Econstudentlog

Organic Chemistry (II)

I have included some observations from the second half of the book below, as well as some links to topics covered.

“[E]nzymes are used routinely to catalyse reactions in the research laboratory, and for a variety of industrial processes involving pharmaceuticals, agrochemicals, and biofuels. In the past, enzymes had to be extracted from natural sources — a process that was both expensive and slow. But nowadays, genetic engineering can incorporate the gene for a key enzyme into the DNA of fast growing microbial cells, allowing the enzyme to be obtained more quickly and in far greater yield. Genetic engineering has also made it possible to modify the amino acids making up an enzyme. Such modified enzymes can prove more effective as catalysts, accept a wider range of substrates, and survive harsher reaction conditions. […] New enzymes are constantly being discovered in the natural world as well as in the laboratory. Fungi and bacteria are particularly rich in enzymes that allow them to degrade organic compounds. It is estimated that a typical bacterial cell contains about 3,000 enzymes, whereas a fungal cell contains 6,000. Considering the variety of bacterial and fungal species in existence, this represents a huge reservoir of new enzymes, and it is estimated that only 3 per cent of them have been investigated so far.”

“One of the most important applications of organic chemistry involves the design and synthesis of pharmaceutical agents — a topic that is defined as medicinal chemistry. […] In the 19th century, chemists isolated chemical components from known herbs and extracts. Their aim was to identify a single chemical that was responsible for the extract’s pharmacological effects — the active principle. […] It was not long before chemists synthesized analogues of active principles. Analogues are structures which have been modified slightly from the original active principle. Such modifications can often improve activity or reduce side effects. This led to the concept of the lead compound — a compound with a useful pharmacological activity that could act as the starting point for further research. […] The first half of the 20th century culminated in the discovery of effective antimicrobial agents. […] The 1960s can be viewed as the birth of rational drug design. During that period there were important advances in the design of effective anti-ulcer agents, anti-asthmatics, and beta-blockers for the treatment of high blood pressure. Much of this was based on trying to understand how drugs work at the molecular level and proposing theories about why some compounds were active and some were not.”

“[R]ational drug design was boosted enormously towards the end of the century by advances in both biology and chemistry. The sequencing of the human genome led to the identification of previously unknown proteins that could serve as potential drug targets. […] Advances in automated, small-scale testing procedures (high-throughput screening) also allowed the rapid testing of potential drugs. In chemistry, advances were made in X-ray crystallography and NMR spectroscopy, allowing scientists to study the structure of drugs and their mechanisms of action. Powerful molecular modelling software packages were developed that allowed researchers to study how a drug binds to a protein binding site. […] the development of automated synthetic methods has vastly increased the number of compounds that can be synthesized in a given time period. Companies can now produce thousands of compounds that can be stored and tested for pharmacological activity. Such stores have been called chemical libraries and are routinely tested to identify compounds capable of binding with a specific protein target. These advances have boosted medicinal chemistry research over the last twenty years in virtually every area of medicine.”

“Drugs interact with molecular targets in the body such as proteins and nucleic acids. However, the vast majority of clinically useful drugs interact with proteins, especially receptors, enzymes, and transport proteins […] Enzymes are […] important drug targets. Drugs that bind to the active site and prevent the enzyme acting as a catalyst are known as enzyme inhibitors. […] Enzymes are located inside cells, and so enzyme inhibitors have to cross cell membranes in order to reach them—an important consideration in drug design. […] Transport proteins are targets for a number of therapeutically important drugs. For example, a group of antidepressants known as selective serotonin reuptake inhibitors prevent serotonin being transported into neurons by transport proteins.”

“The main pharmacokinetic factors are absorption, distribution, metabolism, and excretion. Absorption relates to how much of an orally administered drug survives the digestive enzymes and crosses the gut wall to reach the bloodstream. Once there, the drug is carried to the liver where a certain percentage of it is metabolized by metabolic enzymes. This is known as the first-pass effect. The ‘survivors’ are then distributed round the body by the blood supply, but this is an uneven process. The tissues and organs with the richest supply of blood vessels receive the greatest proportion of the drug. Some drugs may get ‘trapped’ or sidetracked. For example fatty drugs tend to get absorbed in fat tissue and fail to reach their target. The kidneys are chiefly responsible for the excretion of drugs and their metabolites.”

“Having identified a lead compound, it is important to establish which features of the compound are important for activity. This, in turn, can give a better understanding of how the compound binds to its molecular target. Most drugs are significantly smaller than molecular targets such as proteins. This means that the drug binds to quite a small region of the protein — a region known as the binding site […]. Within this binding site, there are binding regions that can form different types of intermolecular interactions such as van der Waals interactions, hydrogen bonds, and ionic interactions. If a drug has functional groups and substituents capable of interacting with those binding regions, then binding can take place. A lead compound may have several groups that are capable of forming intermolecular interactions, but not all of them are necessarily needed. One way of identifying the important binding groups is to crystallize the target protein with the drug bound to the binding site. X-ray crystallography then produces a picture of the complex which allows identification of binding interactions. However, it is not always possible to crystallize target proteins and so a different approach is needed. This involves synthesizing analogues of the lead compound where groups are modified or removed. Comparing the activity of each analogue with the lead compound can then determine whether a particular group is important or not. This is known as an SAR study, where SAR stands for structure–activity relationships.” Once the important binding groups have been identified, the pharmacophore for the lead compound can be defined. This specifies the important binding groups and their relative position in the molecule.”

“One way of identifying the active conformation of a flexible lead compound is to synthesize rigid analogues where the binding groups are locked into defined positions. This is known as rigidification or conformational restriction. The pharmacophore will then be represented by the most active analogue. […] A large number of rotatable bonds is likely to have an adverse effect on drug activity. This is because a flexible molecule can adopt a large number of conformations, and only one of these shapes corresponds to the active conformation. […] In contrast, a totally rigid molecule containing the required pharmacophore will bind the first time it enters the binding site, resulting in greater activity. […] It is also important to optimize a drug’s pharmacokinetic properties such that it can reach its target in the body. Strategies include altering the drug’s hydrophilic/hydrophobic properties to improve absorption, and the addition of substituents that block metabolism at specific parts of the molecule. […] The drug candidate must [in general] have useful activity and selectivity, with minimal side effects. It must have good pharmacokinetic properties, lack toxicity, and preferably have no interactions with other drugs that might be taken by a patient. Finally, it is important that it can be synthesized as cheaply as possible”.

“Most drugs that have reached clinical trials for the treatment of Alzheimer’s disease have failed. Between 2002 and 2012, 244 novel compounds were tested in 414 clinical trials, but only one drug gained approval. This represents a failure rate of 99.6 per cent as against a failure rate of 81 per cent for anti-cancer drugs.”

“It takes about ten years and £160 million to develop a new pesticide […] The volume of global sales increased 47 per cent in the ten-year period between 2002 and 2012, while, in 2012, total sales amounted to £31 billion. […] In many respects, agrochemical research is similar to pharmaceutical research. The aim is to find pesticides that are toxic to ‘pests’, but relatively harmless to humans and beneficial life forms. The strategies used to achieve this goal are also similar. Selectivity can be achieved by designing agents that interact with molecular targets that are present in pests, but not other species. Another approach is to take advantage of any metabolic reactions that are unique to pests. An inactive prodrug could then be designed that is metabolized to a toxic compound in the pest, but remains harmless in other species. Finally, it might be possible to take advantage of pharmacokinetic differences between pests and other species, such that a pesticide reaches its target more easily in the pest. […] Insecticides are being developed that act on a range of different targets as a means of tackling resistance. If resistance should arise to an insecticide acting on one particular target, then one can switch to using an insecticide that acts on a different target. […] Several insecticides act as insect growth regulators (IGRs) and target the moulting process rather than the nervous system. In general, IGRs take longer to kill insects but are thought to cause less detrimental effects to beneficial insects. […] Herbicides control weeds that would otherwise compete with crops for water and soil nutrients. More is spent on herbicides than any other class of pesticide […] The synthetic agent 2,4-D […] was synthesized by ICI in 1940 as part of research carried out on biological weapons […] It was first used commercially in 1946 and proved highly successful in eradicating weeds in cereal grass crops such as wheat, maize, and rice. […] The compound […] is still the most widely used herbicide in the world.”

“The type of conjugated system present in a molecule determines the specific wavelength of light absorbed. In general, the more extended the conjugation, the higher the wavelength absorbed. For example, β-carotene […] is the molecule responsible for the orange colour of carrots. It has a conjugated system involving eleven double bonds, and absorbs light in the blue region of the spectrum. It appears red because the reflected light lacks the blue component. Zeaxanthin is very similar in structure to β-carotene, and is responsible for the yellow colour of corn. […] Lycopene absorbs blue-green light and is responsible for the red colour of tomatoes, rose hips, and berries. Chlorophyll absorbs red light and is coloured green. […] Scented molecules interact with olfactory receptors in the nose. […] there are around 400 different olfactory protein receptors in humans […] The natural aroma of a rose is due mainly to 2-phenylethanol, geraniol, and citronellol.”

“Over the last fifty years, synthetic materials have largely replaced natural materials such as wood, leather, wool, and cotton. Plastics and polymers are perhaps the most visible sign of how organic chemistry has changed society. […] It is estimated that production of global plastics was 288 million tons in 2012 […] Polymerization involves linking molecular strands called polymers […]. By varying the nature of the monomer, a huge range of different polymers can be synthesized with widely differing properties. The idea of linking small molecular building blocks into polymers is not a new one. Nature has been at it for millions of years using amino acid building blocks to make proteins, and nucleotide building blocks to make nucleic acids […] The raw materials for plastics come mainly from oil, which is a finite resource. Therefore, it makes sense to recycle or depolymerize plastics to recover that resource. Virtually all plastics can be recycled, but it is not necessarily economically feasible to do so. Traditional recycling of polyesters, polycarbonates, and polystyrene tends to produce inferior plastics that are suitable only for low-quality goods.”

Adipic acid.
Protease. Lipase. Amylase. Cellulase.
Reflectin.
Agonist.
Antagonist.
Prodrug.
Conformational change.
Process chemistry (chemical development).
Clinical trial.
Phenylbutazone.
Pesticide.
Dichlorodiphenyltrichloroethane.
Aldrin.
N-Methyl carbamate.
Organophosphates.
Pyrethrum.
Neonicotinoid.
Colony collapse disorder.
Ecdysone receptor.
Methoprene.
Tebufenozide.
Fungicide.
Quinone outside inhibitors (QoI).
Allelopathy.
Glyphosate.
11-cis retinal.
Chromophore.
Synthetic dyes.
Methylene blue.
Cryptochrome.
Pheromone.
Artificial sweeteners.
Miraculin.
Addition polymer.
Condensation polymer.
Polyethylene.
Polypropylene.
Polyvinyl chloride.
Bisphenol A.
Vulcanization.
Kevlar.
Polycarbonate.
Polyhydroxyalkanoates.
Bioplastic.
Nanochemistry.
Allotropy.
Allotropes of carbon.
Carbon nanotube.
Rotaxane.
π-interactions.
Molecular switch.

November 11, 2017 - Posted by | Biology, Books, Botany, Chemistry, Medicine, Molecular biology, Pharmacology, Zoology

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: