Diabetes and the Metabolic Syndrome in Mental Health (I)

As I stated in my goodreads review, ‘If you’re a schizophrenic and/or you have a strong interest in e.g. the metabolic effects of various anti-psychotics, the book is a must-read’. If that’s not true, it’s a different matter. One reason why I didn’t give the book a higher rating is that many of the numbers in there are quite dated, which is a bit annoying because it means you might feel somewhat uncertain about how valid the estimates included still are at this point.

As pointed out in my coverage of the human drug metabolism text there are a lot of things that can influence the way that drugs are metabolized, and this text includes some details about a specific topic which may help to illustrate what I meant by stating in that post that people ‘self-experimenting’ may be taking on risks they may not be aware of. Now, diabetics who need insulin injections are taking a drug with a narrow therapeutic index, meaning that even small deviations from the optimal dose may have serious repercussions. A lot of things influence what is actually the optimal dose in a specific setting; food (“food is like a drug to a person with diabetes”, as pointed out in Matthew Neal’s endocrinology text, which is yet another text I, alas, have yet to cover here), sleep patterns, exercise (sometimes there may be an impact even days after you’ve exercised), stress, etc. all play a role, and even well-educated diabetics may not know all the details.

A lot of drugs also affect glucose metabolism and insulin sensitivity, one of the best known drug types of this nature probably being the corticosteroids because of their widespread use in a variety of disorders, including autoimmune disorders which tend to be more common in autoimmune forms of diabetes (mainly type 1). However many other types of drugs can also influence blood glucose, and on the topic of antidepressants and antipsychotics we actually know some stuff about these things and about how various medications influence glucose levels; it’s not a big coincidence that people have looked at this, they’ve done that because it has become clear that “[m]any medications, in particular psychotropics, including antidepressants, antipsychotics, and mood stabilizers, are associated with elevations in blood pressure, weight gain, dyslipidemias, and/or impaired glucose homeostasis.” (p. 49). Which may translate into an increased risk of type 2 diabetes, and impaired glucose control in diabetics. Incidentally the authors of this text observes in the text that: “Our research group was among the first in the field to identify a possible link between the development of obesity, diabetes, and other metabolic derangements (e.g., lipid abnormalities) and the use of newer, second-generation antipsychotic medications.” Did the people who took these drugs before this research was done/completed know that their medications might increase their risk of developing diabetes? No, because the people prescribing it didn’t know, nor did the people who developed the drugs. Some probably still don’t know, including some of the medical people prescribing these medications. But the knowledge is out there now, and the effect size is in the case of some drugs argued to be large enough to be clinically relevant. In the context of a ‘self-experimentation’-angle the example is also interesting because the negative effect in question here is significantly delayed; type 2 diabetes takes time to develop, and this is an undesirable outcome which you’re not going to spot the way you might link a headache the next day to a specific drug you just started out with (another example of a delayed adverse event is incidentally cancer). You’re not going to spot dyslipidemia unless you keep track of your lipid levels on your own or e.g. develop xanthomas as a consequence of it, leading you to consult a physician. It helps a lot if you have proper research protocols and large n studies with sufficient power when you want to discover things like this, and when you want to determine whether an association like this is ‘just an association’ or if the link is actually causal (and then clarifying what we actually mean by that, and whether the causal link is also clinically relevant and/or for whom it might be clinically relevant). Presumably many people taking all kinds of medical drugs these days are taking on risks which might in a similar manner be ‘hidden from view’ as was the risk of diabetes in people taking second-generation antipsychotics in the near-past; over time epidemiological studies may pick up on some of these risks, but many will probably remain hidden from view on account of the amount of complexity involved. Even if a drug ‘works’ as intended in the context of the target variable in question, you can get into a lot of trouble if you only focus on the target variable (“if a drug has no side effects, then it is unlikely to work“). People working in drug development know this.

The book has a lot of blog-worthy stuff so I decided to include some quotes in the coverage below. The quotes are from the first half of the book, and this part of the coverage actually doesn’t talk much about the effects of drugs; it mainly deals with epidemiology and cost estimates. I thus decided to save the ‘drug coverage’ to a later post. It should perhaps be noted that some of the things I’d hoped to learn from Ru-Band Lu et al.’s book (blog coverage here) was actually included in this one, which was nice.

“Those with mental illness are at higher risk and are more likely to suffer the severe consequences of comorbid medical illness. Adherence to treatment is often more difficult, and other factors such as psychoneuroendocrine interactions may complicate already problematic treatments. Additionally, psychiatric medications themselves often have severe side effects and can interact with other medications, rendering treatment of the mental illness more complicated. Diabetes is one example of a comorbid medical illness that is seen at a higher rate in people with mental illness.”

“Depression rates have been studied and are increased in type 1 and type 2 diabetes. In a meta-analysis, Barnard et al. reviewed 14 trials in which patients with type 1 diabetes were surveyed for rates of depression.16 […] subjects with type 1 diabetes had a 12.0% rate of depression compared with a rate of 3.4% in those without diabetes. In noncontrolled trials, they found an even higher rate of depression in patients with type 1 diabetes (13.4%). However, despite these overall findings, in trials that were considered of an adequate design, and with a substantially rigorous depression screening method (i.e., use of structured clinical interview rather than patient reported surveys), the rates were not statistically significantly increased (odds ratio [OR] 2.36, 95% confidence interval [CI] 0.69–5.4) but had such substantial variation that it was not sufficient to draw a conclusion regarding type 1 diabetes. […] When it comes to rates of depression, type 2 diabetes has been studied more extensively than type 1 diabetes. Anderson et al. compiled a large metaanalysis, looking at 42 studies involving more than 21,000 subjects to assess rates of depression among patients with type 1 versus type 2 diabetes mellitus.18 Regardless of how depression was measured, type 1 diabetes was associated with lower rates of depression than type 2 diabetes. […] Depression was significantly increased in both type 1 and type 2 diabetes, with increased ORs for subjects with type 1 (OR = 2.9, 95% CI 1.6 –5.5, […] p=0.0003) and type 2 disease (OR = 2.9, 95% CI 2.3–3.7, […] p = 0.0001) compared with controls. Overall, with multiple factors controlled for, the risk of depression in people with diabetes was approximately twofold. In another large meta-analysis, Ali et al. looked at more than 51,000 subjects in ten different studies to assess rates of depression in type 2 diabetes mellitus. […] the OR for comorbid depression among the diabetic patients studied was higher for men than for women, indicating that although women with diabetes have an overall increased prevalence of depression (23.8 vs. 12.8%, p = 0.0001), men with diabetes have an increased risk of developing depression (men: OR = 1.9, 95% CI = 1.7–2.1 vs. women: OR = 1.3, 95% CI = 1.2–1.4). […] Research has shown that youths 12–17 years of age with type 1 diabetes had double the risk of depression compared with a teenage population without diabetes.21 This amounted to nearly 15% of children meeting the criteria for depression.

As many as two-thirds of patients with diabetes and major depression have been ill with depression for more than 2 years.44 […] Depression has been linked to decreased adherence to self-care regimens (exercise, diet, and cessation of smoking) in patients with diabetes, as well as to the use of diabetes control medications […] Patients with diabetes and depression are twice as likely to have three or more cardiac risk factors such as smoking, obesity, sedentary lifestyle, or A1c > 8.0% compared with patients with diabetes alone.47 […] The costs for individuals with both major depression and diabetes are 4.5 times greater than for those with diabetes alone.53

“A 2004 cross-sectional and longitudinal study of data from the Health and Retirement Study demonstrated that the cumulative risk of incident disability over an 8-year period was 21.3% for individuals with diabetes versus 9.3% for those without diabetes. This study examined a cohort of adults ranging in age from 51 to 61 years from 1992 through 2000.”

Although people with diabetes comprise just slightly more than 4% of the U.S. population,3 19% of every dollar spent on health care (including hospitalizations, outpatient and physician visits, ambulance services, nursing home care, home health care, hospice, and medication/glucose control agents) is incurred by individuals with diabetes” (As I noted in the margin, these are old numbers, and prevalence in particular is definitely higher today than it was when that chapter was written, so diabetics’ proportion of the total cost is likely even higher today than it was when that chapter was written. As observed multiple times previously on this blog, most of these costs are unrelated to the costs of insulin treatment and oral anti-diabetics like metformin, and indirect costs make out a quite substantial proportion of the total costs).

In 1997, only 8% of the population with a medical claim of diabetes was treated for diabetes alone. Other conditions influenced health care spending, with 13.8% of the population with one other condition, 11.2% with two comorbidities, and 67% with three or more related conditions.6 Patients with diabetes who suffer from comorbid conditions related to diabetes have a greater impact on health services compared with those patients who do not have comorbid conditions. […] Overall, comorbid conditions and complications are responsible for 75% of total medical expenditures for diabetes.” (Again, these are old numbers)

“Heart disease and stroke are the largest contributors to mortality for individuals with diabetes; these two conditions are responsible for 65% of deaths. Death rates from heart disease in adults with diabetes are two to four times higher than in adults without diabetes. […] Adults with diabetes are more than twice as likely to have multiple diagnoses related to macrovascular disease compared to patients without diabetes […] Although the prevalence of cardiovascular disease increases with age for both diabetics and nondiabetics, adults with diabetes have a significantly higher rate of disease. […] The management of macrovascular disease, such as heart attacks and strokes, represents the largest factor driving medical service use and related costs, accounting for 52% of costs to treat diabetes over a lifetime. The average costs of treating macrovascular disease are $24,330 of a total of $47,240 per person (in year 2000 dollars) over the course of a lifetime.17 Moreover, macrovascular disease is an important determinant of cost at an earlier time than other complications, accounting for 85% of the cumulative costs during the first 5 years following diagnosis and 77% over the initial decade. [Be careful here: This is completely driven by type 2 diabetics; a 10-year old newly diagnosed type 1 diabetic does not develop heart disease in the first decade of disease – type 1s are also at high risk of cardiovascular disease, but the time profile here is completely different] […] Cardiovascular disease in the presence of diabetes affects not only cost but also the allocation of health care resources. Average annual individual costs attributed to the treatment of diabetes with cardiovascular disease were $10,172. Almost 51% of costs were for inpatient hospitalizations, 28% were for outpatient care, and 21% were for pharmaceuticals and related supplies. In comparison, the average annual costs for adults with diabetes and without cardiovascular disease were $4,402 for management and treatment of diabetes. Only 31.2% of costs were for inpatient hospitalizations, 40.3% were for outpatient care, and 28.6% were for pharmaceuticals.16

Of individuals with diabetes, 2% to 3% develop a foot ulcer during any given year. The lifetime incidence rate of lower extremity ulcers is 15% in the diabetic population.20 […] The rate of amputation in individuals with diabetes is ten times higher than in those without diabetes.5 Diabetic lower-extremity ulcers are responsible for 92,000 amputations each year,21 accounting for more than 60% of all nontraumatic amputations.5 The 10-year cumulative incidence of lower-extremity amputation is 7% in adults older than 30 years of age who are diagnosed with diabetes.22 […] Following amputation, the 5-year survival rate is 27%.23 […] The majority of annual costs associated with treating diabetic peripheral neuropathy are associated with treatment of ulcers […] Overall, inpatient hospitalization is a major driver of cost, accounting for 77% of expenditures associated with individual episodes of lower-extremity ulcers.24

By 2003, diabetes accounted for 37% of individuals being treated for renal disease in the United States. […] Diabetes is the leading cause of kidney failure, accounting for 44% of all newly diagnosed cases. […] The amount of direct medical costs for ESRD attributed to diabetes is substantial. The total adjusted costs in a 24-month period were 76% higher among ESRD patients with diabetes compared with those without diabetes. […] Nearly one half of the costs of ESRD are due to diabetes.27” [How much did these numbers change since the book was written? I’m not sure, but these estimates do provide some sort of a starting point, which is why I decided to include the numbers even though I assume some of them may have changed since the publication of the book]

Every percentage point decrease in A1c levels reduces the risk of microvascular complications such as retinopathy, neuropathy, and nephropathy by 40%.5 However, the trend is for A1c to drift upward at an average of 0.15% per year, increasing the risk of complications and costs.17 […] A1c levels also affect the cost of specific complications associated with diabetes. Increasing levels affect overall cost and escalate more dramatically when comorbidities are present. A1c along with cardiovascular disease, hypertension, and depression are significant independent predictors of health care
costs in adults with diabetes.”

August 10, 2016 - Posted by | books, diabetes, economics, medicine, Pharmacology

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: