Econstudentlog

A few diabetes papers of interest

i. Clinically Relevant Cognitive Impairment in Middle-Aged Adults With Childhood-Onset Type 1 Diabetes.

“Modest cognitive dysfunction is consistently reported in children and young adults with type 1 diabetes (T1D) (1). Mental efficiency, psychomotor speed, executive functioning, and intelligence quotient appear to be most affected (2); studies report effect sizes between 0.2 and 0.5 (small to modest) in children and adolescents (3) and between 0.4 and 0.8 (modest to large) in adults (2). Whether effect sizes continue to increase as those with T1D age, however, remains unknown.

A key issue not yet addressed is whether aging individuals with T1D have an increased risk of manifesting “clinically relevant cognitive impairment,” defined by comparing individual cognitive test scores to demographically appropriate normative means, as opposed to the more commonly investigated “cognitive dysfunction,” or between-group differences in cognitive test scores. Unlike the extensive literature examining cognitive impairment in type 2 diabetes, we know of only one prior study examining cognitive impairment in T1D (4). This early study reported a higher rate of clinically relevant cognitive impairment among children (10–18 years of age) diagnosed before compared with after age 6 years (24% vs. 6%, respectively) or a non-T1D cohort (6%).”

“This study tests the hypothesis that childhood-onset T1D is associated with an increased risk of developing clinically relevant cognitive impairment detectable by middle age. We compared cognitive test results between adults with and without T1D and used demographically appropriate published norms (1012) to determine whether participants met criteria for impairment for each test; aging and dementia studies have selected a score ≥1.5 SD worse than the norm on that test, corresponding to performance at or below the seventh percentile (13).”

“During 2010–2013, 97 adults diagnosed with T1D and aged <18 years (age and duration 49 ± 7 and 41 ± 6 years, respectively; 51% female) and 138 similarly aged adults without T1D (age 49 ± 7 years; 55% female) completed extensive neuropsychological testing. Biomedical data on participants with T1D were collected periodically since 1986–1988.  […] The prevalence of clinically relevant cognitive impairment was five times higher among participants with than without T1D (28% vs. 5%; P < 0.0001), independent of education, age, or blood pressure. Effect sizes were large (Cohen d 0.6–0.9; P < 0.0001) for psychomotor speed and visuoconstruction tasks and were modest (d 0.3–0.6; P < 0.05) for measures of executive function. Among participants with T1D, prevalent cognitive impairment was related to 14-year average A1c >7.5% (58 mmol/mol) (odds ratio [OR] 3.0; P = 0.009), proliferative retinopathy (OR 2.8; P = 0.01), and distal symmetric polyneuropathy (OR 2.6; P = 0.03) measured 5 years earlier; higher BMI (OR 1.1; P = 0.03); and ankle-brachial index ≥1.3 (OR 4.2; P = 0.01) measured 20 years earlier, independent of education.”

“Having T1D was the only factor significantly associated with the between-group difference in clinically relevant cognitive impairment in our sample. Traditional risk factors for age-related cognitive impairment, in particular older age and high blood pressure (24), were not related to the between-group difference we observed. […] Similar to previous studies of younger adults with T1D (14,26), we found no relationship between the number of severe hypoglycemic episodes and cognitive impairment. Rather, we found that chronic hyperglycemia, via its associated vascular and metabolic changes, may have triggered structural changes in the brain that disrupt normal cognitive function.”

Just to be absolutely clear about these results: The type 1 diabetics they recruited in this study were on average not yet fifty years old, yet more than one in four of them were cognitively impaired to a clinically relevant degree. This is a huge effect. As they note later in the paper:

“Unlike previous reports of mild/modest cognitive dysfunction in young adults with T1D (1,2), we detected clinically relevant cognitive impairment in 28% of our middle-aged participants with T1D. This prevalence rate in our T1D cohort is comparable to the prevalence of mild cognitive impairment typically reported among community-dwelling adults aged 85 years and older (29%) (20).”

The type 1 diabetics included in the study had had diabetes for roughly a decade more than I have. And the number of cognitively impaired individuals in that sample corresponds roughly to what you find when you test random 85+ year-olds. Having type 1 diabetes is not good for your brain.

ii. Comment on Nunley et al. Clinically Relevant Cognitive Impairment in Middle-Aged Adults With Childhood-Onset Type 1 Diabetes.

This one is a short comment to the above paper, below I’ve quoted ‘the meat’ of the comment:

“While the […] study provides us with important insights regarding cognitive impairment in adults with type 1 diabetes, we regret that depression has not been taken into account. A systematic review and meta-analysis published in 2014 identified significant objective cognitive impairment in adults and adolescents with depression regarding executive functioning, memory, and attention relative to control subjects (2). Moreover, depression is two times more common in adults with diabetes compared with those without this condition, regardless of type of diabetes (3). There is even evidence that the co-occurrence of diabetes and depression leads to additional health risks such as increased mortality and dementia (3,4); this might well apply to cognitive impairment as well. Furthermore, in people with diabetes, the presence of depression has been associated with the development of diabetes complications, such as retinopathy, and higher HbA1c values (3). These are exactly the diabetes-specific correlates that Nunley et al. (1) found.”

“We believe it is a missed opportunity that Nunley et al. (1) mainly focused on biological variables, such as hyperglycemia and microvascular disease, and did not take into account an emotional disorder widely represented among people with diabetes and closely linked to cognitive impairment. Even though severe or chronic cases of depression are likely to have been excluded in the group without type 1 diabetes based on exclusion criteria (1), data on the presence of depression (either measured through a diagnostic interview or by using a validated screening questionnaire) could have helped to interpret the present findings. […] Determining the role of depression in the relationship between cognitive impairment and type 1 diabetes is of significant importance. Treatment of depression might improve cognitive impairment both directly by alleviating cognitive depression symptoms and indirectly by improving treatment nonadherence and glycemic control, consequently lowering the risk of developing complications.”

iii. Prevalence of Diabetes and Diabetic Nephropathy in a Large U.S. Commercially Insured Pediatric Population, 2002–2013.

“[W]e identified 96,171 pediatric patients with diabetes and 3,161 pediatric patients with diabetic nephropathy during 2002–2013. We estimated prevalence of pediatric diabetes overall, by diabetes type, age, and sex, and prevalence of pediatric diabetic nephropathy overall, by age, sex, and diabetes type.”

“Although type 1 diabetes accounts for a majority of childhood and adolescent diabetes, type 2 diabetes is becoming more common with the increasing rate of childhood obesity and it is estimated that up to 45% of all new patients with diabetes in this age-group have type 2 diabetes (1,2). With the rising prevalence of diabetes in children, a rise in diabetes-related complications, such as nephropathy, is anticipated. Moreover, data suggest that the development of clinical macrovascular complications, neuropathy, and nephropathy may be especially rapid among patients with young-onset type 2 diabetes (age of onset <40 years) (36). However, the natural history of young patients with type 2 diabetes and resulting complications has not been well studied.”

I’m always interested in the identification mechanisms applied in papers like this one, and I’m a little confused about the high number of patients without prescriptions (almost one-third of patients); I sort of assume these patients do take (/are given) prescription drugs, but get them from sources not available to the researchers (parents get prescriptions for the antidiabetic drugs, and the researchers don’t have access to these data? Something like this..) but this is a bit unclear. The mechanism they employ in the paper is not perfect (no mechanism is), but it probably works:

“Patients who had one or more prescription(s) for insulin and no prescriptions for another antidiabetes medication were classified as having type 1 diabetes, while those who filled prescriptions for noninsulin antidiabetes medications were considered to have type 2 diabetes.”

When covering limitations of the paper, they observe incidentally in this context that:

“Klingensmith et al. (31) recently reported that in the initial month after diagnosis of type 2 diabetes around 30% of patients were treated with insulin only. Thus, we may have misclassified a small proportion of type 2 cases as type 1 diabetes or vice versa. Despite this, we found that 9% of patients had onset of type 2 diabetes at age <10 years, consistent with the findings of Klingensmith et al. (8%), but higher than reported by the SEARCH for Diabetes in Youth study (<3%) (31,32).”

Some more observations from the paper:

“There were 149,223 patients aged <18 years at first diagnosis of diabetes in the CCE database from 2002 through 2013. […] Type 1 diabetes accounted for a majority of the pediatric patients with diabetes (79%). Among these, 53% were male and 53% were aged 12 to <18 years at onset, while among patients with type 2 diabetes, 60% were female and 79% were aged 12 to <18 years at onset.”

“The overall annual prevalence of all diabetes increased from 1.86 to 2.82 per 1,000 during years 2002–2013; it increased on average by 9.5% per year from 2002 to 2006 and slowly increased by 0.6% after that […] The prevalence of type 1 diabetes increased from 1.48 to 2.32 per 1,000 during the study period (average increase of 8.5% per year from 2002 to 2006 and 1.4% after that; both P values <0.05). The prevalence of type 2 diabetes increased from 0.38 to 0.67 per 1,000 during 2002 through 2006 (average increase of 13.3% per year; P < 0.05) and then dropped from 0.56 to 0.49 per 1,000 during 2007 through 2013 (average decrease of 2.7% per year; P < 0.05). […] Prevalence of any diabetes increased by age, with the highest prevalence in patients aged 12 to <18 years (ranging from 3.47 to 5.71 per 1,000 from 2002 through 2013).” […] The annual prevalence of diabetes increased over the study period mainly because of increases in type 1 diabetes.”

“Dabelea et al. (8) reported, based on data from the SEARCH for Diabetes in Youth study, that the annual prevalence of type 1 diabetes increased from 1.48 to 1.93 per 1,000 and from 0.34 to 0.46 per 1,000 for type 2 diabetes from 2001 to 2009 in U.S. youth. In our study, the annual prevalence of type 1 diabetes was 1.48 per 1,000 in 2002 and 2.10 per 1,000 in 2009, which is close to their reported prevalence.”

“We identified 3,161 diabetic nephropathy cases. Among these, 1,509 cases (47.7%) were of specific diabetic nephropathy and 2,253 (71.3%) were classified as probable cases. […] The annual prevalence of diabetic nephropathy in pediatric patients with diabetes increased from 1.16 to 3.44% between 2002 and 2013; it increased by on average 25.7% per year from 2002 to 2005 and slowly increased by 4.6% after that (both P values <0.05).”

Do note that the relationship between nephropathy prevalence and diabetes prevalence is complicated and that you cannot just explain an increase in the prevalence of nephropathy over time easily by simply referring to an increased prevalence of diabetes during the same time period. This would in fact be a very wrong thing to do, in part but not only on account of the data structure employed in this study. One problem which is probably easy to understand is that if more children got diabetes but the same proportion of those new diabetics got nephropathy, the diabetes prevalence would go up but the diabetic nephropathy prevalence would remain fixed; when you calculate the diabetic nephropathy prevalence you implicitly condition on diabetes status. But this just scratches the surface of the issues you encounter when you try to link these variables, because the relationship between the two variables is complicated; there’s an age pattern to diabetes risk, with risk (incidence) increasing with age (up to a point, after which it falls – in most samples I’ve seen in the past peak incidence in pediatric populations is well below the age of 18). However diabetes prevalence increases monotonously with age as long as the age-specific death rate of diabetics is lower than the age-specific incidence, because diabetes is chronic, and then on top of that you have nephropathy-related variables, which display diabetes-related duration-dependence (meaning that although nephropathy risk is also increasing with age when you look at that variable in isolation, that age-risk relationship is confounded by diabetes duration – a type 1 diabetic at the age of 12 who’s had diabetes for 10 years has a higher risk of nephropathy than a 16-year old who developed diabetes the year before). When a newly diagnosed pediatric patient is included in the diabetes sample here this will actually decrease the nephropathy prevalence in the short run, but not in the long run, assuming no changes in diabetes treatment outcomes over time. This is because the probability that that individual has diabetes-related kidney problems as a newly diagnosed child is zero, so he or she will unquestionably only contribute to the denominator during the first years of illness (the situation in the middle-aged type 2 context is different; here you do sometimes have newly-diagnosed patients who have developed complications already). This is one reason why it would be quite wrong to say that increased diabetes prevalence in this sample is the reason why diabetic nephropathy is increasing as well. Unless the time period you look at is very long (e.g. you have a setting where you follow all individuals with a diagnosis until the age of 18), the impact of increasing prevalence of one condition may well be expected to have a negative impact on the estimated risk of associated conditions, if those associated conditions display duration-dependence (which all major diabetes complications do). A second factor supporting a default assumption of increasing incidence of diabetes leading to an expected decreasing rate of diabetes-related complications is of course the fact that treatment options have tended to increase over time, and especially if you take a long view (look back 30-40 years) the increase in treatment options and improved medical technology have lead to improved metabolic control and better outcomes.

That both variables grew over time might be taken to indicate that both more children got diabetes and that a larger proportion of this increased number of children with diabetes developed kidney problems, but this stuff is a lot more complicated than it might look and it’s in particular important to keep in mind that, say, the 2005 sample and the 2010 sample do not include the same individuals, although there’ll of course be some overlap; in age-stratified samples like this you always have some level of implicit continuous replacement, with newly diagnosed patients entering and replacing the 18-year olds who leave the sample. As long as prevalence is constant over time, associated outcome variables may be reasonably easy to interpret, but when you have dynamic samples as well as increasing prevalence over time it gets difficult to say much with any degree of certainty unless you crunch the numbers in a lot of detail (and it might be difficult even if you do that). A factor I didn’t mention above but which is of course also relevant is that you need to be careful about how to interpret prevalence rates when you look at complications with high mortality rates (and late-stage diabetic nephropathy is indeed a complication with high mortality); in such a situation improvements in treatment outcomes may have large effects on prevalence rates but no effect on incidence. Increased prevalence is not always bad news, sometimes it is good news indeed. Gleevec substantially increased the prevalence of CML.

In terms of the prevalence-outcomes (/complication risk) connection, there are also in my opinion reasons to assume that there may be multiple causal pathways between prevalence and outcomes. For example a very low prevalence of a condition in a given area may mean that fewer specialists are educated to take care of these patients than would be the case for an area with a higher prevalence, and this may translate into a more poorly developed care infrastructure. Greatly increasing prevalence may on the other hand lead to a lower level of care for all patients with the illness, not just the newly diagnosed ones, due to binding budget constraints and care rationing. And why might you have changes in prevalence; might they not sometimes rather be related to changes in diagnostic practices, rather than changes in the True* prevalence? If that’s the case, you might not be comparing apples to apples when you’re comparing the evolving complication rates. There are in my opinion many reasons to believe that the relationship between chronic conditions and the complication rates of these conditions is far from simple to model.

All this said, kidney problems in children with diabetes is still rare, compared to the numbers you see when you look at adult samples with longer diabetes duration. It’s also worth distinguishing between microalbuminuria and overt nephropathy; children rarely proceed to develop diabetes-related kidney failure, although poor metabolic control may mean that they do develop this complication later, in early adulthood. As they note in the paper:

“It has been reported that overt diabetic nephropathy and kidney failure caused by either type 1 or type 2 diabetes are uncommon during childhood or adolescence (24). In this study, the annual prevalence of diabetic nephropathy for all cases ranged from 1.16 to 3.44% in pediatric patients with diabetes and was extremely low in the whole pediatric population (range 2.15 to 9.70 per 100,000), confirming that diabetic nephropathy is a very uncommon condition in youth aged <18 years. We observed that the prevalence of diabetic nephropathy increased in both specific and unspecific cases before 2006, with a leveling off of the specific nephropathy cases after 2005, while the unspecific cases continued to increase.”

iv. Adherence to Oral Glucose-Lowering Therapies and Associations With 1-Year HbA1c: A Retrospective Cohort Analysis in a Large Primary Care Database.

“Between a third and a half of medicines prescribed for type 2 diabetes (T2DM), a condition in which multiple medications are used to control cardiovascular risk factors and blood glucose (1,2), are not taken as prescribed (36). However, estimates vary widely depending on the population being studied and the way in which adherence to recommended treatment is defined.”

“A number of previous studies have used retrospective databases of electronic health records to examine factors that might predict adherence. A recent large cohort database examined overall adherence to oral therapy for T2DM, taking into account changes of therapy. It concluded that overall adherence was 69%, with individuals newly started on treatment being significantly less likely to adhere (19).”

“The impact of continuing to take glucose-lowering medicines intermittently, but not as recommended, is unknown. Medication possession (expressed as a ratio of actual possession to expected possession), derived from prescribing records, has been identified as a valid adherence measure for people with diabetes (7). Previous studies have been limited to small populations in managed-care systems in the U.S. and focused on metformin and sulfonylurea oral glucose-lowering treatments (8,9). Further studies need to be carried out in larger groups of people that are more representative of the general population.

The Clinical Practice Research Database (CPRD) is a long established repository of routine clinical data from more than 13 million patients registered with primary care services in England. […] The Genetics of Diabetes and Audit Research Tayside Study (GoDARTS) database is derived from integrated health records in Scotland with primary care, pharmacy, and hospital data on 9,400 patients with diabetes. […] We conducted a retrospective cohort study using [these databases] to examine the prevalence of nonadherence to treatment for type 2 diabetes and investigate its potential impact on HbA1c reduction stratified by type of glucose-lowering medication.”

“In CPRD and GoDARTS, 13% and 15% of patients, respectively, were nonadherent. Proportions of nonadherent patients varied by the oral glucose-lowering treatment prescribed (range 8.6% [thiazolidinedione] to 18.8% [metformin]). Nonadherent, compared with adherent, patients had a smaller HbA1c reduction (0.4% [4.4 mmol/mol] and 0.46% [5.0 mmol/mol] for CPRD and GoDARTs, respectively). Difference in HbA1c response for adherent compared with nonadherent patients varied by drug (range 0.38% [4.1 mmol/mol] to 0.75% [8.2 mmol/mol] lower in adherent group). Decreasing levels of adherence were consistently associated with a smaller reduction in HbA1c.”

“These findings show an association between adherence to oral glucose-lowering treatment, measured by the proportion of medication obtained on prescription over 1 year, and the corresponding decrement in HbA1c, in a population of patients newly starting treatment and continuing to collect prescriptions. The association is consistent across all commonly used oral glucose-lowering therapies, and the findings are consistent between the two data sets examined, CPRD and GoDARTS. Nonadherent patients, taking on average <80% of the intended medication, had about half the expected reduction in HbA1c. […] Reduced medication adherence for commonly used glucose-lowering therapies among patients persisting with treatment is associated with smaller HbA1c reductions compared with those taking treatment as recommended. Differences observed in HbA1c responses to glucose-lowering treatments may be explained in part by their intermittent use.”

“Low medication adherence is related to increased mortality (20). The mean difference in HbA1c between patients with MPR <80% and ≥80% is between 0.37% and 0.55% (4 mmol/mol and 6 mmol/mol), equivalent to up to a 10% reduction in death or an 18% reduction in diabetes complications (21).”

v. Health Care Transition in Young Adults With Type 1 Diabetes: Perspectives of Adult Endocrinologists in the U.S.

“Empiric data are limited on best practices in transition care, especially in the U.S. (10,1316). Prior research, largely from the patient perspective, has highlighted challenges in the transition process, including gaps in care (13,1719); suboptimal pediatric transition preparation (13,20); increased post-transition hospitalizations (21); and patient dissatisfaction with the transition experience (13,1719). […] Young adults with type 1 diabetes transitioning from pediatric to adult care are at risk for adverse outcomes. Our objective was to describe experiences, resources, and barriers reported by a national sample of adult endocrinologists receiving and caring for young adults with type 1 diabetes.”

“We received responses from 536 of 4,214 endocrinologists (response rate 13%); 418 surveys met the eligibility criteria. Respondents (57% male, 79% Caucasian) represented 47 states; 64% had been practicing >10 years and 42% worked at an academic center. Only 36% of respondents reported often/always reviewing pediatric records and 11% reported receiving summaries for transitioning young adults with type 1 diabetes, although >70% felt that these activities were important for patient care.”

“A number of studies document deficiencies in provider hand-offs across other chronic conditions and point to the broader relevance of our findings. For example, in two studies of inflammatory bowel disease, adult gastroenterologists reported inadequacies in young adult transition preparation (31) and infrequent receipt of medical histories from pediatric providers (32). In a study of adult specialists caring for young adults with a variety of chronic diseases (33), more than half reported that they had no contact with the pediatric specialists.

Importantly, more than half of the endocrinologists in our study reported a need for increased access to mental health referrals for young adult patients with type 1 diabetes, particularly in nonacademic settings. Report of barriers to care was highest for patient scenarios involving mental health issues, and endocrinologists without easy access to mental health referrals were significantly more likely to report barriers to diabetes management for young adults with psychiatric comorbidities such as depression, substance abuse, and eating disorders.”

“Prior research (34,35) has uncovered the lack of mental health resources in diabetes care. In the large cross-national Diabetes Attitudes, Wishes and Needs (DAWN) study (36) […] diabetes providers often reported not having the resources to manage mental health problems; half of specialist diabetes physicians felt unable to provide psychiatric support for patients and one-third did not have ready access to outside expertise in emotional or psychiatric matters. Our results, which resonate with the DAWN findings, are particularly concerning in light of the vulnerability of young adults with type 1 diabetes for adverse medical and mental health outcomes (4,34,37,38). […] In a recent report from the Mental Health Issues of Diabetes conference (35), which focused on type 1 diabetes, a major observation included the lack of trained mental health professionals, both in academic centers and the community, who are knowledgeable about the mental health issues germane to diabetes.”

Advertisements

August 3, 2017 - Posted by | Diabetes, Epidemiology, Medicine, Nephrology, Neurology, Pharmacology, Psychiatry, Psychology, Statistics, Studies

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: