Econstudentlog

The Shapes of Spaces and the Nuclear Force

This one was in my opinion a great lecture which I enjoyed watching. It covers some quite high-level mathematics and physics and some of the ways in which these two fields intersected in a specific historical research context; however it does so in a way that will enable many people outside of the fields involved to be able to follow the narrative reasonably easily.

Some links related to the lecture coverage:

Topological space.
Topological invariant.
Topological isomorphism.
Dimension of a mathematical space.
Metrically topologically complete space.
Genus (mathematics).
Quotient space (topology).
Will we ever classify simply-connected smooth 4-manifolds? (Stern, 2005).
Nuclear force.
Coulomb’s law.
Maxwell’s equations.
Commutative property.
Abelian group.
Non-abelian group.
Yang–Mills theory.
Soliton.
Instanton.
Michael Atiyah.
Donaldson theory.
Michael Freedman.
Topological (quantum) field theory.
Edward Witten.
Effective field theory.
Seiberg–Witten invariants.
“Theoretical mathematics”: toward a cultural synthesis of mathematics and theoretical physics (Jaffe & Quinn, 1993).
Responses to “Theoretical mathematics: toward a cultural synthesis of mathematics and theoretical physics (Atiyah et al, 1994).

July 31, 2019 - Posted by | Lectures, Mathematics, Physics

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: