The Shapes of Spaces and the Nuclear Force
…
This one was in my opinion a great lecture which I enjoyed watching. It covers some quite high-level mathematics and physics and some of the ways in which these two fields intersected in a specific historical research context; however it does so in a way that will enable many people outside of the fields involved to be able to follow the narrative reasonably easily.
Some links related to the lecture coverage:
Topological space.
Topological invariant.
Topological isomorphism.
Dimension of a mathematical space.
Metrically topologically complete space.
Genus (mathematics).
Quotient space (topology).
Will we ever classify simply-connected smooth 4-manifolds? (Stern, 2005).
Nuclear force.
Coulomb’s law.
Maxwell’s equations.
Commutative property.
Abelian group.
Non-abelian group.
Yang–Mills theory.
Soliton.
Instanton.
Michael Atiyah.
Donaldson theory.
Michael Freedman.
Topological (quantum) field theory.
Edward Witten.
Effective field theory.
Seiberg–Witten invariants.
“Theoretical mathematics”: toward a cultural synthesis of mathematics and theoretical physics (Jaffe & Quinn, 1993).
Responses to “Theoretical mathematics: toward a cultural synthesis of mathematics and theoretical physics (Atiyah et al, 1994).
No comments yet.
Leave a Reply