Econstudentlog

A few diabetes papers of interest

1. Cognitive Dysfunction in Older Adults With Diabetes: What a Clinician Needs to Know. I’ve talked about these topics before here on the blog (see e.g. these posts on related topics), but this is a good summary article. I have added some observations from the paper below:

“Although cognitive dysfunction is associated with both type 1 and type 2 diabetes, there are several distinct differences observed in the domains of cognition affected in patients with these two types. Patients with type 1 diabetes are more likely to have diminished mental flexibility and slowing of mental speed, whereas learning and memory are largely not affected (8). Patients with type 2 diabetes show decline in executive function, memory, learning, attention, and psychomotor efficiency (9,10).”

“So far, it seems that the risk of cognitive dysfunction in type 2 diabetes may be influenced by glycemic control, hypoglycemia, inflammation, depression, and macro- and microvascular pathology (14). The cumulative impact of these conditions on the vascular etiology may further decrease the threshold at which cognition is affected by other neurological conditions in the aging brain. In patients with type 1 diabetes, it seems as though diabetes has a lesser impact on cognitive dysfunction than those patients with type 2 diabetes. […] Thus, the cognitive decline in patients with type 1 diabetes may be mild and may not interfere with their functionality until later years, when other aging-related factors become important. […] However, recent studies have shown a higher prevalence of cognitive dysfunction in older patients (>60 years of age) with type 1 diabetes (5).”

“Unlike other chronic diseases, diabetes self-care involves many behaviors that require various degrees of cognitive pliability and insight to perform proper self-care coordination and planning. Glucose monitoring, medications and/or insulin injections, pattern management, and diet and exercise timing require participation from different domains of cognitive function. In addition, the recognition, treatment, and prevention of hypoglycemia, which are critical for the older population, also depend in large part on having intact cognition.

The reason a clinician needs to recognize different domains of cognition affected in patients with diabetes is to understand which self-care behavior will be affected in that individual. […] For example, a patient with memory problems may forget to take insulin doses, forget to take medications/insulin on time, or forget to eat on time. […] Cognitively impaired patients using insulin are more likely to not know what to do in the event of low blood glucose or how to manage medication on sick days (34). Patients with diminished mental flexibility and processing speed may do well with a simple regimen but may fail if the regimen is too complex. In general, older patients with diabetes with cognitive dysfunction are less likely to be involved in diabetes self-care and glucose monitoring compared with age-matched control subjects (35). […] Other comorbidities associated with aging and diabetes also add to the burden of cognitive impairment and its impact on self-care abilities. For example, depression is associated with a greater decline in cognitive function in patients with type 2 diabetes (36). Depression also can independently negatively impact the motivation to practice self-care.”

“Recently, there is an increasing discomfort with the use of A1C as a sole parameter to define glycemic goals in the older population. Studies have shown that A1C values in the older population may not reflect the same estimated mean glucose as in the younger population. Possible reasons for this discrepancy are the commonly present comorbidities that impact red cell life span (e.g., anemia, uremia, renal dysfunction, blood transfusion, erythropoietin therapy) (45,46). In addition, A1C level does not reflect glucose excursions and variability. […] Thus, it is prudent to avoid A1C as the sole measure of glycemic goal in this population. […] In patients who need insulin therapy, simplification, also known as de-intensification of the regimen, is generally recommended in all frail patients, especially if they have cognitive dysfunction (37,49). However, the practice has not caught up with the recommendations as shown by large observational studies showing unnecessary intensive control in patients with diabetes and dementia (50–52).”

“With advances in the past few decades, we now see a larger number of patients with type 1 diabetes who are aging successfully and facing the new challenges that aging brings. […] Patients with type 1 diabetes are typically proactive in their disease management and highly disciplined. Cognitive dysfunction in these patients creates significant distress for the first time in their lives; they suddenly feel a “lack of control” over the disease they have managed for many decades. The addition of autonomic dysfunction, gastropathy, or neuropathy may result in wider glucose excursions. These patients are usually more afraid of hyperglycemia than hypoglycemia — both of which they have managed for many years. However, cognitive dysfunction in older adults with type 1 diabetes has been found to be associated with hypoglycemic unawareness and glucose variability (5), which in turn increases the risk of severe hypoglycemia (54). The need for goal changes to avoid hypoglycemia and accept some hyperglycemia can be very difficult for many of these patients.”

2. Trends in Drug Utilization, Glycemic Control, and Rates of Severe Hypoglycemia, 2006–2013.

“From 2006 to 2013, use increased for metformin (from 47.6 to 53.5%), dipeptidyl peptidase 4 inhibitors (0.5 to 14.9%), and insulin (17.1 to 23.0%) but declined for sulfonylureas (38.8 to 30.8%) and thiazolidinediones (28.5 to 5.6%; all P < 0.001). […] The overall rate of severe hypoglycemia remained the same (1.3 per 100 person-years; P = 0.72), declined modestly among the oldest patients (from 2.9 to 2.3; P < 0.001), and remained high among those with two or more comorbidities (3.2 to 3.5; P = 0.36). […] During the recent 8-year period, the use of glucose-lowering drugs has changed dramatically among patients with T2DM. […] The use of older classes of medications, such as sulfonylureas and thiazolidinediones, declined. During this time, glycemic control of T2DM did not improve in the overall population and remained poor among nearly a quarter of the youngest patients. Rates of severe hypoglycemia remained largely unchanged, with the oldest patients and those with multiple comorbidities at highest risk. These findings raise questions about the value of the observed shifts in drug utilization toward newer and costlier medications.”

“Our findings are consistent with a prior study of drug prescribing in U.S. ambulatory practice conducted from 1997 to 2012 (2). In that study, similar increases in DPP-4 inhibitor and insulin analog prescribing were observed; these changes were accompanied by a 61% increase in drug expenditures (2). Our study extends these findings to drug utilization and demonstrates that these increases occurred in all age and comorbidity subgroups. […] In contrast, metformin use increased only modestly between 2006 and 2013 and remained relatively low among older patients and those with two or more comorbidities. Although metformin is recommended as first-line therapy (26), it may be underutilized as the initial agent for the treatment of T2DM (27). Its use may be additionally limited by coexisting contraindications, such as chronic kidney disease (28).”

“The proportion of patients with a diagnosis of diabetes who did not fill any glucose-lowering medications declined slightly (25.7 to 24.1%; P < 0.001).”

That is, one in four people who had a diagnosis of type 2 diabetes were not taking any prescription drugs for their health condition. I wonder how many of those people have read wikipedia articles like this one

“When considering treatment complexity, the use of oral monotherapy increased slightly (from 24.3 to 26.4%) and the use of multiple (two or more) oral agents declined (from 33.0 to 26.5%), whereas the use of insulin alone and in combination with oral agents increased (from 6.0 to 8.5% and from 11.1 to 14.6%, respectively; all P values <0.001).”

“Between 1987 and 2011, per person medical spending attributable to diabetes doubled (4). More than half of the increase was due to prescription drug spending (4). Despite these spending increases and greater utilization of newly developed medications, we showed no concurrent improvements in overall glycemic control or the rates of severe hypoglycemia in our study. Although the use of newer and more expensive agents may have other important benefits (44), further studies are needed to define the value and cost-effectiveness of current treatment options.”

iii. Among Low-Income Respondents With Diabetes, High-Deductible Versus No-Deductible Insurance Sharply Reduces Medical Service Use.

“Using the 2011–2013 Medical Expenditure Panel Survey, bivariate and regression analyses were conducted to compare demographic characteristics, medical service use, diabetes care, and health status among privately insured adult respondents with diabetes, aged 18–64 years (N = 1,461) by lower (<200% of the federal poverty level) and higher (≥200% of the federal poverty level) income and deductible vs. no deductible (ND), low deductible ($1,000/$2,400) (LD), and high deductible (>$1,000/$2,400) (HD). The National Health Interview Survey 2012–2014 was used to analyze differences in medical debt and delayed/avoided needed care among adult respondents with diabetes (n = 4,058) by income. […] Compared with privately insured respondents with diabetes with ND, privately insured lower-income respondents with diabetes with an LD report significant decreases in service use for primary care, checkups, and specialty visits (27%, 39%, and 77% lower, respectively), and respondents with an HD decrease use by 42%, 65%, and 86%, respectively. Higher-income respondents with an LD report significant decreases in specialty (28%) and emergency department (37%) visits.”

“The reduction in ambulatory visits made by lower-income respondents with ND compared with lower-income respondents with an LD or HD is far greater than for higher-income patients. […] The substantial reduction in checkup (preventive) and specialty visits by those with a lower income who have an HDHP [high-deductible health plan, US] implies a very different pattern of service use compared with lower-income respondents who have ND and with higher-income respondents. Though preventive visits require no out-of-pocket costs, reduced preventive service use with HDHPs is well established and might be the result of patients being unaware of this benefit or their concern about findings that could lead to additional expenses (31). Such sharply reduced service use by low-income respondents with diabetes may not be desirable. Patients with diabetes benefit from assessment of diabetes control, encouragement and reinforcement of behavior change and medication use, and early detection and treatment of diabetes complications or concomitant disease.”

iv. Long-term Mortality and End-Stage Renal Disease in a Type 1 Diabetes Population Diagnosed at Age 15–29 Years in Norway.

OBJECTIVE To study long-term mortality, causes of death, and end-stage renal disease (ESRD) in people diagnosed with type 1 diabetes at age 15–29 years.

RESEARCH DESIGN AND METHODS This nationwide, population-based cohort with type 1 diabetes diagnosed during 1978–1982 (n = 719) was followed from diagnosis until death, emigration, or September 2013. Linkages to the Norwegian Cause of Death Registry and the Norwegian Renal Registry provided information on causes of death and whether ESRD was present.

RESULTS During 30 years’ follow-up, 4.6% of participants developed ESRD and 20.6% (n = 148; 106 men and 42 women) died. Cumulative mortality by years since diagnosis was 6.0% (95% CI 4.5–8.0) at 10 years, 12.2% (10.0–14.8) at 20 years, and 18.4% (15.8–21.5) at 30 years. The SMR [standardized mortality ratio] was 4.4 (95% CI 3.7–5.1). Mean time from diagnosis of diabetes to ESRD was 23.6 years (range 14.2–33.5). Death was caused by chronic complications (32.2%), acute complications (20.5%), violent death (19.9%), or any other cause (27.4%). Death was related to alcohol in 15% of cases. SMR for alcohol-related death was 6.8 (95% CI 4.5–10.3), for cardiovascular death was 7.3 (5.4–10.0), and for violent death was 3.6 (2.3–5.3).

CONCLUSIONS The cumulative incidence of ESRD was low in this cohort with type 1 diabetes followed for 30 years. Mortality was 4.4 times that of the general population, and more than 50% of all deaths were caused by acute or chronic complications. A relatively high proportion of deaths were related to alcohol.”

Some additional observations from the paper:

“Studies assessing causes of death in type 1 diabetes are most frequently conducted in individuals diagnosed during childhood (17) or without evaluating the effect of age at diagnosis (8,9). Reports on causes of death in cohorts of patients diagnosed during late adolescence or young adulthood, with long-term follow-up, are less frequent (10). […] Adherence to treatment during this age is poor and the risk of acute diabetic complications is high (1316). Mortality may differ between those with diabetes diagnosed during this period of life and those diagnosed during childhood.”

“Mortality was between four and five times higher than in the general population […]. The excess mortality was similar for men […] and women […]. SMR was higher in the lower age bands — 6.7 (95% CI 3.9–11.5) at 15–24 years and 7.3 (95% CI 5.2–10.1) at 25–34 years — compared with the higher age bands: 3.7 (95% CI 2.7–4.9) at 45–54 years and 3.9 (95% CI 2.6–5.8) at 55–65 years […]. The Cox regression model showed that the risk of death increased significantly by age at diagnosis (HR 1.1; 95% CI 1.1–1.2; P < 0.001) and was eight to nine times higher if ESRD was present (HR 8.7; 95% CI 4.8–15.5; P < 0.0001). […] the underlying cause of death was diabetes in 57 individuals (39.0%), circulatory in 22 (15.1%), cancer in 18 (12.3%), accidents or intoxications in 20 (13.7%), suicide in 8 (5.5%), and any other cause in 21 (14.4%) […] In addition, diabetes contributed to death in 29.5% (n = 43) and CVD contributed to death in 10.9% (n = 29) of the 146 cases. Diabetes was mentioned on the death certificate for 68.2% of the cohort but for only 30.0% of the violent deaths. […] In 60% (88/146) of the cases the review committee considered death to be related to diabetes, whereas in 40% (58/146) the cause was unrelated to diabetes or had an unknown relation to diabetes. According to the clinical committee, acute complications caused death in 20.5% (30/146) of the cases; 20 individuals died as a result of DKA and 10 from hypoglycemia. […] Chronic complications caused the largest proportion of deaths (47/146; 32.2%) and increased with increasing duration of diabetes […]. Among individuals dying as a result of chronic complications (n = 47), CVD caused death in 94% (n = 44) and renal failure in 6% (n = 3). ESRD contributed to death in 22.7% (10/44) of those dying from CVD. Cardiovascular death occurred at mortality rates seven times higher than those in the general population […]. ESRD caused or contributed to death in 13 of 14 cases, when present.”

“Violence (intoxications, accidents, and suicides) was the leading cause of death before 10 years’ duration of diabetes; thereafter it was only a minor cause […] Insulin was used in two of seven suicides. […] According to the available medical records and autopsy reports, about 20% (29/146) of the deceased misused alcohol. In 15% (22/146) alcohol-related ICD-10 codes were listed on the death certificate (18% [19/106] of men and 8% [3/40] of women). In 10 cases the cause of death was uncertain but considered to be related to alcohol or diabetes […] The SMR for alcohol-related death was high when considering the underlying cause of death (5.0; 95% CI 2.5–10.0), and even higher when considering all alcohol-related ICD-10 codes listed on the death certificate (6.8; 95% CI 4.5–10.3). The cause of death was associated with alcohol in 21.8% (19/87) of those who died with less than 20 years’ diabetes duration. Drug abuse was noted on the death certificate in only two cases.”

“During follow-up, 33 individuals (4.6%; 22 men and 11 women) developed ESRD as a result of diabetic nephropathy. Mean time from diagnosis of diabetes to ESRD was 23.6 years (range 14.2–33.5 years). Cumulative incidence of ESRD by years since diagnosis of diabetes was 1.4% (95% CI 0.7–2.7) at 20 years and 4.8% (95% CI 3.4–6.9) at 30 years.”

“This study highlights three important findings. First, among individuals who were diagnosed with type 1 diabetes in late adolescence and early adulthood and had good access to health care, and who were followed for 30 years, mortality was four to five times that of the general population. Second, 15% of all deaths were associated with alcohol, and the SMR for alcohol-related deaths was 6.8. Third, there was a relatively low cumulative incidence of ESRD (4.8%) 30 years after the diagnosis of diabetes.

We report mortality higher than those from a large, population-based study from Finland that found cumulative mortality around 6% at 20 years’ and 15% at 30 years’ duration of diabetes among a population with age at onset and year of diagnosis similar to those in our cohort (10). The corresponding numbers in our cohort were 12% and 18%, respectively; the discrepancy was particularly high at 20 years. The SMR in the Finnish cohort was lower than that in our cohort (2.6–3.0 vs. 3.7–5.1), and those authors reported the SMR to be lower in late-onset diabetes (at age 15–29 years) compared with early-onset diabetes (at age 23). The differences between the Norwegian and Finnish data are difficult to explain since both reports are from countries with good access to health care and a high incidence of type 1 diabetes.”

However the reason for the somewhat different SMRs in these two reasonably similar countries may actually be quite simple – the important variable may be alcohol:

“Finland and Norway are appropriate to compare because they share important population and welfare characteristics. There are, however, significant differences in drinking levels and alcohol-related mortality: the Finnish population consumes more alcohol and the Norwegian population consumes less. The mortality rates for deaths related to alcohol are about three to four times higher in Finland than in Norway (30). […] The markedly higher SMR in our cohort can probably be explained by the lower mortality rates for alcohol-related mortality in the general population. […] In conclusion, the high mortality reported in this cohort with an onset of diabetes in late adolescence and young adulthood draws attention to people diagnosed during a vulnerable period of life. Both acute and chronic complications cause substantial premature mortality […] Our study suggests that increased awareness of alcohol-related death should be encouraged in clinics providing health care to this group of patients.”

Advertisements

April 23, 2017 - Posted by | Diabetes, Economics, Epidemiology, Health Economics, Medicine, Nephrology, Neurology, Papers, Pharmacology, Psychology

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: