Econstudentlog

Peripheral Neuropathy & Neuropathic Pain: Into the light (II)

Here’s my first post about the book. As I mentioned in that post, I figured I should limit detailed coverage to the parts of the book dealing with stuff related to diabetic/metabolic neuropathies. There’s a chapter specifically about ‘diabetic and uraemic neuropathies’ in the book and most of the coverage below relates to content covered in that chapter, but I have also included some related observations from other parts of the book as they seemed relevant.

It is noted in the book’s coverage that diabetes is the commonest cause of neuropathy in industrialized countries. There are many ways in which diabetes can affect the nervous system, and not all diabetes-related neuropathies affect peripheral nerves. Apart from distal symmetric polyneuropathy, which can probably in this context be thought of as ‘classic diabetic neuropathy’, focal or multifocal involvement of the peripheral nervous system is also common, and so is autonomic neuropathy. Diabetics are also at increased risk of inflammatory neuropathies such as CIDP – chronic inflammatory demyelinating polyneuropathy (about which the book also has a chapter). Late stage complications of diabetes usually relate to some extent to vessel wall abnormalities and their effects, and the blood vessels supplying the peripheral nerves can be affected just like all other blood vessels; in that context it is of interest to note that the author mentions elsewhere in the book that “tissue ischaemia is more likely to be symptomatic in nerves than in most other organs”. According to the author there isn’t really a great way to classify all the various manifestations of diabetic neuropathy, but most of them fall into one of three groups – distal symmetrical sensorimotor (length-dependent) polyneuropathy (DSSP); autonomic neuropathy; and focal- and multifocal neuropathy. The first one of these is by far the most common, and it is predominantly a sensory neuropathy (‘can you feel this?’ ‘does this hurt?’ ‘Is this water hot or cold?’ – as opposed to motor neuropathy: ‘can you move your arm?’) with no motor deficit.

Neuropathies in diabetics are common – how common? The author notes that the prevalence in several population-based surveys has been found to be around 30% “in studies using restrictive definitions”. The author does not mention this, but given that diabetic neuropathy usually has an insidious onset and given that diabetes-related sensory neuropathy “can be totally asymptomatic”, survey-based measures are if anything likely to underestimate prevalence. Risk increases with age and duration of diabetes; the prevalence of diabetic peripheral neuropathy is more than 50% in type 1 diabetics above the age of 60.

DSSP may lead to numbness, burning feet, a pins and needles sensation and piercing/stabbing pain in affected limbs. The ‘symmetric’ part of the abbreviation means that it usually affects both sides of the body, instead of e.g. just one foot or hand. The length-dependence mentioned in the parenthesis earlier relates in a way to the pathophysiological process. The axons of the peripheral nervous system lack ribosomes, and this means that essential proteins and enzymes needed in distal regions of the nervous system need to be transported great distances through the axons – which again means that neurons with long axons are particularly vulnerable to toxic or metabolic disturbances (introducing a length-dependence aspect in terms of which nerves are affected) which may lead to so-called dying-back axonal degeneration. The sensory loss can be restricted to the toes, extend over the feet, or it can migrate even further up the limbs – when sensory loss extends above the knee, signs and symptoms of nerve damage will usually also be observed in the fingers/hands/forearms. In generalized neuropathies a distinction can be made in terms of which type of nerve fibres are predominantly involved. When small fibres are most affected, sensory effects relating to pain- and temperature perception predominate, whereas light touch, position and vibratory senses are relatively preserved; on the other hand abnormalities of proprioception and sensitivity to light touch, often accompanied by motor deficits, will predominate if larger myelinated fibres are involved. DSSP is a small fibre neuropathy.

One of the ‘problems’ in diabetic neuropathy is actually that whereas sensation is affected, motor function often is not. This might be considered much better than the alternative, but unimpaired motor function actually relates closely to how damage often occurs. Wounds/ulcers developing on the soles of the feet (plantar ulcers) are very common in conditions in which there is sensation loss but no motor involvement/loss of strength; people with absent pain sensation will not know when their feet get hurt, e.g. because of a stone in the shoe or other forms of micro-trauma, but they’re still able to walk around relatively unimpaired and the absence of protective sensation in the limbs can thus lead to overuse of joints and accidental self-injury. A substantial proportion of diabetics with peripheral neuropathy also have lower limb ischaemia from peripheral artery disease, which further increases risk, but even in the absence of ischaemia things can go very wrong (for more details, see Edmonds, Foster, and Sanders – I should perhaps warn that the picture in that link is not a great appetite-stimulant). Of course one related problem here is that you can’t just stop moving around in order to avoid these problems once you’re aware that you have peripheral sensory neuropathy; inactivity will lead to muscle atrophy and ischaemia, and that’s not good for your feet either. The neuropathy may not ‘just’ lead to ulcers, but may also lead to the foot becoming deformed – the incidence of neuroarthropathy is approximately 2%/year in diabetics with peripheral neuropathy. Foot deformity is sometimes of acute onset and may be completely painless, despite leading to (painless) fractures and disorganization of joints. In the context of ulcers it is important that foot ulcers often take a *very* long time to heal, and so they provide excellent entry points for bacteria which among other things can cause chronic osteomyelitis (infection and inflammation of the bone and bone marrow). Pronounced motor involvement is as mentioned often absent in DSSP, but it does sometimes occur, usually at a late stage.

The author notes repeatedly in the text that peripheral neuropathy is sometimes the presenting symptom in type 2 diabetes, and I thought I should include that observation here as well. The high blood glucose may not be what leads the patient to see a doctor – sometimes the fact that he can no longer feel his toes is. At that point the nerve damage which has already occurred will of course usually be irreversible.

When the autonomic nervous system is affected (this is called Diabetic Autonomic Neuropathy, -DAN), this can lead to a variety of different symptoms. Effects of orthostatic hypotension (-OH) are frequent complaints; blackouts, faintness and dizziness or visual obscuration on standing are not always due to side effects of blood pressure medications. The author notes that OH can be aggravated by tricyclic antidepressants which are often used for treating chronic neuropathic pain (diabetics with autonomous nervous system disorder will often have, sometimes painful, peripheral neuropathy as well). Neurogenic male impotence seems to be “extremely common”; this leads to the absence of an erection at any time under any circumstances. The bladder may also be involved, which can lead to increased intervals between voiding and residual urine in the bladder after voiding, which can lead to UTIs. It is noted that retrograde ejaculation is frequent in people with bladder atony. The gastrointestinal system can be affected; this is often asymptomatic, but may lead to diarrhea and constipation causing weight loss and malnutrition. Associated diarrhea may be accompanied by fecal incontinence. DAN can lead to hypoglycemia unawareness, making glycemic control more difficult to accomplish. Sweating disorders are common in the feet. When a limb is affected by neuropathy the limb may lose its ability to sweat, and this may lead to other parts of the body (e.g. the head or upper trunk) engaging in ‘compensatory sweating’ to maintain temperature control. Abnormal pupil responses, e.g. in the form of reduced light reflexes and constricted pupils (miosis), are common in diabetics.

Focal (one nerve) and occasionally also multi-focal (more than one nerve) neuropathic syndromes also occur in the diabetic setting. The book spends quite a bit of time talking about what different nerves do and what happens when they stop working, so it’s hard to paint a broad picture of how these types of problems may present – it all depends on which nerve(s) is (are) affected. Usually in the setting of these disorders the long-term prognosis is good, or at least better than in the setting of DSSP; nerve damage is often not permanent. It seems that in terms of cranial nerve involvement, oculomotor nerve palsies are the most common, but still quite rare, affecting 1-2% of diabetics. Symptoms are rapid onset pain followed by double vision, and “spontaneous and complete recovery invariably occurs within 2-3 months” – I would like to note that as far as diabetes complications go, this is probably about as good as it gets… In so-called proximal diabetic neuropathy (-PDN), another type of mononeuropathy/focal neuropathy, the thighs are involved, with numbness or pain, often of a burning character which is worse at night, as well as muscle wasting. That syndrome progresses over weeks or months, after which the condition usually stabilizes and the pain improves, though residual muscle weakness seems to be common. Unlike in the case of DSSP, deficits in PDN are usually asymmetric, and both motor involvement and gradual recovery is common – it’s important to note in this context that DSSP virtually never improves spontaneously and often has a progressive course. Multi-focal neuropathies affect only a small proportion of diabetics, and in terms of outcome patterns they might be said to lie somewhere in between mononeuropathies and DSSP; outcomes are better than in the case of DSSP, but long-term sequelae are common.

Diabetics are at increased risk of developing pressure palsies in general. According to the author carpal tunnel syndrome occurs in 12% of diabetic patients, and “the incidence of ulnar neuropathy due to microlesions at the elbow level is high”.

In diabetics with renal failure caused by diabetic nephropathy (or presumably for that matter renal failure caused by other things as well, but most diabetics with kidney failure will have diabetic nephropathy) neuropathy is common and often severe. Renal failure impairs nerve function and is responsible for sometimes severe motor deficits in these patients. “Recovery from motor deficits is usually good after kidney transplant”. Carpal tunnel syndrome is very common in patients on long-term dialysis; 20 to 50 % of patients dialysed for 10 years or more are reported to have carpal tunnel syndrome. The presence of neuropathy in renal patients is closely related to renal function; the lower renal function, the more likely neurological symptoms become.

As you’ll learn from this book, a lot of things can cause peripheral neuropathies – and so the author notes that “In focal neuropathy occurring in diabetic patients, a neuropathy of another origin must always be excluded.” It’s not always diabetes, and sometimes missing the true cause can be a really bad thing; for example cancer-associated paraneoplastic syndromes are often associated with neuropathy (“paraneoplastic syndromes affect the PNS [Peripheral Nervous System] in up to one third of patients with solid tumors”), and so missing ‘the true cause’ in the case of a focal neuropathy may mean missing a growing tumour.

In terms of treatment options, “There is no specific treatment for distal symmetric polyneuropathy.” Complications can be treated/ideally prevented, but we have no drugs the primary effects of which are to specifically stop the nerves from dying. Treatment of autonomic neuropathy mostly relates to treating symptoms, in particular symptomatic OH. Treatment of proximal diabetic neuropathy, which is often very painful, relates only to pain management. Multifocal diabetic neuropathy can be treated with corticosteroids, minimizing inflammation.

Due to how common diabetic neuropathy is, most controlled studies on treatment options for neuropathic pain have involved patients with distal diabetic polyneuropathy. Various treatment options exist in the context of peripheral neuropathies, including antidepressants, antiepileptic drugs and opioids, as well as topical patches. In general pharmacological treatments will not cause anywhere near complete pain relief: “For patients receiving pharmacological treatment, the average pain reduction is about 20-30%, and only 20-35% of patients will achieve at least a 50% pain reduction with available drugs. […] often only partial pain relief from neuropathic pain can be expected, and […] sensory deficits are unlikely to respond to treatment.” Treatment of neuropathic pain is often a trial-and-error process.

October 17, 2015 - Posted by | books, diabetes, medicine, Pharmacology

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: