Biodemography of aging (III)

Latent class representation of the Grade of Membership model.
Singular value decomposition.
Affine space.
Lebesgue measure.
General linear position.

The links above are links to topics I looked up while reading the second half of the book. The first link is quite relevant to the book’s coverage as a comprehensive longitudinal Grade of Membership (-GoM) model is covered in chapter 17. Relatedly, chapter 18 covers linear latent structure (-LLS) models, and as observed in the book LLS is a generalization of GoM. As should be obvious from the nature of the links some of the stuff included in the second half of the text is highly technical, and I’ll readily admit I was not fully able to understand all the details included in the coverage of chapters 17 and 18 in particular. On account of the technical nature of the coverage in Part 2 I’m not sure I’ll cover the second half of the book in much detail, though I probably shall devote at least one more post to some of those topics, as they were quite interesting even if some of the details were difficult to follow.

I have almost finished the book at this point, and I have already decided to both give the book five stars and include it on my list of favorite books on goodreads; it’s really well written, and it provides consistently highly detailed coverage of very high quality. As I also noted in the first post about the book the authors have given readability aspects some thought, and I am sure most readers would learn quite a bit from this text even if they were to skip some of the more technical chapters. The main body of Part 2 of the book, the subtitle of which is ‘Statistical Modeling of Aging, Health, and Longevity’, is however probably in general not worth the effort of reading unless you have a solid background in statistics.

This post includes some observations and quotes from the last chapters of the book’s Part 1.

“The proportion of older adults in the U.S. population is growing. This raises important questions about the increasing prevalence of aging-related diseases, multimorbidity issues, and disability among the elderly population. […] In 2009, 46.3 million people were covered by Medicare: 38.7 million of them were aged 65 years and older, and 7.6 million were disabled […]. By 2031, when the baby-boomer generation will be completely enrolled, Medicare is expected to reach 77 million individuals […]. Because the Medicare program covers 95 % of the nation’s aged population […], the prediction of future Medicare costs based on these data can be an important source of health care planning.”

“Three essential components (which could be also referred as sub-models) need to be developed to construct a modern model of forecasting of population health and associated medical costs: (i) a model of medical cost projections conditional on each health state in the model, (ii) health state projections, and (iii) a description of the distribution of initial health states of a cohort to be projected […] In making medical cost projections, two major effects should be taken into account: the dynamics of the medical costs during the time periods comprising the date of onset of chronic diseases and the increase of medical costs during the last years of life. In this chapter, we investigate and model the first of these two effects. […] the approach developed in this chapter generalizes the approach known as “life tables with covariates” […], resulting in a new family of forecasting models with covariates such as comorbidity indexes or medical costs. In sum, this chapter develops a model of the relationships between individual cost trajectories following the onset of aging-related chronic diseases. […] The underlying methodological idea is to aggregate the health state information into a single (or several) covariate(s) that can be determinative in predicting the risk of a health event (e.g., disease incidence) and whose dynamics could be represented by the model assumptions. An advantage of such an approach is its substantial reduction of the degrees of freedom compared with existing forecasting models  (e.g., the FEM model, Goldman and RAND Corporation 2004). […] We found that the time patterns of medical cost trajectories were similar for all diseases considered and can be described in terms of four components having the meanings of (i) the pre-diagnosis cost associated with initial comorbidity represented by medical expenditures, (ii) the cost peak associated with the onset of each disease, (iii) the decline/reduction in medical expenditures after the disease onset, and (iv) the difference between post- and pre-diagnosis cost levels associated with an acquired comorbidity. The description of the trajectories was formalized by a model which explicitly involves four parameters reflecting these four components.”

As I noted earlier in my coverage of the book, I don’t think the model above fully captures all relevant cost contributions of the diseases included, as the follow-up period was too short to capture all relevant costs to be included in the part iv model component. This is definitely a problem in the context of diabetes. But then again nothing in theory stops people from combining the model above with other models which are better at dealing with the excess costs associated with long-term complications of chronic diseases, and the model results were intriguing even if the model likely underperforms in a few specific disease contexts.

Moving on…

“Models of medical cost projections usually are based on regression models estimated with the majority of independent predictors describing demographic status of the individual, patient’s health state, and level of functional limitations, as well as their interactions […]. If the health states needs to be described by a number of simultaneously manifested diseases, then detailed stratification over the categorized variables or use of multivariate regression models allows for a better description of the health states. However, it can result in an abundance of model parameters to be estimated. One way to overcome these difficulties is to use an approach in which the model components are demographically-based aggregated characteristics that mimic the effects of specific states. The model developed in this chapter is an example of such an approach: the use of a comorbidity index rather than of a set of correlated categorical regressor variables to represent the health state allows for an essential reduction in the degrees of freedom of the problem.”

“Unlike mortality, the onset time of chronic disease is difficult to define with high precision due to the large variety of disease-specific criteria for onset/incident case identification […] there is always some arbitrariness in defining the date of chronic disease onset, and a unified definition of date of onset is necessary for population studies with a long-term follow-up.”

“Individual age trajectories of physiological indices are the product of a complicated interplay among genetic and non-genetic (environmental, behavioral, stochastic) factors that influence the human body during the course of aging. Accordingly, they may differ substantially among individuals in a cohort. Despite this fact, the average age trajectories for the same index follow remarkable regularities. […] some indices tend to change monotonically with age: the level of blood glucose (BG) increases almost monotonically; pulse pressure (PP) increases from age 40 until age 85, then levels off and shows a tendency to decline only at later ages. The age trajectories of other indices are non-monotonic: they tend to increase first and then decline. Body mass index (BMI) increases up to about age 70 and then declines, diastolic blood pressure (DBP) increases until age 55–60 and then declines, systolic blood pressure (SBP) increases until age 75 and then declines, serum cholesterol (SCH) increases until age 50 in males and age 70 in females and then declines, ventricular rate (VR) increases until age 55 in males and age 45 in females and then declines. With small variations, these general patterns are similar in males and females. The shapes of the age-trajectories of the physiological variables also appear to be similar for different genotypes. […] The effects of these physiological indices on mortality risk were studied in Yashin et al. (2006), who found that the effects are gender and age specific. They also found that the dynamic properties of the individual age trajectories of physiological indices may differ dramatically from one individual to the next.”

“An increase in the mortality rate with age is traditionally associated with the process of aging. This influence is mediated by aging-associated changes in thousands of biological and physiological variables, some of which have been measured in aging studies. The fact that the age trajectories of some of these variables differ among individuals with short and long life spans and healthy life spans indicates that dynamic properties of the indices affect life history traits. Our analyses of the FHS data clearly demonstrate that the values of physiological indices at age 40 are significant contributors both to life span and healthy life span […] suggesting that normalizing these variables around age 40 is important for preventing age-associated morbidity and mortality later in life. […] results [also] suggest that keeping physiological indices stable over the years of life could be as important as their normalizing around age 40.”

“The results […] indicate that, in the quest of identifying longevity genes, it may be important to look for candidate genes with pleiotropic effects on more than one dynamic characteristic of the age-trajectory of a physiological variable, such as genes that may influence both the initial value of a trait (intercept) and the rates of its changes over age (slopes). […] Our results indicate that the dynamic characteristics of age-related changes in physiological variables are important predictors of morbidity and mortality risks in aging individuals. […] We showed that the initial value (intercept), the rate of changes (slope), and the variability of a physiological index, in the age interval 40–60 years, significantly influenced both mortality risk and onset of unhealthy life at ages 60+ in our analyses of the Framingham Heart Study data. That is, these dynamic characteristics may serve as good predictors of late life morbidity and mortality risks. The results also suggest that physiological changes taking place in the organism in middle life may affect longevity through promoting or preventing diseases of old age. For non-monotonically changing indices, we found that having a later age at the peak value of the index […], a lower peak value […], a slower rate of decline in the index at older ages […], and less variability in the index over time, can be beneficial for longevity. Also, the dynamic characteristics of the physiological indices were, overall, associated with mortality risk more significantly than with onset of unhealthy life.”

“Decades of studies of candidate genes show that they are not linked to aging-related traits in a straightforward manner […]. Recent genome-wide association studies (GWAS) have reached fundamentally the same conclusion by showing that the traits in late life likely are controlled by a relatively large number of common genetic variants […]. Further, GWAS often show that the detected associations are of tiny effect […] the weak effect of genes on traits in late life can be not only because they confer small risks having small penetrance but because they confer large risks but in a complex fashion […] In this chapter, we consider several examples of complex modes of gene actions, including genetic tradeoffs, antagonistic genetic effects on the same traits at different ages, and variable genetic effects on lifespan. The analyses focus on the APOE common polymorphism. […] The analyses reported in this chapter suggest that the e4 allele can be protective against cancer with a more pronounced role in men. This protective effect is more characteristic of cancers at older ages and it holds in both the parental and offspring generations of the FHS participants. Unlike cancer, the effect of the e4 allele on risks of CVD is more pronounced in women. […] [The] results […] explicitly show that the same allele can change its role on risks of CVD in an antagonistic fashion from detrimental in women with onsets at younger ages to protective in women with onsets at older ages. […] e4 allele carriers have worse survival compared to non-e4 carriers in each cohort. […] Sex stratification shows sexual dimorphism in the effect of the e4 allele on survival […] with the e4 female carriers, particularly, being more exposed to worse survival. […] The results of these analyses provide two important insights into the role of genes in lifespan. First, they provide evidence on the key role of aging-related processes in genetic susceptibility to lifespan. For example, taking into account the specifics of aging-related processes gains 18 % in estimates of the RRs and five orders of magnitude in significance in the same sample of women […] without additional investments in increasing sample sizes and new genotyping. The second is that a detailed study of the role of aging-related processes in estimates of the effects of genes on lifespan (and healthspan) helps in detecting more homogeneous [high risk] sub-samples”.

“The aging of populations in developed countries requires effective strategies to extend healthspan. A promising solution could be to yield insights into the genetic predispositions for endophenotypes, diseases, well-being, and survival. It was thought that genome-wide association studies (GWAS) would be a major breakthrough in this endeavor. Various genetic association studies including GWAS assume that there should be a deterministic (unconditional) genetic component in such complex phenotypes. However, the idea of unconditional contributions of genes to these phenotypes faces serious difficulties which stem from the lack of direct evolutionary selection against or in favor of such phenotypes. In fact, evolutionary constraints imply that genes should be linked to age-related phenotypes in a complex manner through different mechanisms specific for given periods of life. Accordingly, the linkage between genes and these traits should be strongly modulated by age-related processes in a changing environment, i.e., by the individuals’ life course. The inherent sensitivity of genetic mechanisms of complex health traits to the life course will be a key concern as long as genetic discoveries continue to be aimed at improving human health.”

“Despite the common understanding that age is a risk factor of not just one but a large portion of human diseases in late life, each specific disease is typically considered as a stand-alone trait. Independence of diseases was a plausible hypothesis in the era of infectious diseases caused by different strains of microbes. Unlike those diseases, the exact etiology and precursors of diseases in late life are still elusive. It is clear, however, that the origin of these diseases differs from that of infectious diseases and that age-related diseases reflect a complicated interplay among ontogenetic changes, senescence processes, and damages from exposures to environmental hazards. Studies of the determinants of diseases in late life provide insights into a number of risk factors, apart from age, that are common for the development of many health pathologies. The presence of such common risk factors makes chronic diseases and hence risks of their occurrence interdependent. This means that the results of many calculations using the assumption of disease independence should be used with care. Chapter 4 argued that disregarding potential dependence among diseases may seriously bias estimates of potential gains in life expectancy attributable to the control or elimination of a specific disease and that the results of the process of coping with a specific disease will depend on the disease elimination strategy, which may affect mortality risks from other diseases.”

April 17, 2017 Posted by | Biology, Books, Cancer/oncology, Demographics, Economics, Epidemiology, Genetics, Medicine, Statistics | Leave a comment