A few papers

i. To Conform or to Maintain Self-Consistency? Hikikomori Risk in Japan and the Deviation From Seeking Harmony.

A couple of data points and observations from the paper:

“There is an increasing number of youth in Japan who are dropping out of society and isolating themselves in their bedrooms from years to decades at a time. According to Japan’s Ministry of Health, Labor and Welfare’s first official 2003 guidelines on this culture-bound syndrome, hikikomori (social isolation syndrome) has the following specific diagnostic criteria: (1) no motivation to participate in school or work; (2) no signs of schizophrenia or any other known psychopathologies; and (3) persistence of social withdrawal for at least six months.”

“One obvious dilemma in studying hikikomori is that most of those suffering from hikikomori, by definition, do not seek treatment. More importantly, social isolation itself is not even a symptom of any of the DSM diagnosis often assigned to an individual afflicted with hikikomori […] The motivation for isolating oneself among a hikikomori is simply to avoid possible social interactions with others who might know or judge them (Zielenziger, 2006).”

“Saito’s (2010) and Sakai and colleagues’ (2011) data suggest that 10% to 15% of the hikikomori population suffer from an autism spectrum disorder. […] in the first epidemiological study conducted on hikikomori that was as close to a nation-wide random sample as possible, Koyama and colleagues (2010) conducted a face-to-face household survey, including a structured diagnostic interview, by randomly picking households and interviewing 4,134 individuals. They confirmed a hikikomori lifetime prevalence rate of 1.2% in their nationwide sample. Among these hikikomori individuals, the researchers found that only half suffered from a DSM-IV diagnosis. However, and more importantly, there was no particular diagnosis that was systematically associated with hikikomori. […] the researchers concluded that any DSM diagnosis was an epiphenomenon to hikikomori at best and that hikikomori is rather a “psychopathology characterized by impaired motivation” p. 72).”

ii. Does the ‘hikikomori’ syndrome of social withdrawal exist outside Japan?: A preliminary international investigation.


To explore whether the ‘hikikomori’ syndrome (social withdrawal) described in Japan exists in other countries, and if so, how patients with the syndrome are diagnosed and treated.


Two hikikomori case vignettes were sent to psychiatrists in Australia, Bangladesh, India, Iran, Japan, Korea, Taiwan, Thailand and the USA. Participants rated the syndrome’s prevalence in their country, etiology, diagnosis, suicide risk, and treatment.


Out of 247 responses to the questionnaire (123 from Japan and 124 from other countries), 239 were enrolled in the analysis. Respondents’ felt the hikikomori syndrome is seen in all countries examined and especially in urban areas. Biopsychosocial, cultural, and environmental factors were all listed as probable causes of hikikomori, and differences among countries were not significant. Japanese psychiatrists suggested treatment in outpatient wards and some did not think that psychiatric treatment is necessary. Psychiatrists in other countries opted for more active treatment such as hospitalization.


Patients with the hikikomori syndrome are perceived as occurring across a variety of cultures by psychiatrists in multiple countries. Our results provide a rational basis for study of the existence and epidemiology of hikikomori in clinical or community populations in international settings.”

“Our results extend rather than clarify the debate over diagnosis of hikikomori. In our survey, a variety of diagnoses, such as psychosis, depression anxiety and personality disorders, were proffered. Opinions as to whether hikikomori cases can be diagnosed using ICD-10/DSV-IV criteria differed depending on the participants’ countries and the cases’ age of onset. […] a recent epidemiological survey in Japan reported approximately a fifty-fifty split between hikikomori who had experienced a psychiatric disorder and had not [14]. These data and other studies that have not been able to diagnose all cases of hikikomori may suggest the existence of ‘primary hikikomori’ that is not an expression of any other psychiatric disorder [28,8,9,5,29]. In order to clarify differences between ‘primary hikikomori’ (social withdrawal not associated with any underlying psychiatric disorder) and ‘secondary hikikomori’ (social withdrawal caused by an established psychiatric disorder), further epidemiological and psychopathological studies are needed. […] Even if all hikikomori cases prove to be within some kind of psychiatric disorders, it is valuable to continue to focus on the hikikomori phenomenon because of its associated morbidity, similar to how suicidality is examined in various fields of psychiatry [30]. Reducing the burden of hikikomori symptoms, regardless of what psychiatric disorders patients may have, may provide a worthwhile improvement in their quality of life, and this suggests another direction of future hikikomori research.”

“Our case vignette survey indicates that the hikikomori syndrome, previously thought to exist only in Japan, is perceived by psychiatrists to exist in many other countries. It is particularly perceived as occurring in urban areas and might be associated with rapid global sociocultural changes. There is no consensus among psychiatrists within or across countries about the causes, diagnosis and therapeutic interventions for hikikomori yet.”

iii. Hikikomori: clinical and psychopathological issues (review). A poor paper, but it did have a little bit of data of interest:

“The prevalence of hikikomori is difficult to assess […]. In Japan, more than one million cases have been estimated by experts, but there is no population-based study to confirm these data (9). […] In 2008, Kiyota et al. summarized 3 population-based studies involving 12 cities and 3951 subjects, highlighting that a percentage comprised between 0.9% and 3.8% of the sample had an hikikomori history in anamnesis (11). The typical hikikomori patient is male (4:1 male-to-female ratio) […] females constitute a minor fraction of the reported cases, and usually their period of social isolation is limited.”

iv. Interpreting results of ethanol analysis in postmortem specimens: A review of the literature.

A few observations from the paper:

“A person’s blood-alcohol concentration (BAC) and state of inebriation at the time of death is not always easy to establish owing to various postmortem artifacts. The possibility of alcohol being produced in the body after death, e.g. via microbial contamination and fermentation is a recurring issue in routine casework. If ethanol remains unabsorbed in the stomach at the time of death, this raises the possibility of continued local diffusion into surrounding tissues and central blood after death. Skull trauma often renders a person unconscious for several hours before death, during which time the BAC continues to decrease owing to metabolism in the liver. Under these circumstances blood from an intracerebral or subdural clot is a useful specimen for determination of ethanol. Bodies recovered from water are particular problematic to deal with owing to possible dilution of body fluids, decomposition, and enhanced risk of microbial synthesis of ethanol. […] Alcoholics often die at home with zero or low BAC and nothing more remarkable at autopsy than a fatty liver. Increasing evidence suggests that such deaths might be caused by a pronounced ketoacidosis.”

“The concentrations of ethanol measured in blood drawn from different sampling sites tend to vary much more than expected from inherent variations in the analytical methods used [49]. Studies have shown that concentrations of ethanol and other drugs determined in heart blood are generally higher than in blood from a peripheral vein although in any individual case there are likely to be considerable variations [50–53].”

“The BAC necessary to cause death is often an open question and much depends on the person’s age, drinking experience and degree of tolerance development [78]. The speed of drinking plays a role in alcohol toxicity as does the kind of beverage consumed […] Drunkenness and hypothermia represent a dangerous combination and deaths tend to occur at a lower BAC when people are exposed to cold, such as, when an alcoholic sleeps outdoors in the winter months [78]. Drinking large amounts of alcohol to produce stupor and unconsciousness combined with positional asphyxia or inhalation of vomit are common causes of death in intoxicated individuals who die of suffocation [81–83]. The toxicity of ethanol is often considerably enhanced by the concomitant use of other drugs with their site of action in the brain, especially opiates, propoxyphene, antidepressants and some sedative hypnotics [84]. […] It seems reasonable to assume that the BAC at autopsy will almost always be lower than the maximum BAC reached during a drinking binge, owing to metabolism of ethanol taking place up until the moment of death [85–87]. During the time after discontinuation of drinking until death, the BAC might decrease appreciably depending on the speed of alcohol elimination from blood, which in heavy drinkers could exceed 20 or 30 mg/100 mL per h (0.02 or 0.03 g% per h) [88].”

“When the supply of oxygen to the body ends, the integrity of cell membranes and tissue compartments gradually disintegrate through the action of various digestive enzymes. This reflects the process of autolysis (self digestion) resulting in a softening and liquefaction of the tissue (freezing the body prevents autolysis). During this process, bacteria from the bowel invade the surrounding tissue and vascular system and the rate of infiltration depends on many factors including the ambient temperature, position of the body and whether death was caused by bacterial infection. Glucose concentrations increase in blood after death and this sugar is probably the simplest substrate for microbial synthesis of ethanol [20,68]. […] Extensive trauma to a body […] increases the potential for spread of bacteria and heightens the risk of ethanol production after death [217]. Blood-ethanol concentrations as high as 190 mg/100 mL have been reported in postmortem blood after particularly traumatic events such as explosions and when no evidence existed to support ingestion of ethanol before the disaster [218].”

v. Interventions based on the Theory of Mind cognitive model for autism spectrum disorder (ASD) (Cochrane review).

“The ‘Theory of Mind’ (ToM) model suggests that people with autism spectrum disorder (ASD) have a profound difficulty understanding the minds of other people – their emotions, feelings, beliefs, and thoughts. As an explanation for some of the characteristic social and communication behaviours of people with ASD, this model has had a significant influence on research and practice. It implies that successful interventions to teach ToM could, in turn, have far-reaching effects on behaviours and outcome.”

“Twenty-two randomised trials were included in the review (N = 695). Studies were highly variable in their country of origin, sample size, participant age, intervention delivery type, and outcome measures. Risk of bias was variable across categories. There were very few studies for which there was adequate blinding of participants and personnel, and some were also judged at high risk of bias in blinding of outcome assessors. There was also evidence of some bias in sequence generation and allocation concealment.”

“Studies were grouped into four main categories according to intervention target/primary outcome measure. These were: emotion recognition studies, joint attention and social communication studies, imitation studies, and studies teaching ToM itself. […] There was very low quality evidence of a positive effect on measures of communication based on individual results from three studies. There was low quality evidence from 11 studies reporting mixed results of interventions on measures of social interaction, very low quality evidence from four studies reporting mixed results on measures of general communication, and very low quality evidence from four studies reporting mixed results on measures of ToM ability. […] While there is some evidence that ToM, or a precursor skill, can be taught to people with ASD, there is little evidence of maintenance of that skill, generalisation to other settings, or developmental effects on related skills. Furthermore, inconsistency in findings and measurement means that evidence has been graded of ‘very low’ or ‘low’ quality and we cannot be confident that suggestions of positive effects will be sustained as high-quality evidence accumulates. Further longitudinal designs and larger samples are needed to help elucidate both the efficacy of ToM-linked interventions and the explanatory value of the ToM model itself.”

vi. Risk of Psychiatric and Neurodevelopmental Disorders Among Siblings of Probands With Autism Spectrum Disorders.

“The Finnish Prenatal Study of Autism and Autism Spectrum Disorders used a population-based cohort that included children born from January 1, 1987, to December 31, 2005, who received a diagnosis of ASD by December 31, 2007. Each case was individually matched to 4 control participants by sex and date and place of birth. […] Among the 3578 cases with ASD (2841 boys [79.4%]) and 11 775 controls (9345 boys [79.4%]), 1319 cases (36.9%) and 2052 controls (17.4%) had at least 1 sibling diagnosed with any psychiatric or neurodevelopmental disorder (adjusted RR, 2.5; 95% CI, 2.3-2.6).”

Conclusions and Relevance Psychiatric and neurodevelopmental disorders cluster among siblings of probands with ASD. For etiologic research, these findings provide further evidence that several psychiatric and neurodevelopmental disorders have common risk factors.”

vii. Treatment for epilepsy in pregnancy: neurodevelopmental outcomes in the child (Cochrane review).

“Accumulating evidence suggests an association between prenatal exposure to antiepileptic drugs (AEDs) and increased risk of both physical anomalies and neurodevelopmental impairment. Neurodevelopmental impairment is characterised by either a specific deficit or a constellation of deficits across cognitive, motor and social skills and can be transient or continuous into adulthood. It is of paramount importance that these potential risks are identified, minimised and communicated clearly to women with epilepsy.”

“Twenty-two prospective cohort studies were included and six registry based studies. Study quality varied. […] the IQ of children exposed to VPA [sodium valproate] (n = 112) was significantly lower than for those exposed to CBZ [carbamazepine] (n = 191) (MD [mean difference] 8.69, 95% CI 5.51 to 11.87, P < 0.00001). […] IQ was significantly lower for children exposed to VPA (n = 74) versus LTG [lamotrigine] (n = 84) (MD -10.80, 95% CI -14.42 to -7.17, P < 0.00001). DQ [developmental quotient] was higher in children exposed to PHT (n = 80) versus VPA (n = 108) (MD 7.04, 95% CI 0.44 to 13.65, P = 0.04). Similarly IQ was higher in children exposed to PHT (n = 45) versus VPA (n = 61) (MD 9.25, 95% CI 4.78 to 13.72, P < 0.0001). A dose effect for VPA was reported in six studies, with higher doses (800 to 1000 mg daily or above) associated with a poorer cognitive outcome in the child. We identified no convincing evidence of a dose effect for CBZ, PHT or LTG. Studies not included in the meta-analysis were reported narratively, the majority of which supported the findings of the meta-analyses.”

“The most important finding is the reduction in IQ in the VPA exposed group, which are sufficient to affect education and occupational outcomes in later life. However, for some women VPA is the most effective drug at controlling seizures. Informed treatment decisions require detailed counselling about these risks at treatment initiation and at pre-conceptual counselling. We have insufficient data about newer AEDs, some of which are commonly prescribed, and further research is required. Most women with epilepsy should continue their medication during pregnancy as uncontrolled seizures also carries a maternal risk.”

Do take note of the effect sizes reported here. To take an example, the difference between being treated with valproate and lamotrigine might equal 10 IQ points in the child – these are huge effects.


June 11, 2017 - Posted by | Medicine, Neurology, Pharmacology, Psychiatry, Psychology, Studies

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: