Econstudentlog

A few diabetes papers of interest

i. Mechanisms and Management of Diabetic Painful Distal Symmetrical Polyneuropathy.

“Although a number of the diabetic neuropathies may result in painful symptomatology, this review focuses on the most common: chronic sensorimotor distal symmetrical polyneuropathy (DSPN). It is estimated that 15–20% of diabetic patients may have painful DSPN, but not all of these will require therapy. […] Although the exact pathophysiological processes that result in diabetic neuropathic pain remain enigmatic, both peripheral and central mechanisms have been implicated, and extend from altered channel function in peripheral nerve through enhanced spinal processing and changes in many higher centers. A number of pharmacological agents have proven efficacy in painful DSPN, but all are prone to side effects, and none impact the underlying pathophysiological abnormalities because they are only symptomatic therapy. The two first-line therapies approved by regulatory authorities for painful neuropathy are duloxetine and pregabalin. […] All patients with DSPN are at increased risk of foot ulceration and require foot care, education, and if possible, regular podiatry assessment.”

“The neuropathies are the most common long-term microvascular complications of diabetes and affect those with both type 1 and type 2 diabetes, with up to 50% of older type 2 diabetic patients having evidence of a distal neuropathy (1). These neuropathies are characterized by a progressive loss of nerve fibers affecting both the autonomic and somatic divisions of the nervous system. The clinical features of the diabetic neuropathies vary immensely, and only a minority are associated with pain. The major portion of this review will be dedicated to the most common painful neuropathy, chronic sensorimotor distal symmetrical polyneuropathy (DSPN). This neuropathy has major detrimental effects on its sufferers, confirming an increased risk of foot ulceration and Charcot neuroarthropathy as well as being associated with increased mortality (1).

In addition to DSPN, other rarer neuropathies may also be associated with painful symptoms including acute painful neuropathy that often follows periods of unstable glycemic control, mononeuropathies (e.g., cranial nerve palsies), radiculopathies, and entrapment neuropathies (e.g., carpal tunnel syndrome). By far the most common presentation of diabetic polyneuropathy (over 90%) is typical DSPN or chronic DSPN. […] DSPN results in insensitivity of the feet that predisposes to foot ulceration (1) and/or neuropathic pain (painful DSPN), which can be disabling. […] The onset of DSPN is usually gradual or insidious and is heralded by sensory symptoms that start in the toes and then progress proximally to involve the feet and legs in a stocking distribution. When the disease is well established in the lower limbs in more severe cases, there is upper limb involvement, with a similar progression proximally starting in the fingers. As the disease advances further, motor manifestations, such as wasting of the small muscles of the hands and limb weakness, become apparent. In some cases, there may be sensory loss that the patient may not be aware of, and the first presentation may be a foot ulcer. Approximately 50% of patients with DSPN experience neuropathic symptoms in the lower limbs including uncomfortable tingling (dysesthesia), pain (burning; shooting or “electric-shock like”; lancinating or “knife-like”; “crawling”, or aching etc., in character), evoked pain (allodynia, hyperesthesia), or unusual sensations (such as a feeling of swelling of the feet or severe coldness of the legs when clearly the lower limbs look and feel fine, odd sensations on walking likened to “walking on pebbles” or “walking on hot sand,” etc.). There may be marked pain on walking that may limit exercise and lead to weight gain. Painful DSPN is characteristically more severe at night and often interferes with normal sleep (3). It also has a major impact on the ability to function normally (both mental and physical functioning, e.g., ability to maintain work, mood, and quality of life [QoL]) (3,4). […] The unremitting nature of the pain can be distressing, resulting in mood disorders including depression and anxiety (4). The natural history of painful DSPN has not been well studied […]. However, it is generally believed that painful symptoms may persist over the years (5), occasionally becoming less prominent as the sensory loss worsens (6).”

“There have been relatively few epidemiological studies that have specifically examined the prevalence of painful DSPN, which range from 10–26% (79). In a recent study of a large cohort of diabetic patients receiving community-based health care in northwest England (n = 15,692), painful DSPN assessed using neuropathy symptom and disability scores was found in 21% (7). In one population-based study from Liverpool, U.K., the prevalence of painful DSPN assessed by a structured questionnaire and examination was estimated at 16% (8). Notably, it was found that 12.5% of these patients had never reported their symptoms to their doctor and 39% had never received treatment for their pain (8), indicating that there may be considerable underdiagnosis and undertreatment of painful neuropathic symptoms compared with other aspects of diabetes management such as statin therapy and management of hypertension. Risk factors for DSPN per se have been extensively studied, and it is clear that apart from poor glycemic control, cardiovascular risk factors play a prominent role (10): risk factors for painful DSPN are less well known.”

“A broad spectrum of presentations may occur in patients with DSPN, ranging from one extreme of the patient with very severe painful symptoms but few signs, to the other when patients may present with a foot ulcer having lost all sensation without ever having any painful or uncomfortable symptoms […] it is well recognized that the severity of symptoms may not relate to the severity of the deficit on clinical examination (1). […] Because DSPN is a diagnosis of exclusion, a careful clinical history and a peripheral neurological and vascular examination of the lower limbs are essential to exclude other causes of neuropathic pain and leg/foot pain such as peripheral vascular disease, arthritis, malignancy, alcohol abuse, spinal canal stenosis, etc. […] Patients with asymmetrical symptoms and/or signs (such as loss of an ankle jerk in one leg only), rapid progression of symptoms, or predominance of motor symptoms and signs should be carefully assessed for other causes of the findings.”

“The fact that diabetes induces neuropathy and that in a proportion of patients this is accompanied by pain despite the loss of input and numbness, suggests that marked changes occur in the processes of pain signaling in the peripheral and central nervous system. Neuropathic pain is characterized by ongoing pain together with exaggerated responses to painful and nonpainful stimuli, hyperalgesia, and allodynia. […] the changes seen suggest altered peripheral signaling and central compensatory changes perhaps driven by the loss of input. […] Very clear evidence points to the key role of changes in ion channels as a consequence of nerve damage and their roles in the disordered activity and transduction in damaged and intact fibers (50). Sodium channels depolarize neurons and generate an action potential. Following damage to peripheral nerves, the normal distribution of these channels along a nerve is disrupted by the neuroma and “ectopic” activity results from the accumulation of sodium channels at or around the site of injury. Other changes in the distribution and levels of these channels are seen and impact upon the pattern of neuronal excitability in the nerve. Inherited pain disorders arise from mutated sodium channels […] and polymorphisms in this channel impact on the level of pain in patients, indicating that inherited differences in channel function might explain some of the variability in pain between patients with DSPN (53). […] Where sodium channels act to generate action potentials, potassium channels serve as the molecular brakes of excitable cells, playing an important role in modulating neuronal hyperexcitability. The drug retigabine, a potassium channel opener acting on the channel (KV7, M-current) opener, blunts behavioral hypersensitivity in neuropathic rats (56) and also inhibits C and Aδ-mediated responses in dorsal horn neurons in both naïve and neuropathic rats (57), but has yet to reach the clinic as an analgesic”.

and C fibers terminate primarily in the superficial laminae of the dorsal horn where the large majority of neurons are nociceptive specific […]. Some of these neurons gain low threshold inputs after neuropathy and these cells project predominantly to limbic brain areas […] spinal cord neurons provide parallel outputs to the affective and sensory areas of the brain. Changes induced in these neurons by repeated noxious inputs underpin central sensitization where the resultant hyperexcitability of neurons leads to greater responses to all subsequent inputs — innocuous and noxious — expanded receptive fields and enhanced outputs to higher levels of the brain […] As a consequence of these changes in the sending of nociceptive information within the peripheral nerve and then the spinal cord, the information sent to the brain becomes amplified so that pain ratings become higher. Alongside this, the persistent input into the limbic brain areas such as the amygdala are likely to be causal in the comorbidities that patients often report due to ongoing painful inputs disrupting normal function and generating fear, depression, and sleep problems […]. Of course, many patients report that their pains are worse at night, which may be due to nocturnal changes in these central pain processing areas. […] overall, the mechanisms of pain in diabetic neuropathy extend from altered channel function in peripheral nerves through enhanced spinal processing and finally to changes in many higher centers”.

Pharmacological treatment of painful DSPN is not entirely satisfactory because currently available drugs are often ineffective and complicated by adverse events. Tricyclic compounds (TCAs) have been used as first-line agents for many years, but their use is limited by frequent side effects that may be central or anticholinergic, including dry mouth, constipation, sweating, blurred vision, sedation, and orthostatic hypotension (with the risk of falls particularly in elderly patients). […] Higher doses have been associated with an increased risk of sudden cardiac death, and caution should be taken in any patient with a history of cardiovascular disease (65). […] The selective serotonin noradrenalin reuptake inhibitors (SNRI) duloxetine and venlafaxine have been used for the management of painful DSPN (65). […] there have been several clinical trials involving pregabalin in painful DSPN, and these showed clear efficacy in management of painful DSPN (69). […] The side effects include dizziness, somnolence, peripheral edema, headache, and weight gain.”

A major deficiency in the area of the treatment of neuropathic pain in diabetes is the relative lack of comparative or combination studies. Virtually all previous trials have been of active agents against placebo, whereas there is a need for more studies that compare a given drug with an active comparator and indeed lower-dose combination treatments (64). […] The European Federation of Neurological Societies proposed that first-line treatments might comprise of TCAs, SNRIs, gabapentin, or pregabalin (71). The U.K. National Institute for Health and Care Excellence guidelines on the management of neuropathic pain in nonspecialist settings proposed that duloxetine should be the first-line treatment with amitriptyline as an alternative, and pregabalin as a second-line treatment for painful DSPN (72). […] this recommendation of duloxetine as the first-line therapy was not based on efficacy but rather cost-effectiveness. More recently, the American Academy of Neurology recommended that pregabalin is “established as effective and should be offered for relief of [painful DSPN] (Level A evidence)” (73), whereas venlafaxine, duloxetine, amitriptyline, gabapentin, valproate, opioids, and capsaicin were considered to be “probably effective and should be considered for treatment of painful DSPN (Level B evidence)” (63). […] this recommendation was primarily based on achievement of greater than 80% completion rate of clinical trials, which in turn may be influenced by the length of the trials. […] the International Consensus Panel on Diabetic Neuropathy recommended TCAs, duloxetine, pregabalin, and gabapentin as first-line agents having carefully reviewed all the available literature regarding the pharmacological treatment of painful DSPN (65), the final drug choice tailored to the particular patient based on demographic profile and comorbidities. […] The initial selection of a particular first-line treatment will be influenced by the assessment of contraindications, evaluation of comorbidities […], and cost (65). […] caution is advised to start at lower than recommended doses and titrate gradually.”

ii. Sex Differences in All-Cause and Cardiovascular Mortality, Hospitalization for Individuals With and Without Diabetes, and Patients With Diabetes Diagnosed Early and Late.

“A challenge with type 2 diabetes is the late diagnosis of the disease because many individuals who meet the criteria are often asymptomatic. Approximately 183 million people, or half of those who have diabetes, are unaware they have the disease (1). Furthermore, type 2 diabetes can be present for 9 to 12 years before being diagnosed and, as a result, complications are often present at the time of diagnosis (3). […] Cardiovascular disease (CVD) is the most common comorbidity associated with diabetes, and with 50% of those with diabetes dying of CVD it is the most common cause of death (1). […] Newfoundland and Labrador has the highest age-standardized prevalence of diabetes in Canada (2), and the age-standardized mortality and hospitalization rates for CVD, AMI, and stroke are some of the highest in the country (21,22). A better understanding of mortality and hospitalizations associated with diabetes for males and females is important to support diabetes prevention and management. Therefore, the objectives of this study were to compare the risk of all-cause, CVD, AMI, and stroke mortality and hospitalizations for males and females with and without diabetes and those with early and late diagnoses of diabetes. […] We conducted a population-based retrospective cohort study including 73,783 individuals aged 25 years or older in Newfoundland and Labrador, Canada (15,152 with diabetes; 9,517 with late diagnoses). […] mean age at baseline was 60.1 years (SD, 14.3 years). […] Diabetes was classified as being diagnosed “early” and “late” depending on when diabetes-related comorbidities developed. Individuals early in the disease course would not have any diabetes-related comorbidities at the time of their case dates. On the contrary, a late-diagnosed diabetes patient would have comorbidities related to diabetes at the time of diagnosis.”

“For males, 20.5% (n = 7,751) had diabetes, whereas 20.6% (n = 7,401) of females had diabetes. […] Males and females with diabetes were more likely to die, to be younger at death, to have a shorter survival time, and to be admitted to the hospital than males and females without diabetes (P < 0.01). When admitted to the hospital, individuals with diabetes stayed longer than individuals without diabetes […] Both males and females with late diagnoses were significantly older at the time of diagnosis than those with early diagnoses […]. Males and females with late diagnoses of diabetes were more likely to be deceased at the end of the study period compared with those with early diagnoses […]. Those with early diagnoses were younger at death compared with those with late diagnoses (P < 0.01); however, median survival time for both males and females with early diagnoses was significantly longer than that of those with late diagnoses (P < 0.01). During the study period, males and females with late diabetes diagnoses were more likely to be hospitalized (P < 0.01) and have a longer length of hospital stay compared with those with early diagnoses (P < 0.01).”

“[T]he hospitalization results show that an early diagnosis […] increase the risk of all-cause, CVD, and AMI hospitalizations compared with individuals without diabetes. After adjusting for covariates, males with late diabetes diagnoses had an increased risk of all-cause and CVD mortality and hospitalizations compared with males without diabetes. Similar findings were found for females. A late diabetes diagnosis was positively associated with CVD mortality (HR 6.54 [95% CI 4.80–8.91]) and CVD hospitalizations (5.22 [4.31–6.33]) for females, and the risk was significantly higher compared with their male counterparts (3.44 [2.47–4.79] and 3.33 [2.80–3.95]).”

iii. Effect of Type 1 Diabetes on Carotid Structure and Function in Adolescents and Young Adults.

I may have discussed some of the results of this study before, but a search of the blog told me that I have not covered the study itself. I thought it couldn’t hurt to add a link and a few highlights here.

“Type 1 diabetes mellitus causes increased carotid intima-media thickness (IMT) in adults. We evaluated IMT in young subjects with type 1 diabetes. […] Participants with type 1 diabetes (N = 402) were matched to controls (N = 206) by age, sex, and race or ethnicity. Anthropometric and laboratory values, blood pressure, and IMT were measured.”

“Youth with type 1 diabetes had thicker bulb IMT, which remained significantly different after adjustment for demographics and cardiovascular risk factors. […] Because the rate of progression of IMT in healthy subjects (mean age, 40 years) in the Bogalusa Heart study was 0.017–0.020 mm/year (4), our difference of 0.016 mm suggests that our type 1 diabetic subjects had a vascular age 1 year advanced from their chronological age. […] adjustment for HbA1c ablated the case-control difference in IMT, suggesting that the thicker carotid IMT in the subjects with diabetes could be attributed to diabetes-related hyperglycemia.”

“In the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study, progression of IMT over the course of 6 years was faster in subjects with type 1 diabetes, yielding a thicker final IMT in cases (5). There was no difference in IMT at baseline. However, DCCT/EDIC did not image the bulb, which is likely the earliest site of thickening according to the Bogalusa Heart Study […] Our analyses reinforce the importance of imaging the carotid bulb, often the site of earliest detectible subclinical atherosclerosis in youth. The DCCT/EDIC study demonstrated that the intensive treatment group had a slower progression of IMT (5) and that mean HbA1c levels explained most of the differences in IMT progression between treatment groups (12). One longitudinal study of youth found children with type 1 diabetes who had progression of IMT over the course of 2 years had higher HbA1c (13). Our data emphasize the role of diabetes-related hyperglycemia in increasing IMT in youth with type 1 diabetes. […] In summary, our study provides novel evidence that carotid thickness is increased in youth with type 1 diabetes compared with healthy controls and that this difference is not accounted for by traditional cardiovascular risk factors. Better control of diabetes-related hyperglycemia may be needed to reduce future cardiovascular disease.”

iv. Factors Associated With Microalbuminuria in 7,549 Children and Adolescents With Type 1 Diabetes in the T1D Exchange Clinic Registry.

“Elevated urinary albumin excretion is an early sign of diabetic kidney disease (DKD). The American Diabetes Association (ADA) recommends screening for microalbuminuria (MA) annually in people with type 1 diabetes after 10 years of age and 5 years of diabetes duration, with a diagnosis of MA requiring two of three tests to be abnormal (1). Early diagnosis of MA is important because effective treatments exist to limit the progression of DKD (1). However, although reduced rates of MA have been reported over the past few decades in some (24) but not all (5,6) studies, it has been suggested that the development of proteinuria has not been prevented but, rather, has been delayed by ∼10 years and that further improvements in care are needed (7).

Limited data exist on the frequency of a clinical diagnosis of MA in the pediatric population with type 1 diabetes in the U.S. Our aim was to use the data from the T1D Exchange clinic registry to assess factors associated with MA in 7,549 children and adolescents with type 1 diabetes.”

“The analysis cohort included 7,549 participants, with mean age of 13.8 ± 3.5 years (range 2 to 19), mean age at type 1 diabetes onset of 6.9 ± 3.9 years, and mean diabetes duration of 6.5 ± 3.7 years; 49% were female. The racial/ethnic distribution was 78% non-Hispanic white, 6% non-Hispanic black, 10% Hispanic, and 5% other. The average of all HbA1c levels (for up to the past 13 years) was 8.4 ± 1.3% (69 ± 13.7 mmol/mol) […]. MA was present in 329 of 7,549 (4.4%) participants, with a higher frequency associated with longer diabetes duration, higher mean glycosylated hemoglobin (HbA1c) level, older age, female sex, higher diastolic blood pressure (BP), and lower BMI […] increasing age [was] mainly associated with an increase in the frequency of MA when HbA1c was ≥9.5% (≥80 mmol/mol). […] MA was uncommon (<2%) among participants with HbA1c <7.5% (<58 mmol/mol). Of those with MA, only 36% were receiving ACEI/ARB treatment. […] Our results provide strong support for prior literature in emphasizing the importance of good glycemic and BP control, particularly as diabetes duration increases, in order to reduce the risk of DKD.

v. Secular Changes in the Age-Specific Prevalence of Diabetes Among U.S. Adults: 1988–2010.

“This study included 22,586 adults sampled in three periods of the National Health and Nutrition Examination Survey (1988–1994, 1999–2004, and 2005–2010). Diabetes was defined as having self-reported diagnosed diabetes or having a fasting plasma glucose level ≥126 mg/dL or HbA1c ≥6.5% (48 mmol/mol). […] The number of adults with diabetes increased by 75% from 1988–1994 to 2005–2010. After adjusting for sex, race/ethnicity, and education level, the prevalence of diabetes increased over the two decades across all age-groups. Younger adults (20–34 years of age) had the lowest absolute increase in diabetes prevalence of 1.0%, followed by middle-aged adults (35–64) at 2.7% and older adults (≥65) at 10.0% (all P < 0.001). Comparing 2005–2010 with 1988–1994, the adjusted prevalence ratios (PRs) by age-group were 2.3, 1.3, and 1.5 for younger, middle-aged, and older adults, respectively (all P < 0.05). After additional adjustment for body mass index (BMI), waist-to-height ratio (WHtR), or waist circumference (WC), the adjusted PR remained statistically significant only for adults ≥65 years of age.

CONCLUSIONS During the past two decades, the prevalence of diabetes increased across all age-groups, but adults ≥65 years of age experienced the largest increase in absolute change. Obesity, as measured by BMI, WHtR, or WC, was strongly associated with the increase in diabetes prevalence, especially in adults <65.”

The crude prevalence of diabetes changed from 8.4% (95% CI 7.7–9.1%) in 1988–1994 to 12.1% (11.3–13.1%) in 2005–2010, with a relative increase of 44.8% (28.3–61.3%) between the two survey periods. There was less change of prevalence of undiagnosed diabetes (P = 0.053). […] The estimated number (in millions) of adults with diabetes grew from 14.9 (95% CI 13.3–16.4) in 1988–1994 to 26.1 (23.8–28.3) in 2005–2010, resulting in an increase of 11.2 prevalent cases (a 75.5% [52.1–98.9%] increase). Younger adults contributed 5.5% (2.5–8.4%), middle-aged adults contributed 52.9% (43.4–62.3%), and older adults contributed 41.7% (31.9–51.4%) of the increased number of cases. In each survey time period, the number of adults with diabetes increased with age until ∼60–69 years; thereafter, it decreased […] the largest increase of cases occurred in middle-aged and older adults.”

vi. The Expression of Inflammatory Genes Is Upregulated in Peripheral Blood of Patients With Type 1 Diabetes.

“Although much effort has been devoted toward discoveries with respect to gene expression profiling in human T1D in the last decade (15), previous studies had serious limitations. Microarray-based gene expression profiling is a powerful discovery platform, but the results must be validated by an alternative technique such as real-time RT-PCR. Unfortunately, few of the previous microarray studies on T1D have been followed by a validation study. Furthermore, most previous gene expression studies had small sample sizes (<100 subjects in each group) that are not adequate for the human population given the expectation of large expression variations among individual subjects. Finally, the selection of appropriate reference genes for normalization of quantitative real-time PCR has a major impact on data quality. Most of the previous studies have used only a single reference gene for normalization. Ideally, gene transcription studies using real-time PCR should begin with the selection of an appropriate set of reference genes to obtain more reliable results (68).

We have previously carried out extensive microarray analysis and identified >100 genes with significantly differential expression between T1D patients and control subjects. Most of these genes have important immunological functions and were found to be upregulated in autoantibody-positive subjects, suggesting their potential use as predictive markers and involvement in T1D development (2). In this study, real-time RT-PCR was performed to validate a subset of the differentially expressed genes in a large sample set of 928 T1D patients and 922 control subjects. In addition to the verification of the gene expression associated with T1D, we also identified genes with significant expression changes in T1D patients with diabetes complications.

“Of the 18 genes analyzed here, eight genes […] had higher expression and three genes […] had lower expression in T1D patients compared with control subjects, indicating that genes involved in inflammation, immune regulation, and antigen processing and presentation are significantly altered in PBMCs from T1D patients. Furthermore, one adhesion molecule […] and three inflammatory genes mainly expressed by myeloid cells […] were significantly higher in T1D patients with complications (odds ratio [OR] 1.3–2.6, adjusted P value = 0.005–10−8), especially those patients with neuropathy (OR 4.8–7.9, adjusted P value <0.005). […] These findings suggest that inflammatory mediators secreted mainly by myeloid cells are implicated in T1D and its complications.

vii. Overexpression of Hemopexin in the Diabetic Eye – A new pathogenic candidate for diabetic macular edema.

“Diabetic retinopathy remains the leading cause of preventable blindness among working-age individuals in developed countries (1). Whereas proliferative diabetic retinopathy (PDR) is the commonest sight-threatening lesion in type 1 diabetes, diabetic macular edema (DME) is the primary cause of poor visual acuity in type 2 diabetes. Because of the high prevalence of type 2 diabetes, DME is the main cause of visual impairment in diabetic patients (2). When clinically significant DME appears, laser photocoagulation is currently indicated. However, the optimal period of laser treatment is frequently passed and, moreover, is not uniformly successful in halting visual decline. In addition, photocoagulation is not without side effects, with visual field loss and impairment of either adaptation or color vision being the most frequent. Intravitreal corticosteroids have been successfully used in eyes with persistent DME and loss of vision after the failure of conventional treatment. However, reinjections are commonly needed, and there are substantial adverse effects such as infection, glaucoma, and cataract formation. Intravitreal anti–vascular endothelial growth factor (VEGF) agents have also found an improvement of visual acuity and decrease of retinal thickness in DME, even in nonresponders to conventional treatment (3). However, apart from local side effects such as endophthalmitis and retinal detachment, the response to treatment of DME by VEGF blockade is not prolonged and is subject to significant variability. For all these reasons, new pharmacological treatments based on the understanding of the pathophysiological mechanisms of DME are needed.”

“Vascular leakage due to the breakdown of the blood-retinal barrier (BRB) is the main event involved in the pathogenesis of DME (4). However, little is known regarding the molecules primarily involved in this event. By means of a proteomic analysis, we have found that hemopexin was significantly increased in the vitreous fluid of patients with DME in comparison with PDR and nondiabetic control subjects (5). Hemopexin is the best characterized permeability factor in steroid-sensitive nephrotic syndrome (6,7). […] T cell–associated cytokines like tumor necrosis factor-α are able to enhance hemopexin production in mesangial cells in vitro, and this effect is prevented by corticosteroids (8). However, whether hemopexin also acts as a permeability factor in the BRB and its potential response to corticosteroids remains to be elucidated. […] the aims of the current study were 1) to compare hemopexin and hemopexin receptor (LDL receptor–related protein [LRP1]) levels in retina and in vitreous fluid from diabetic and nondiabetic patients, 2) to evaluate the effect of hemopexin on the permeability of outer and inner BRB in cell cultures, and 3) to determine whether anti-hemopexin antibodies and dexamethasone were able to prevent an eventual hemopexin-induced hyperpermeability.”

“In the current study, we […] confirmed our previous results obtained by a proteomic approach showing that hemopexin is higher in the vitreous fluid of diabetic patients with DME in comparison with diabetic patients with PDR and nondiabetic subjects. In addition, we provide the first evidence that hemopexin is overexpressed in diabetic eye. Furthermore, we have shown that hemopexin leads to the disruption of RPE [retinal pigment epithelium] cells, thus increasing permeability, and that this effect is prevented by dexamethasone. […] Our findings suggest that hemopexin can be considered a new candidate in the pathogenesis of DME and a new therapeutic target.”

viii. Relationship Between Overweight and Obesity With Hospitalization for Heart Failure in 20,985 Patients With Type 1 Diabetes.

“We studied patients with type 1 diabetes included in the Swedish National Diabetes Registry during 1998–2003, and they were followed up until hospitalization for HF, death, or 31 December 2009. Cox regression was used to estimate relative risks. […] Type 1 diabetes is defined in the NDR as receiving treatment with insulin only and onset at age 30 years or younger. These characteristics previously have been validated as accurate in 97% of cases (11). […] In a sample of 20,985 type 1 diabetic patients (mean age, 38.6 years; mean BMI, 25.0 kg/m2), 635 patients […] (3%) were admitted for a primary or secondary diagnosis of HF during a median follow-up of 9 years, with an incidence of 3.38 events per 1,000 patient-years (95% CI, 3.12–3.65). […] Cox regression adjusting for age, sex, diabetes duration, smoking, HbA1c, systolic and diastolic blood pressures, and baseline and intercurrent comorbidities (including myocardial infarction) showed a significant relationship between BMI and hospitalization for HF (P < 0.0001). In reference to patients in the BMI 20–25 kg/m2 category, hazard ratios (HRs) were as follows: HR 1.22 (95% CI, 0.83–1.78) for BMI <20 kg/m2; HR 0.94 (95% CI, 0.78–1.12) for BMI 25–30 kg/m2; HR 1.55 (95% CI, 1.20–1.99) for BMI 30–35 kg/m2; and HR 2.90 (95% CI, 1.92–4.37) for BMI ≥35 kg/m2.

CONCLUSIONS Obesity, particularly severe obesity, is strongly associated with hospitalization for HF in patients with type 1 diabetes, whereas no similar relation was present in overweight and low body weight.”

“In contrast to type 2 diabetes, obesity is not implicated as a causal factor in type 1 diabetes and maintaining normal weight is accordingly less of a focus in clinical practice of patients with type 1 diabetes. Because most patients with type 2 diabetes are overweight or obese and glucose levels can normalize in some patients after weight reduction, this is usually an important part of integrated diabetes care. Our findings indicate that given the substantial risk of cardiovascular disease in type 1 diabetic patients, it is crucial for clinicians to also address weight issues in type 1 diabetes. Because many patients are normal weight when diabetes is diagnosed, careful monitoring of weight with a view to maintaining normal weight is probably more essential than previously thought. Although overweight was not associated with an increased risk of HF, higher BMI levels probably increase the risk of future obesity. Our finding that 71% of patients with BMI >35 kg/m2 were women is potentially important, although this should be tested in other populations given that it could be a random finding. If not random, especially because the proportion was much higher than in the entire cohort (45%), then it may indicate that severe obesity is a greater problem in women than in men with type 1 diabetes.”

November 30, 2017 - Posted by | Cardiology, Diabetes, Genetics, Molecular biology, Nephrology, Neurology, Ophthalmology, Pharmacology, Studies

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: