and the development of IE”, and: “Antibiotic prophylaxis solely to prevent IE is not recommended”.

Speaking of terrible things that can go wrong with your heart for no good reason, hypertrophic cardiomyopathy (-HCM) is the leading cause of sudden cardiac death in young people, with an estimated prevalence of 1 in 500. “Sudden death may be the first manifestation of HCM in many patients”. Yeah…

The next chapter in the book as mentioned covers chest medicine. At the beginning of the chapter there’s some stuff about what the lungs look like and some stuff about how to figure out whether they’re working or not, or why they’re not working – I won’t talk about that here, but I would note that lung problems can relate to stuff besides ‘just’ lack of oxygen; they can also for example be related to retention of carbon dioxide and associated acidosis. In general I won’t talk much about this chapter’s coverage as I’m aware that I have covered many of the topics included in the book before here on the blog in other posts. It should perhaps be noted that whereas the chapter has two pages about lung tumours and two pages about COPD, it has 6 pages about pneumonia; this is still a very important disease and a major killer. Approximately one in five (the number 21% is included in the book) patients with pneumonia in a hospital setting die. Though it should perhaps also be observed that maybe one reason why more stuff is not included about lung cancer in that chapter is that this disease is just depressing and doctors can’t really do all that much. Carcinoma of the bronchus make up ~19% of all cancers and 27% of cancer deaths in the UK. In terms of prognosis, non-small cell lung cancer has a 50% 2-year mortality in cases where the cancer was not spread at presentation and a 90% 2-year mortality in cases with spread. That’s ‘the one you would prefer’: Small cell lung cancer is worse as small cell tumours “are nearly always disseminated at presentation” – here the untreated median survival is 3 months, increasing to 1-1,5 years if treated. The authors note that only 5% (of all cases, including both types) are ‘cured’ (they presumably use those citation marks for a reason). Malignant mesothelioma, a cancer strongly linked to asbestos exposure most often developing in the pleura, incidentally also has a terrible prognosis (”

5-8% of people in the UK have asthma; I was surprised the number was that high. Most people who get it during childhood either grow out of it or suffer much less as adults, but on the other hand there are also many people who develop chronic asthma late in life. In 2009 approximately 1000 people in the UK died of asthma – unless this number is a big underestimate, it would seem to me that asthma at least in terms of mortality is a relatively mild disease (if 5% of the UK population has asthma, that’s 3 million people – and 1000 deaths among 3 million people is not a lot, especially not considering that half of those deaths were in people above the age of 65). COPD is incidentally another respiratory disease which is more common than I had thought; they note that the estimated prevalence in people above the age of 40 in the UK is 10-20%.

The endocrinology chapter has 10 pages about diabetes, and I won’t talk much about that coverage here as I’ve talked about many of these things before on the blog – however a few observations are worth including and discussing here. The authors note that 4% of all pregnancies are complicated by diabetes, with the large majority of cases (3.5%) being new-onset gestational diabetes. In a way the 0,5% could be considered ‘good news’ because they reflect the fact that outcomes have improved so much that a female diabetic can actually carry a child to term without risking her own life or running a major risk that the fetus dies (“As late as 1980, physicians were still counseling diabetic women to avoid pregnancy” – link). But the 3,5%? That’s not good: “All forms [of diabetes] carry an increased risk to mother and foetus: miscarriage, pre-term labour, pre-eclampsia, congenital malformations, macrosomia, and a worsening of diabetic complications”. I’m not fully convinced this statement is actually completely correct, but there’s no doubt that diabetes during pregnancy is not particularly desirable. As to which part of the statement I’m uncertain about, I think gestational diabetes ‘ought to’ have somewhat different effects than type 1 especially in the context of congenial malformations. Based on my understanding of these things, gestational diabetes should be less likely to cause congenital malformations than type 1 diabetes in the mother; diabetes-related congenital malformations tend to happen/develop very early in pregnancy (for details, see the link above) and gestational pregnancy is closely related to hormonal changes and changing metabolic demands which happen over time during pregnancy. Hormonal changes which occur during pregnancy play a key role in the pathogenesis of gestational diabetes, as the hormonal changes in general increase insulin resistance significantly, which is what causes some non-diabetic women to become diabetic during pregnancy; these same processes incidentally also causes the insulin demands of diabetic pregnant women to increase a lot during pregnancy. You’d expect the inherently diabetogenic hormonal and metabolic processes which happen in pregnancy to play a much smaller role in the beginning of the pregnancy than they do later on, especially as women who develop gestational diabetes during their pregnancy would be likely to be able to compensate early in pregnancy, where the increased metabolic demands are much less severe than they are later on. So I’d expect the risk contribution from ‘classic gestational diabetes’ to be larger in the case of macrosomia than in the case of neural tube defects, where type 1s should probably be expected to dominate – a sort of ‘gestational diabetics don’t develop diabetes early enough in pregnancy for the diabetes to be very likely to have much impact on organogenesis’-argument. This is admittedly not a literature I’m intimately familiar with and maybe I’m wrong, but from my reading of their diabetes-related coverage I sort of feel like the authors shouldn’t be expected to be intimately familiar with the literature either, and I’m definitely not taking their views on these sorts of topics to be correct ‘by default’ at this point. This NHS site/page incidentally seems to support my take on this, as it’s clear that the first occasion for even testing for gestational diabetes is at week 8-12, which is actually after a substantial proportion of diabetes-related organ damage would already be expected to have occurred in the type 1 diabetes context (“There is an increased prevalence of congenital anomalies and spontaneous abortions in diabetic women who are in poor glycemic control during the period of fetal organogenesis, which is nearly complete by 7 wk postconception.” – Sperling et al., see again the link provided above. Note that that entire textbook is almost exclusively about type 1 diabetes, so ‘diabetes’ in the context of that quote equals T1DM), and a glucose tolerance test/screen does not in this setting take place until weeks 24-28.

The two main modifiable risk factors in the context of gestational diabetes are weight and age of pregnancy; the risk of developing gestational diabetes  increases with weight and is higher in women above the age of 25. One other sex/gender-related observation to make in the context of diabetes is incidentally that female diabetics are at much higher risk of cardiovascular disease than are non-diabetic females: “DM [diabetes mellitus] removes the vascular advantage conferred by the female sex”. Relatedly, “MI is 4-fold commoner in DM and is more likely to be ‘silent’. Stroke is twice as common.” On a different topic in which I’ve been interested they provided an observation which did not help much: “The role of aspirin prophylaxis […] is uncertain in DM with hypertension.”

They argue in the section about thyroid function tests (p. 209) that people with diabetes mellitus should be screened for abnormalities in thyroid function on the annual review; I’m not actually sure this is done in Denmark and I think it’s not – the DDD annual reports I’ve read have not included this variable, and if it is done I know for a fact that doctors do not report the results to the patient. I’m almost certain they neglected to include a ‘type 1’ in that recommendation, because it makes close to zero sense to screen type 2 diabetics for comorbid autoimmune conditions, and I’d say I’m probably also a little skeptical, though much less skeptical, about annual screenings of all type 1s being potentially cost-effective. Given that autoimmune comorbidities (e.g. Graves’ disease and Hashimoto’s) are much more common in women than in men and that they often present in middle-aged individuals (and given that they’re more common in people who develop diabetes relatively late, unlike me – see Sperling) I would assume I’m relatively low risk and that it would probably not make sense to screen someone like me annually from a cost-benefit/cost-effectiveness perspective; but it might make sense to ask the endocrinologist at my next review about how this stuff is actually being done in Denmark, if only to satisfy my own curiosity. Annual screening of *female*, *type 1* diabetics *above (e.g.) the age of 30* might be a great idea and perhaps less restrictive criteria than that can also be justified relatively easily, but this is an altogether very different recommendation from the suggestion that you should screen all diabetics annually for thyroid problems, which is what they recommend in the book – I guess you can add this one to the list of problems I have with the authors’ coverage of diabetes-related topics (see also my comments in the previous post). The sex- and age-distinction is likely much less important than the ‘type’ restriction and maybe you can justify screening all type 1 diabetics (For example: “Hypothyroid or hyperthyroid AITD [autoimmune thyroid disease] has been observed in 10–24% of patients with type 1 diabetes” – Sperling. Base rates are important here: Type 1 diabetes is rare, and Graves’ disease is rare, but if the same HLA mutation causes both in many cases then the population prevalence is not informative about the risk an individual with diabetes and an HLA mutation has of developing Graves’) – but most diabetics are not type 1 diabetics, and it doesn’t make sense to screen a large number of people without autoimmune disease for autoimmune comorbidities they’re unlikely to have (autoimmunity in diabetes is complicated – see the last part of this comment for a few observations of interest on that topic – but it’s not that complicated; most type 2 diabetics are not sick because of autoimmunity-related disease processes, and type 2 diabetics make up the great majority of people with diabetes mellitus in all patient populations around the world). All this being said, it is worth keeping in mind that despite overt thyroid disease being relatively rare in general, subclinical hypothyroidism is common in middle-aged and elderly individuals (“~10% of those >55yrs”); and the authors recommend treating people in this category who also have DM because they are more likely to develop overt disease (…again it probably makes sense to add a ‘T1’ in front of that DM).

Smoking is sexy, right? (Or at least it used to be…). And alcohol makes other people look sexy, right? In a way I find it a little amusing that alcohol and smoking are nevertheless two of the three big organic causes of erectile dysfunction (the third is diabetes).

How much better does it feel to have sex, compared to how it feels to masturbate? No, they don’t ask that question in the book (leave that to me…) but they do provide part of the answer because actually there are ways to quantify this, sort of: “The prolactin increase ( and ) after coitus is ~400% greater than after masturbation; post-orgasmic prolactin is part of a feedback loop decreasing arousal by inhibiting central dopaminergic processes. The size of post-orgasmic prolactin increase is a neurohormonal index of sexual satisfaction.”

November 1, 2015 Posted by | Books, Cancer/oncology, Cardiology, Diabetes, Epidemiology, Immunology, Medicine | Leave a comment

Oxford Handbook of Clinical Medicine (I)

“We wrote this book not because we know so much, but because we know we remember so little…the problem is not simply the quantity of information, but the diversity of places from which it is dispensed. Trailing eagerly behind the surgeon, the student is admonished never to forget alcohol withdrawal as a cause of post-operative confusion. The scrap of paper on which this is written spends a month in the pocket before being lost for ever in the laundry. At different times, and in inconvenient places, a number of other causes may be presented to the student. Not only are these causes and aphorisms never brought together, but when, as a surgical house officer, the former student faces a confused patient, none is to hand.”

‘But now you don’t need to look for those scraps of paper anymore because we’ve collected all that information right here, in this book,’ the authors would argue. Or at least some of the important information is included here (despite this being a 900+ page textbook, many books on subtopics covered in the book are much longer than that; for example the Holmes et al. textbook dealing only with sexually transmitted diseases is more than twice as long as this one. Of course a book with that kind of page count will only ever be a ‘handbook’ to someone with acromegaly…).

Anyway, I’m currently reading this book and I figured I should probably talk about a few of the observations made in the book here, to make them easier to remember later on. The book is intended to be used as a reference work for doctors so in a way trying to remember stuff written in it is a strange thing to do – the point of the book is after all that you don’t need to remember all that stuff – but I would prefer to remember some of the things written in this book and this’ll be easier to do if I write about them here on the blog, instead of just ‘keeping them hidden in the book’, so to speak.

I’m assuming nobody reading along here are planning on reading this book so I wasn’t sure how much sense it would make to add impressions about the way it’s written etc. here, but I decided to note down a few things on these topics anyway. I have noted along the way that the authors sometimes include comments about a condition which they only cover later in the same chapter, and this has bothered me a few times; on the other hand I’m well aware that when you’re trying to write a book where it’s supposed to be easy to look things up quickly you need to make some key decisions here and there which will be likely to impact the reading experience of people who read the book from cover to cover the way I am negatively. Most chapters are structured a bit the same way the ‘[Topic X] At a glance…’ textbooks I’ve read in the past were (Medical Statistics at a Glance, Nutrition at a Glance, The Endocrine System at a Glance); the chapters vary in length (for example there are roughly 70 pages about cardiovascular medicine, 40 pages about endocrinology, 50 pages about gastroenterology, and 30 pages about renal medicine) but they generally seem to be structured in much the same way; the chapters are segmented – many chapter segments are two-page segments, which were also predominant in the At a glance texts – and each segment deals with a specific topic in some detail, with details about many aspects of the disease/condition in question, such as information about e.g. incidence/prevalence, risk factors, some notes on pathophysiology, presentation/symptoms/signs, diagnostics (tests to perform, key symptoms to keep in mind, etc.), treatment options (drugs/surgery/etc.?, dosage, indications/contraindications, side effects, drug interactions, etc.), potential complications, and prognostic information. Not all chapters are structured in the ‘two-page-segments’ way even though this seems to be the baseline structure in many contexts; it’s clear that they’ve given some thought as to how best to present the information included in the coverage. I recall from the At a glance texts that I occasionally thought that the structure felt unnatural, and that they seemed to have committed to a suboptimal coverage format in the specific context – I have not thought along such lines while reading this book, which to me is a sign that they’ve handled these things well. Deviation from the default format occurs e.g. in the chapter on cardiovascular medicine, which has quite a few successive pages on which various types of ECG abnormalities are illustrated (I looked at that stuff and I like to think that I understand this stuff better than I used to now, but I must admit that this was one of the sections of this book into which I did not put a lot of effort, as it in some sense felt like ‘irrelevant knowledge’ – so don’t expect me to be able to tell a right bundle branch block from an acute anterior myocardial infarction on an EEG without having access to this book…). It’s perhaps important to point out that despite the condensed structure of the book the coverage is reasonably detailed; this is not a book with two pages about ‘heart disease’, it’s a book with two pages about rheumatic fever, two pages about right heart valve disease, two pages about infective endocarditis, two pages about broad complex tachycardia, etc. And many of the pages include a lot of information. I have read textbooks dealing with many of the topics they cover and this is also not my first general ‘clinical medicine’ text (that was McPhee et al.), but I’m learning new stuff from the book even about topics with which I’m familiar, which is really nice. It’s a pretty good book so far, even if it’s not perfect; I’m probably at a four star rating at the moment.

In the parts to follow I’ll talk about some of the observations included in the book which I figured might be worth repeating here.

The first observation: They note in the book that 80% of people above the age of 85 years (in Britain) live at home and that 70% of those people can manage stairs; they argue in the same context that any deterioration in an elderly patient should be considered to be from treatable disease until proven otherwise (i.e., the default should not be to say that ‘that’s probably just ageing’).

“Unintentional weight loss should always ring alarm bells”.

A diabetic is probably well-advised to be aware of some of the signs of peripheral arterial disease. These include loss of hair, pallor, shiny skin, cyanosis (bluish discoloration of the skin), dry skin, scaling, deformed toenails, and lowered skin temperature.

“Normally 400-1300mL of gas is expelled PR in 8-20 discrete (or indiscrete) episodes per day. […] most patients with ‘flatulence’ have no GI disease. Air swallowing (aerophagy) is the main cause of flatus; here N2 is the chief gas. If flatus is mostly methane, N2 and CO2, then fermentation by bowel bacteria is the cause,[42] and reducing carbohydrate intake (eg less lactose and wheat) may help.[43]”

If there are red blood cells in the urine, this is due to cancer or glomerulonephritis (let’s not go into details here – we’ll just call this one ‘kidney disease’ for now) until proven otherwise. Painless visual haematuria (blood in the urine) usually equals bladder cancer – it’s definitely a symptom one should have a talk with a doctor about. The book does not mention this, but it’s important to keep in mind however that red/brownish urine is not always due to blood in the urine; it can also be caused by drugs and vegetable dyes (link). I was very surprised about this one in the context of ways to prevent UTIs: “There is no evidence that post-coital voiding, or pre-voiding, or advice on wiping patterns in females is of benefit.[6]” Drinking more water and drinking cranberry or lingo berry juice daily works/lowers risk.

Kidney function is often impaired in people who are hospitalized, with acute kidney injury (-AKI) occurring in up to 18% of hospital patients. It’s an important risk factor for mortality. Mortality can be very high in people with AKI, for example people admitted with burns who develop AKI have an 80% mortality rate, and with trauma/surgery it’s 60%. Up to 30 % of cases are preventable, and preventable causes include medications (continuing medications as usual e.g. after surgery can be catastrophic, and some of the drugs that can cause kidney problems are drugs people take regularly for chronic conditions such as high blood pressure or diabetes (metformin in particular)) and contrast material used in CT scans and procedures. Kidney function is incidentally often also (chronically) impaired in old people, most of which have no symptoms; “many elderly people fall into CKD [chronic kidney disease] stage 3 but have little or no progression over many years.” Symptoms of chronic kidney disease will usually not present until stage four is reached, but if onset of kidney failure is slow even people in the later stages may remain asymptomatic. The authors question whether it makes sense to label the old people in stage 3 with an illness; I’m not sure I completely agree (lowered kidney function increases cardiovascular risk, and some of those people may want to address this, if possible), but I’d certainly agree with the position that there’s a risk of overdiagnosis here.

A few more observations about kidneys. The chief cause of death from renal failure is cardiovascular disease, and in the first two stages of chronic kidney disease, the risk of dying from cardiovascular disease is higher than the risk of ever reaching stage 5, end-stage-renal-failure. Blood pressure control is very important in kidney disease as the authors argue that even a small drop in blood pressure may save significant kidney function. The causal link between BP and kidney disease goes both ways: “Hypertension often causes renal problems […] and most renal diseases can cause hypertension”. Once people require renal replacement therapy (RRT) such as haemodialysis mortality is high: Annual mortality is ~20%, mainly due to cardiovascular disease. The authors talk a little bit about diabetes and kidney disease in the book and among other things include the following observations:

“Diabetes is best viewed as a vascular disease with the kidney as one of its chief targets for end-organ damage. The single most important intervention in the long-term care of DM is the control of BP, to protect the heart, the brain, and the kidney. Renal damage may be preventable with good BP and glycaemic control.
In type 1 DM nephropathy is rare in the first 5yrs, after 10yrs annual incidence rises to a peak at 15yrs, then falls again. Those who have not developed nephropathy at 35yrs are unlikely to do so. In type 2 DM around 10% have nephropathy at diagnosis and up to half will go on to develop it over the next 20yrs. 20% of people with type 2 DM will develop ESRF.”

I was surprised by the observation above that “Those who have not developed nephropathy at 35yrs are unlikely to do so”, and I’m not sure I’d agree with the authors about that. The incidence of diabetes-related nephropathy peaks after a diabetes duration of 10-20 years and declines thereafter, but it doesn’t go to zero: “The risk for the development of diabetic nephropathy is low in a normoalbuminuric patient with diabetes’ duration of greater than 30 years. Patients who have no proteinuria after 20-25 years have a risk of developing overt renal disease of only approximately 1% per year.” (link). I’d note that a risk of 1% per year translates to a roughly 25% risk of developing overt renal disease over a 30 year time-frame, and that diabetics with the disease might not agree that a risk of that magnitude means that they are ‘unlikely’ to develop nephropathy, even if the annual risk is not high. Even if the annual risk were only half of that, 0,5%, the cumulative risk over a 30 year period would still be 14%, or roughly one in seven – are people with risks of that magnitude really ‘unlikely’ to develop nephropathy? This is certainly arguable. Many type 1 diabetics are diagnosed in childhood (peak incidence is in the early teenage years) and they can expect to live significantly longer than 20-25 years with the disease – if you disregard the ‘tail risk’ here, you seem in my opinion to be likely to neglect a substantial proportion of the total risk. This is incidentally not the only part of the book where I take issue with their coverage of topics related to diabetes, elsewhere in the book they note that:

“People who improve and maintain their fitness live longer […] Avoiding obesity helps too, but weight loss per se is only useful in reducing cardiovascular risk and the risk of developing diabetes when combined with regular exercise.”

Whereas in the case of nephropathy you can sort of argue about the language being imprecise and/or words meaning different things to different people, here things are a bit more clear because this is just plain WRONG. See e.g. Rana et al. (“Obesity and physical inactivity independently contribute to the development of type 2 diabetes; however, the magnitude of risk contributed by obesity is much greater than that imparted by lack of physical activity”). This is in my opinion the sort of error you should not find in a medical textbook.

Moving on to other parts of the coverage, let’s talk about angina. There are two types of angina – stable and unstable angina. Stable angina is induced by effort and relieved by rest. Unstable angina is angina of increasing severity or frequency, and it occurs at rest or minimal exertion. Unstable angina requires hospital admission and urgent treatment as it dramatically increases the risk of myocardial infarction. Some more stuff on related topics from the book:

“ACS [acute coronary syndrome] includes unstable angina and evolving MI [myocardial infarction], which share a common underlying pathology—plaque rupture, thrombosis, and inflammation”. Symptoms are: “Acute central chest pain, lasting >20min, often associated with nausea, sweatiness, dyspnoea [shortness of breath], palpitations [awareness of your heart beat]. May present without chest pain (‘silent’ infarct), eg in the elderly or diabetics. In such patients, presentations may include: syncope [fainting], pulmonary oedema, epigastric pain and vomiting, […] acute confusional state, stroke, and diabetic hyperglycaemic states.”

The two key questions to ask in the context of ACS are whether troponin (a cardiac enzyme) levels are elevated and whether there is ST-segment elevation. If there’s no ST-segment elevation and symptoms settle without a rise in troponin levels -> no myocardial damage (that’s the best case scenario – the alternatives are not as great..). In ACS, many deaths occur very soon after symptoms present; 50 % of deaths occur within two hours of symptom onset. “Up to 7% die before discharge.” Some MI complications have very high associated mortalities, for example a ventricular septal defect following an MI implies a 50% mortality rate during the first week alone.

Heart failure is a state in which the cardiac output is inadequate for the requirements of the body. It’s actually not that uncommon; the prevalence is 1-3% of the general population, increasing to roughly 10% “among elderly patients”. 25-50% die within 5 years of diagnosis, and if admission is needed the five year mortality rises to 75%.

Hypertension is a major risk factor for stroke and MI and according to the authors causes ~50% of all vascular deaths. Aside from malignant hypertension, which is relatively rare, hypertension is usually asymptomatic; the authors note specifically that “Headache is no more common than in the general population.” Isolated systolic hypertension, the most common form of hypertension, affects more than half of all people above the age of 60. “It is not benign: doubles risk of MI, triples risk of CVA [cerebrovascular accident, i.e. stroke].” The authors argue that: “Almost any adult over 50 would benefit from [antihypertensives], whatever their starting BP.” I think that’s downplaying the potential side effects of treatment, but it’s obvious that many people might benefit from treatment. Steps you can take to lower your BP without using medications according to the authors include: Reducing alcohol and salt intake, increasing exercise, reducing weight if obese, stop smoking, low-fat diet. They talk quite a bit about the different medications used to treat hypertension – I won’t cover that stuff in much detail, but I thought it was worth including the observation that ACE-inhibitors may be the 1st choice option in diabetics (especially if there’s renal involvement). On a related note, beta-blockers and thiazides may both increase the risk of new-onset diabetes.

October 22, 2015 Posted by | Books, Cardiology, Diabetes, Medicine, Nephrology, Pharmacology | Leave a comment

Peripheral Neuropathy & Neuropathic Pain: Into the light (II)

Here’s my first post about the book. As I mentioned in that post, I figured I should limit detailed coverage to the parts of the book dealing with stuff related to diabetic/metabolic neuropathies. There’s a chapter specifically about ‘diabetic and uraemic neuropathies’ in the book and most of the coverage below relates to content covered in that chapter, but I have also included some related observations from other parts of the book as they seemed relevant.

It is noted in the book’s coverage that diabetes is the commonest cause of neuropathy in industrialized countries. There are many ways in which diabetes can affect the nervous system, and not all diabetes-related neuropathies affect peripheral nerves. Apart from distal symmetric polyneuropathy, which can probably in this context be thought of as ‘classic diabetic neuropathy’, focal or multifocal involvement of the peripheral nervous system is also common, and so is autonomic neuropathy. Diabetics are also at increased risk of inflammatory neuropathies such as CIDP – chronic inflammatory demyelinating polyneuropathy (about which the book also has a chapter). Late stage complications of diabetes usually relate to some extent to vessel wall abnormalities and their effects, and the blood vessels supplying the peripheral nerves can be affected just like all other blood vessels; in that context it is of interest to note that the author mentions elsewhere in the book that “tissue ischaemia is more likely to be symptomatic in nerves than in most other organs”. According to the author there isn’t really a great way to classify all the various manifestations of diabetic neuropathy, but most of them fall into one of three groups – distal symmetrical sensorimotor (length-dependent) polyneuropathy (DSSP); autonomic neuropathy; and focal- and multifocal neuropathy. The first one of these is by far the most common, and it is predominantly a sensory neuropathy (‘can you feel this?’ ‘does this hurt?’ ‘Is this water hot or cold?’ – as opposed to motor neuropathy: ‘can you move your arm?’) with no motor deficit.

Neuropathies in diabetics are common – how common? The author notes that the prevalence in several population-based surveys has been found to be around 30% “in studies using restrictive definitions”. The author does not mention this, but given that diabetic neuropathy usually has an insidious onset and given that diabetes-related sensory neuropathy “can be totally asymptomatic”, survey-based measures are if anything likely to underestimate prevalence. Risk increases with age and duration of diabetes; the prevalence of diabetic peripheral neuropathy is more than 50% in type 1 diabetics above the age of 60.

DSSP may lead to numbness, burning feet, a pins and needles sensation and piercing/stabbing pain in affected limbs. The ‘symmetric’ part of the abbreviation means that it usually affects both sides of the body, instead of e.g. just one foot or hand. The length-dependence mentioned in the parenthesis earlier relates in a way to the pathophysiological process. The axons of the peripheral nervous system lack ribosomes, and this means that essential proteins and enzymes needed in distal regions of the nervous system need to be transported great distances through the axons – which again means that neurons with long axons are particularly vulnerable to toxic or metabolic disturbances (introducing a length-dependence aspect in terms of which nerves are affected) which may lead to so-called dying-back axonal degeneration. The sensory loss can be restricted to the toes, extend over the feet, or it can migrate even further up the limbs – when sensory loss extends above the knee, signs and symptoms of nerve damage will usually also be observed in the fingers/hands/forearms. In generalized neuropathies a distinction can be made in terms of which type of nerve fibres are predominantly involved. When small fibres are most affected, sensory effects relating to pain- and temperature perception predominate, whereas light touch, position and vibratory senses are relatively preserved; on the other hand abnormalities of proprioception and sensitivity to light touch, often accompanied by motor deficits, will predominate if larger myelinated fibres are involved. DSSP is a small fibre neuropathy.

One of the ‘problems’ in diabetic neuropathy is actually that whereas sensation is affected, motor function often is not. This might be considered much better than the alternative, but unimpaired motor function actually relates closely to how damage often occurs. Wounds/ulcers developing on the soles of the feet (plantar ulcers) are very common in conditions in which there is sensation loss but no motor involvement/loss of strength; people with absent pain sensation will not know when their feet get hurt, e.g. because of a stone in the shoe or other forms of micro-trauma, but they’re still able to walk around relatively unimpaired and the absence of protective sensation in the limbs can thus lead to overuse of joints and accidental self-injury. A substantial proportion of diabetics with peripheral neuropathy also have lower limb ischaemia from peripheral artery disease, which further increases risk, but even in the absence of ischaemia things can go very wrong (for more details, see Edmonds, Foster, and Sanders – I should perhaps warn that the picture in that link is not a great appetite-stimulant). Of course one related problem here is that you can’t just stop moving around in order to avoid these problems once you’re aware that you have peripheral sensory neuropathy; inactivity will lead to muscle atrophy and ischaemia, and that’s not good for your feet either. The neuropathy may not ‘just’ lead to ulcers, but may also lead to the foot becoming deformed – the incidence of neuroarthropathy is approximately 2%/year in diabetics with peripheral neuropathy. Foot deformity is sometimes of acute onset and may be completely painless, despite leading to (painless) fractures and disorganization of joints. In the context of ulcers it is important that foot ulcers often take a *very* long time to heal, and so they provide excellent entry points for bacteria which among other things can cause chronic osteomyelitis (infection and inflammation of the bone and bone marrow). Pronounced motor involvement is as mentioned often absent in DSSP, but it does sometimes occur, usually at a late stage.

The author notes repeatedly in the text that peripheral neuropathy is sometimes the presenting symptom in type 2 diabetes, and I thought I should include that observation here as well. The high blood glucose may not be what leads the patient to see a doctor – sometimes the fact that he can no longer feel his toes is. At that point the nerve damage which has already occurred will of course usually be irreversible.

When the autonomic nervous system is affected (this is called Diabetic Autonomic Neuropathy, -DAN), this can lead to a variety of different symptoms. Effects of orthostatic hypotension (-OH) are frequent complaints; blackouts, faintness and dizziness or visual obscuration on standing are not always due to side effects of blood pressure medications. The author notes that OH can be aggravated by tricyclic antidepressants which are often used for treating chronic neuropathic pain (diabetics with autonomous nervous system disorder will often have, sometimes painful, peripheral neuropathy as well). Neurogenic male impotence seems to be “extremely common”; this leads to the absence of an erection at any time under any circumstances. The bladder may also be involved, which can lead to increased intervals between voiding and residual urine in the bladder after voiding, which can lead to UTIs. It is noted that retrograde ejaculation is frequent in people with bladder atony. The gastrointestinal system can be affected; this is often asymptomatic, but may lead to diarrhea and constipation causing weight loss and malnutrition. Associated diarrhea may be accompanied by fecal incontinence. DAN can lead to hypoglycemia unawareness, making glycemic control more difficult to accomplish. Sweating disorders are common in the feet. When a limb is affected by neuropathy the limb may lose its ability to sweat, and this may lead to other parts of the body (e.g. the head or upper trunk) engaging in ‘compensatory sweating’ to maintain temperature control. Abnormal pupil responses, e.g. in the form of reduced light reflexes and constricted pupils (miosis), are common in diabetics.

Focal (one nerve) and occasionally also multi-focal (more than one nerve) neuropathic syndromes also occur in the diabetic setting. The book spends quite a bit of time talking about what different nerves do and what happens when they stop working, so it’s hard to paint a broad picture of how these types of problems may present – it all depends on which nerve(s) is (are) affected. Usually in the setting of these disorders the long-term prognosis is good, or at least better than in the setting of DSSP; nerve damage is often not permanent. It seems that in terms of cranial nerve involvement, oculomotor nerve palsies are the most common, but still quite rare, affecting 1-2% of diabetics. Symptoms are rapid onset pain followed by double vision, and “spontaneous and complete recovery invariably occurs within 2-3 months” – I would like to note that as far as diabetes complications go, this is probably about as good as it gets… In so-called proximal diabetic neuropathy (-PDN), another type of mononeuropathy/focal neuropathy, the thighs are involved, with numbness or pain, often of a burning character which is worse at night, as well as muscle wasting. That syndrome progresses over weeks or months, after which the condition usually stabilizes and the pain improves, though residual muscle weakness seems to be common. Unlike in the case of DSSP, deficits in PDN are usually asymmetric, and both motor involvement and gradual recovery is common – it’s important to note in this context that DSSP virtually never improves spontaneously and often has a progressive course. Multi-focal neuropathies affect only a small proportion of diabetics, and in terms of outcome patterns they might be said to lie somewhere in between mononeuropathies and DSSP; outcomes are better than in the case of DSSP, but long-term sequelae are common.

Diabetics are at increased risk of developing pressure palsies in general. According to the author carpal tunnel syndrome occurs in 12% of diabetic patients, and “the incidence of ulnar neuropathy due to microlesions at the elbow level is high”.

In diabetics with renal failure caused by diabetic nephropathy (or presumably for that matter renal failure caused by other things as well, but most diabetics with kidney failure will have diabetic nephropathy) neuropathy is common and often severe. Renal failure impairs nerve function and is responsible for sometimes severe motor deficits in these patients. “Recovery from motor deficits is usually good after kidney transplant”. Carpal tunnel syndrome is very common in patients on long-term dialysis; 20 to 50 % of patients dialysed for 10 years or more are reported to have carpal tunnel syndrome. The presence of neuropathy in renal patients is closely related to renal function; the lower renal function, the more likely neurological symptoms become.

As you’ll learn from this book, a lot of things can cause peripheral neuropathies – and so the author notes that “In focal neuropathy occurring in diabetic patients, a neuropathy of another origin must always be excluded.” It’s not always diabetes, and sometimes missing the true cause can be a really bad thing; for example cancer-associated paraneoplastic syndromes are often associated with neuropathy (“paraneoplastic syndromes affect the PNS [Peripheral Nervous System] in up to one third of patients with solid tumors”), and so missing ‘the true cause’ in the case of a focal neuropathy may mean missing a growing tumour.

In terms of treatment options, “There is no specific treatment for distal symmetric polyneuropathy.” Complications can be treated/ideally prevented, but we have no drugs the primary effects of which are to specifically stop the nerves from dying. Treatment of autonomic neuropathy mostly relates to treating symptoms, in particular symptomatic OH. Treatment of proximal diabetic neuropathy, which is often very painful, relates only to pain management. Multifocal diabetic neuropathy can be treated with corticosteroids, minimizing inflammation.

Due to how common diabetic neuropathy is, most controlled studies on treatment options for neuropathic pain have involved patients with distal diabetic polyneuropathy. Various treatment options exist in the context of peripheral neuropathies, including antidepressants, antiepileptic drugs and opioids, as well as topical patches. In general pharmacological treatments will not cause anywhere near complete pain relief: “For patients receiving pharmacological treatment, the average pain reduction is about 20-30%, and only 20-35% of patients will achieve at least a 50% pain reduction with available drugs. […] often only partial pain relief from neuropathic pain can be expected, and […] sensory deficits are unlikely to respond to treatment.” Treatment of neuropathic pain is often a trial-and-error process.

October 17, 2015 Posted by | Books, Cancer/oncology, Diabetes, Epidemiology, Medicine, Neurology, Pharmacology | Leave a comment

Peripheral Neuropathy & Neuropathic Pain: Into the light (I)

“Peripheral neuropathy is a common medical condition, the diagnosis of which is often protracted or delayed. It is not always easy to relate a neuropathy to a specific cause. Many people do not receive a full diagnosis, their neuropathy often being described as ‘idiopathic’ or ‘cryptogenic’. It is said that in Europe, one of the most common causes is diabetes mellitus but there are also many other known potential causes. The difficulty of diagnosis, the limited number of treatment options, a perceived lack of knowledge of the subject — except in specialised clinics, the number of which are limited — all add to the difficulties which many neuropathy patients have to face. Another additional problem for many patients is that once having received a full, or even a partial diagnosis, they are then often discharged back to their primary healthcare team who, in many instances, know little about this condition and how it may impact upon their patients’ lives. In order to help bridge this gap in medical knowledge and to give healthcare providers a better understanding of this often distressing condition, The Neuropathy Trust has commissioned a new book on this complex topic.

As well as covering the anatomy of the nervous system and the basic pathological processes that may affect the peripheral nerves, the book covers a whole range of neuropathic conditions. These include, for example, Guillain Barre syndrome, chronic inflammatory demyelinating polyneuropathy, vasculitic neuropathies, infectious neuropathies, diabetic and other metabolic neuropathies, hereditary neuropathies and neuropathies in patients with cancer.”

The stuff above is the part of the amazon book description I decided to include when I added the book to goodreads.

The book is dense. There are a lot of terms defined in the book and a lot of topics covered. Despite being a quite shortish book only a couple hundred pages long (compare for example with related books like this one), it’s still the sort of book which many people might consider using as a reference work (I certainly consider doing that). The author really knows his stuff. According to the website of the European Neurological Society, “The ENS has now become the most prominent society of neurologists on the European Continent with a total of 2300 (including all categories) members from 60 countires [sic] worldwide.” I mention this because five years ago Gérard Said, the author, became the President of the ENS. He’s done/accomplished a lot of stuff besides that, the link has more details about him and what’s he’s done but what it boils down to is that this guy as already mentioned really knows his stuff. I disliked the comment on the front cover of the book that it was Written by one of the world’s leading experts and I at first considered it a decent argument against reading the book, but actually it’s probably both a fair and accurate statement; it seems like this guy really is one of the top guys in his field (I have no clue why someone like this does not have a wikipedia page whereas [random celebrity whose name I don’t know] does – well, I do have a clue, but…).

I don’t find the book particularly hard to read, but I’m frequently looking stuff up and I’ve read textbooks dealing with similar topics before (see e.g. here and here) – maybe I’m underestimating how difficult the book might be to read and understand for someone without much medical knowledge, but I think you should be perfectly able to get through the book without already having a detailed understanding of the neurological system; in my opinion the book is potentially useful for patients as well as medical practitioners, at least if the patient is willing to put in some work. An extensive glossary is included at the beginning of the book, defining most of the terms with which people might be unfamiliar. If you were wondering why I looked up so many words and concepts on wikipedia and other online sources (see below) in spite of the glossary, I should note that this is how I generally read books like this one; wiki or google will often provide additional details compared to the information included in standard glossaries, and often it’s even faster to look up such stuff online than it might be to locate the definition in the book. Another big reason for looking up key terms online was that I decided early on that a link collection like the one included below might be the best way to illustrate here on the blog which kind of content is covered in the book. Regardless of how you decide to look up stuff along the way, you should definitely not skip the definitions included in the glossary before reading the book proper – many of the terms you won’t be able to remember just on account of having read the words and definitions once or twice, but it’s definitely a good idea to have a look even so before moving on; this is probably the first book I’ve read in which the glossary was located at the front of the book instead of somewhere in the back, and it’s not a coincidence that the author decided to organize the book this way.

As a small aside, I thought this might be a reasonable place to add a ‘meta’ comment related to my book posts more generally. I’ve been considering writing slightly shorter posts about the non-fiction books I’m reading/have read; ‘classical posts’ of the kind I’ve written a lot of in the past can easily end up taking four-five hours for me to write and edit, and this means that if I don’t write short posts about the books I may easily end up not blogging them at all. This is an undesirable outcome for me. What I’ve been doing instead lately is to review more books on goodreads than I used to do; the idea being that if I end up not blogging the book, I’ll at least have reviewed it on goodreads. This incidentally means that if you want to keep track of my reading these days and would like to know what I think about the books I’m reading, the front page of this blog is no longer enough; you may need to also pay attention to my activities on goodreads or keep track of my reading via this link (I update that book list very often, usually every time I’ve finished a book). I don’t like to ‘branch out’ like that, but I also don’t like the idea of cross-posting goodreads reviews on the blog, and recently I’ve found it hard to know how to do these things optimally – this is where I’ve ended up. These days I’ll usually add a goodreads review of a non-fiction book quite shortly after I’ve finished the book, especially if I’m not sure if I’ll blog the book later.

Okay, back to the book: I think I’ll limit semi-detailed discussion of the book’s contents to the stuff included about diabetic/metabolic neuropathies, and although I’ve already encountered some relevant content and useful observations on that topic at this point, I have not yet read the chapter devoted to this topic. So you should expect me to post another post about this book some time in the future. I’ve read roughly half the book at this point and as mentioned in an earlier update on goodreads I’m seriously considering giving this book a five star rating. The book has way too much stuff to talk about all of it in detail, so what I’ll do below is to add some links to topics/terms/etc. discussed in the coverage so far which I looked up along the way, to give you a few more details than did the quote at the beginning:

Peripheral neuropathy.
Spinal nerves.
Anterior grey column.
Motor neuron.
Afferent nerve fiber.
Interneuron.
Polyneuropathy.
Nodes of Ranvier.
Myokymia.
Fasciculation.
Neuromyotonia.
Syringomyelia.
Charcot–Marie–Tooth neuropathy.
Guillain–Barré syndrome.
Acute motor axonal neuropathy.
Dysautonomia.
POEMS syndrome.
Monoclonal gammopathy of undetermined significance.
Plasmacytoma.
Vasa nervorum.
Vasculitic neuropathy.
Granulomatosis with polyangiitis.
Churg-Strauss syndrome.
Mononeuritis Multiplex.

October 12, 2015 Posted by | Books, Diabetes, Medicine, meta, Neurology | Leave a comment

A few lectures

This one was mostly review for me, but there was also some new stuff and it was a ‘sort of okay’ lecture even if I was highly skeptical about a few points covered. I was debating whether to even post the lecture on account of those points of contention, but I figured that by adding a few remarks below I could justify doing it. So below a few skeptical comments relating to content covered in the lecture:

a) 28-29 minutes in he mentions that the cutoff for hypertension in diabetics is a systolic pressure above 130. Here opinions definitely differ, and opinions about treatment cutoffs differ; in the annual report from the Danish Diabetes Database they follow up on whether hospitals and other medical decision-making units are following guidelines (I’ve talked about the data on the blog, e.g. here), and the BP goal of involved decision-making units evaluated is currently whether diabetics with systolic BP above 140 receive antihypertensive treatment. This recent Cochrane review concluded that: “At the present time, evidence from randomized trials does not support blood pressure targets lower than the standard targets in people with elevated blood pressure and diabetes” and noted that: “The effect of SBP targets on mortality was compatible with both a reduction and increase in risk […] Trying to achieve the ‘lower’ SBP target was associated with a significant increase in the number of other serious adverse events”.

b) Whether retinopathy screenings should be conducted yearly or biennially is also contested, and opinions differ – this is not mentioned in the lecture, but I sort of figure maybe it should have been. There’s some evidence that annual screening is better (see e.g. this recent review), but the evidence base is not great and clinical outcomes do not seem to differ much in general; as noted in the review, “Observational and economic modelling studies in low-risk patients show little difference in clinical outcomes between screening intervals of 1 year or 2 years”. To stratify based on risk seems desirable from a cost-effectiveness standpoint, but how to stratify optimally seems to not be completely clear at the present point in time.

c) The Somogyi phenomenon is highly contested, and I was very surprised about his coverage of this topic – ‘he’s a doctor lecturing on this topic, he should know better’. As the wiki notes: “Although this theory is well known among clinicians and individuals with diabetes, there is little scientific evidence to support it.” I’m highly skeptical, and I seriously question the advice of lowering insulin in the context of morning hyperglycemia. As observed in Cryer’s text: “there is now considerable evidence against the Somogyi hypothesis (Guillod et al. 2007); morning hyperglycemia is the result of insulin lack, not post-hypoglycemic insulin resistance (Havlin and Cryer 1987; Tordjman et al. 1987; Hirsch et al. 1990). There is a dawn phenomenon—a growth hormone–mediated increase in the nighttime to morning plasma glucose concentration (Campbell et al. 1985)—but its magnitude is small (Periello et al. 1991).”

I decided not to embed this lecture in the post mainly because the resolution is unsatisfactorily low so that a substantial proportion of the visual content is frankly unintelligible; I figured this would bother others more than it did me and that a semi-satisfactory compromise solution in terms of coverage would be to link to the lecture, but not embed it here. You can hear what the lecturer is saying, which was enough for me, but you can’t make out stuff like effect differences, p-values, or many of the details in the graphic illustrations included. Despite the title of the lecture on youtube, the lecture actually mainly consists of a brief overview of pharmacological treatment options for diabetes.

If you want to skip the introduction, the first talk/lecture starts around 5 minutes and 30 seconds into the video. Note that despite the long running time of this video the lectures themselves only take about 50 minutes in total; the rest of it is post-lecture Q&A and discussion.

October 3, 2015 Posted by | Diabetes, Lectures, Mathematics, Medicine, Nephrology, Pharmacology | Leave a comment

Cost-effectiveness analysis in health care (II)

Here’s my first post about the book.

Like in the first post I cannot promise I have not already covered the topics I’m about to cover in this post before on the blog. In this post I’ll include and discuss material from two chapters of the book: the chapters on how to measure, value, and analyze health outcomes, and the chapter on how to define, measure, and value costs. In the last part of the post I’ll also talk a little bit about some research related to the coverage which I’ve recently looked at in a different context.

In terms of how to measure health outcomes the first thing to note is that there are lots and lots of different measures (‘thousands’) that are used to measure aspects of health. The symptoms causing problems for an elderly man with an enlarged prostate are not the same symptoms as the ones which are bothering a young child with asthma, and so it can be very difficult to ‘standardize’ across measures (more on this below).

A general distinction in this area is that between non-preference-based measures and preference-based measures. Many researchers working with health data are mostly interested in measuring symptoms, and metrics which do (‘only’) this would be examples of non-preference-based measures. Non-preference based measures can again be subdivided into disease- and symptom-specific measures, and non-disease-specific/generic measures; an example of the latter would be the SF-36, ‘the most widely used and best-known example of a generic or non-disease-specific measure of general health’.

Economists will often want to put a value on symptoms or quality-of-life states, and in order to do this you need to work with preference-based measures – there are a lot of limitations one confronts when dealing with non-preference-based measures. Non-preference based measures tend for example to be very different in design and purpose (because asthma is not the same thing as, say, bulimia), which means that there is often a lack of comparability across measures. It is also difficult to know how to properly trade off various dimensions included when using such metrics (for example pain relief can be the result of a drug which also increases nausea, and it’s not perfectly clear when you use such measures whether such a change is to be considered desirable or not); similar problems occur when taking the time dimension into account, where problems with aggregation over time and how to deal with this pop up. Various problems related to weighting are recurring problems; for example a question can be asked when using such measures which symptoms/dimensions included are more important? Are they all equally important? This goes for both the weighting of various different domains included in the metric, and for how to weigh individual questions within a given domain. Many non-preference-based measures contain an implicit equal-interval assumption, so that a move from (e.g.) level one to level two on the metric (e.g. from ‘no pain at all’ to ‘a little’) is considered the same as a move from (e.g.) level three to level four (e.g. ‘quite a bit’ to ‘very much’), and it’s not actually clear that the people who supply the information that goes into these metrics would consider such an approach to be a correct reflection of how they perceive these things. Conceptually related to the aggregation problem mentioned above is the problem that people may have different attitudes toward short-term and long-term health effects/outcomes, but non-preference-based measures usually give equal weight to a health state regardless of the timing of the health state. The issue of some patients dying is not addressed at all when using these measures, as they do not contain information about mortality; which may be an important variable. For all these reasons the authors argue in the text that:

“In summary, non-preference-based health status measures, whether disease specific or generic, are not suitable as outcome measures in economic evaluation. Instead, economists require a measure that combines quality and quantity of life, and that also incorporates the valuations that individuals place on particular states of health.
The outcome metric that is currently favoured as meeting these requirements and facilitating the widest possible comparison between alternative uses of health resources is the quality-adjusted life year“.

Non-preference-based tools may be useful, but you will usually need to go ‘further’ than those to be able to handle the problems economists will tend to care the most about. Some more observations from the chapter below:

“the most important challenge [when valuing health states] is to find a reliable way of quantifying the quality of life associated with any particular health state. There are two elements to this: describing the health state, which […] could be either a disease-specific description or a generic description intended to cover many different diseases, and placing a valuation on the health state. […] these weights or valuations are related to utility theory and are frequently referred to as utilities or utility values.
Obtaining utility values almost invariably involves some process by which individuals are given descriptions of a number of health states and then directly or indirectly express their preferences for these states. It is relatively simple to measure ordinal preferences by asking respondents to rank-order different health states. However, these give no information on strength of preference and a simple ranking suffers from the equal interval assumption […]; as a result they are not suitable for economic evaluation. Instead, analysts make use of cardinal preference measurement. Three main methods have been used to obtain cardinal measures of health state preferences: the rating scale, the time trade-off, and the standard gamble. […] The large differences typically observed between RS [rating scale] and TTO [time trade-off] or SG [standard gamble] valuations, and the fact that the TTO and SG methods are choice based and therefore have stronger foundations in decision theory, have led most standard texts and guidelines for technology appraisal to recommend choice-based valuation methods [The methods are briefly described here, where the ‘VAS’ corresponds to the rating scale method mentioned – the book covers the methods in much more detail, but I won’t go into those details here].”

“Controversies over health state valuation are not confined to the valuation method; there are also several strands of opinion concerning who should provide valuations. In principle, valuations could be provided by patients who have had first-hand experience of the health state in question, or by experts such as clinicians with relevant scientific or clinical expertise, or by members of the public. […] there is good evidence that the valuations made by population samples and patients frequently vary quite substantially [and] the direction of difference is not always consistent. […] current practice has moved towards the use of valuations obtained from the general public […], an approach endorsed by recent guidelines in the UK and USA explicitly recommend that population valuations are used”.

Given the very large number of studies which have been based on non-preference based instruments, it would be desirable for economists working in this field to somehow ‘translate’ the information contained in those studies so that this information can also be used for cost-effectiveness evaluations. As a result of this an increasing number of so-called ‘mapping studies’ have been conducted over the years, the desired goal of which is to translate the non-preference based measures into health state utilities, allowing outcomes and effects derived from the studies to be expressed in terms of QALYs. There’s more than one way to try to get from a non-preference based metric to a preference-based metric and the authors describe three approaches in some detail, though I’ll not discuss those approaches or details here. They make this concluding assessment of mapping studies in the text:

“Mapping studies are continuing to proliferate, and the literature on new mapping algorithms and methods, and comparisons between approaches, is expanding rapidly. In general, mapping methods seem to have reasonable ability to predict group mean utility scores and to differentiate between groups with or without known existing illness. However, they all seem to predict increasingly poorly as health states become more serious. […] all forms of mapping are ‘second best’, and the existence of a range of techniques should not be taken as an argument for relying on mapping instead of obtaining direct preference-based measurements in prospectively designed studies.”

I won’t talk too much about the chapter on how to define, measure and value costs, but I felt that a few observations from the chapter should be included in the coverage:

“When asking patients to complete resource/time questionnaires (or answer interview questions), a particularly important issue is deciding on the optimum recall period. Two types of recall error can be distinguished: simply forgetting an entire episode, or incorrectly recalling when it occurred. […] there is a trade-off between recall bias and complete sampling information. […] the longer the period of recall the greater is the likelihood of recall error, but the shorter the recall period the greater is the problem of missing information.”

“The range of patient-related costs included in economic valuations can vary considerably. Some studies include only the costs incurred by patients in travelling to a hospital or clinic for treatment; others may include a wider range of costs including over-the-counter purchases of medications or equipment. However, in some studies a much broader approach is taken, in which attempts are made to capture both the costs associated with treatments and the consequences of illness in terms of absence from or cessation of work.”

An important note here which I thought I should add is that whereas many people unfamiliar with this field may translate ‘medical costs of illness’ with ‘the money that is paid to the doctor(s)’, direct medical costs will in many cases drastically underestimate the ‘true costs’ of disease. To give an example, Ferber et al. (2006) when looking at the costs of diabetes included two indirect cost components in their analysis – inability to work, and early retirement – and concluded that these two cost components made up approximately half of the total costs of diabetes. I think there are reasons to be skeptical of the specific estimate on account of the way it is made (for example if diabetics are less productive/earn less than the population in general, which seems likely if the disease is severe enough to cause many people to withdraw prematurely from the labour market, the cost estimate may be argued to be an overestimate), but on the other hand there are multiple other potentially important indirect cost components they do not include in the calculation, such as e.g. disease-related lower productivity while at work (for details on this, see e.g. this paper – that cost component may also be substantial in some contexts) and things like spousal employment spill-over effects (it is known from related research – for an example, see this PhD dissertation – that disease may impact on the retirement decisions of the spouse of the individual who is sick, not just the individual itself, but effects here are likely to be highly context-dependent and to vary across countries). Another potentially important variable in an indirect cost context is informal care provision. Here’s what they authors say about that one:

“Informal care is often provided by family members, friends, and volunteers. Devoting time and resources to collecting this information may not be worthwhile for interventions where informal care costs are likely to form a very small part of the total costs. However, in other studies non-health-service costs could represent a substantial part of the total costs. For instance, dementia is a disease where the burden of care is likely to fall upon other care agencies and family members rather than entirely on the health and social care services, in which case considering such costs would be important.
To date [however], most economic evaluations have not considered informal care costs.”

August 23, 2015 Posted by | Books, Diabetes, Economics, Medicine | Leave a comment

Random stuff

It’s been a while since I posted anything here so I figured I should at least post something…

i. A few Khan Academy videos I watched a while back:

(No comments)

(Bookmark remark: (‘Not completely devoid of slight inaccuracies as usual – e.g. in meningitis, neck stiffness is not as much as symptom as it is a clinical sign (see Chamberlain’s symptoms and signs…))’

(Bookmark remark: ‘Very simplified, but not terrible’)

(No comments)

ii. I previously read the wiki on strategic bombing during WW2, but the article did not really satisfy my curiosity and it turns out that the wiki also has a great (featured) article about Air raids on Japan (a topic not covered in a great amount of detail in the aforementioned wiki article). A few random observations from the article:

“Overall, the attacks in May destroyed 94 square miles (240 km2) of buildings, which was equivalent to one seventh of Japan’s total urban area.”

“In Tokyo, Osaka, Nagoya, Yokohama, Kobe, and Kawasaki, “over 126,762 people were killed … and a million and a half dwellings and over 105 square miles (270 km2) of urban space were destroyed.”[136] In Tokyo, Osaka and Nagoya, “the areas leveled (almost 100 square miles (260 km2)) exceeded the areas destroyed in all German cities by both the American and English air forces (approximately 79 square miles (200 km2)).”[136]

“In financial terms, the Allied air campaign and attacks on merchant ships destroyed between one third and a quarter of Japan’s wealth.[289]

“Approximately 40 percent of the urban area of the 66 cities subjected to area attacks were destroyed.[290] This included the loss of about 2.5 million housing units, which rendered 8.5 million people homeless.”

iii. A few longer lectures I’ve watched recently but did not think were particularly good: The Fortress (GM Akobian, Chess), Safety in the Nuclear Industry (Philip Thomas, Gresham College), War, Health and Medicine: The medical lessons of World War I (Mark Harrison, Gresham College – topic had potential, somehow did not like ‘the delivery’; others may find it worth watching).

iv. I play a lot of (too much) chess these days, so I guess it makes sense to post a little on this topic as well. Here’s a list of some of my recent opponents on the ICC: GM Zurab Azmaiparashvili, IM Jerzy Slaby, IM Petar Gojkovic, GM Goran Kosanovic, IM Jeroen Bosch, WGM Alla Grinfeld. I recall encountering a few titled players when I started out on the ICC and my rating was still adjusting and stabilizing, but now I’ve sort of fixed at a level around 1700-1800 in both the 1, 3 and 5 minute pools – sometimes a bit higher, sometimes a bit lower (and I’ve played relatively few 5 minute games so far)). This is a level where at least in bullet some of the semi-regular opponents I’ll meet in the rating pool are guys like these. I was quite dissatisfied with my play when I started out on the ICC because I hadn’t realized how tough it is to maintain a high rating there; having a closer look at which sort of opponents I was actually facing gradually made me realize I was probably doing quite well, all things considered. Lately I’ve been thinking that I have probably even been doing quite a bit better than I’d thought I had. See also this and this link. I’ve gradually concluded that I’m probably never ‘going back’ now that I’ve familiarized myself with the ICC server.

And yes, I do occasionally win against opposition like that, also on position – below an example from a recent game against a player not on the list above (there are quite a few anonymous title-holders as well on the server):

easy-e
Click to view full size – the list to the lower left is a list of other players online on the server at that point in time, ordered by rating; as should be clear, lots of title-holders have relatively low ratings (I’m not completely sure which rating pool was displayed in the sidebar at that time, but the defaults on display for me are 5- or 3-minutes, so for example the international master ‘softrain’ thus had either a 3 or 5 minute rating of 1799 at that time. Do note that ICC requires proof for titles to display on the server; random non-titled players do not display as titleholders on the ICC (actually the formally approved titled accounts obviously do not account for all accounts held by title-holders as some titled players on the server use accounts which do not give away the fact that they have a title).

Here’s another very nice illustration of how tough the X-minute pools are (/how strong the players playing on the ICC are):

Wang Hao
Again, click to view in full size. This is Chinese Grandmaster Wang Hao‘s ICC account. Wang Hao is currently #39 on the FIDE list of active chess players in the world, with a FIDE rating above 2700. Even his 5-minute rating on the ICC, based on more than a thousand games, is below 2300, and his current 3 minute rating is barely above 2000. With numbers like those, I currently feel quite satisfied with my 1700-1800 ratings (although I know I should be spending less time on chess than I currently do).

v. A few words I’ve recently encountered on vocabulary.com: Anaphora, usufruct, mimesis, amanuensis, peculate, elide, ataraxia, myrmidon, velleity.

vi. A few other wiki links: Fritz Haber, Great Stink (featured), Edward Low (a really nice guy, it seems – “A story describes Low burning a French cook alive, saying he was a “greasy fellow who would fry well”, and another tells he once killed 53 Spanish captives with his cutlass.[6]“), 1940 Soviet ultimatum to Lithuania (‘good article’).

vii. A really cute paper from the 2013 Christmas edition of the British Medical Journal: Were James Bond’s drinks shaken because of alcohol induced tremor? Here’s the abstract:

Objective To quantify James Bond’s consumption of alcohol as detailed in the series of novels by Ian Fleming.

Design Retrospective literature review.

Setting The study authors’ homes, in a comfy chair.

Participants Commander James Bond, 007; Mr Ian Lancaster Fleming.

Main outcome measures Weekly alcohol consumption by Commander Bond.

Methods All 14 James Bond books were read by two of the authors. Contemporaneous notes were taken detailing every alcoholic drink taken. Predefined alcohol unit levels were used to calculate consumption. Days when Bond was unable to consume alcohol (such as through incarceration) were noted.

Results After exclusion of days when Bond was unable to drink, his weekly alcohol consumption was 92 units a week, over four times the recommended amount. His maximum daily consumption was 49.8 units. He had only 12.5 alcohol free days out of 87.5 days on which he was able to drink.

Conclusions James Bond’s level of alcohol intake puts him at high risk of multiple alcohol related diseases and an early death. The level of functioning as displayed in the books is inconsistent with the physical, mental, and indeed sexual functioning expected from someone drinking this much alcohol. We advise an immediate referral for further assessment and treatment, a reduction in alcohol consumption to safe levels, and suspect that the famous catchphrase “shaken, not stirred” could be because of alcohol induced tremor affecting his hands.”

viii. A couple of other non-serious links which I found hilarious:
1) The Prof(essor) or Hobo quiz (via SSC).
2) Today’s SMBC. I’ll try to remember the words in the votey in the highly unlikely case I’ll ever have use for them – in my opinion it would be a real tragedy if one were to miss an opportunity to make a statement like that, given that it was at all suitable to the situation at hand..

July 6, 2015 Posted by | Chess, Diabetes, Epidemiology, History, Immunology, Infectious disease, Khan Academy, Lectures, Medicine, Personal | Leave a comment