Wikipedia articles of interest

i. Albert Stevens.

Albert Stevens (1887–1966), also known as patient CAL-1, was the subject of a human radiation experiment, and survived the highest known accumulated radiation dose in any human.[1] On May 14, 1945, he was injected with 131 kBq (3.55 µCi) of plutonium without his knowledge or informed consent.[2]

Plutonium remained present in his body for the remainder of his life, the amount decaying slowly through radioactive decay and biological elimination. Stevens died of heart disease some 20 years later, having accumulated an effective radiation dose of 64 Sv (6400 rem) over that period. The current annual permitted dose for a radiation worker in the United States is 5 rem. […] Steven’s annual dose was approximately 60 times this amount.”

“Plutonium was handled extensively by chemists, technicians, and physicists taking part in the Manhattan Project, but the effects of plutonium exposure on the human body were largely unknown.[2] A few mishaps in 1944 had caused certain alarm amongst project leaders, and contamination was becoming a major problem in and outside the laboratories.[2] […] As the Manhattan Project continued to use plutonium, airborne contamination began to be a major concern.[2] Nose swipes were taken frequently of the workers, with numerous cases of moderate and high readings.[2][5] […] Tracer experiments were begun in 1944 with rats and other animals with the knowledge of all of the Manhattan project managers and health directors of the various sites. In 1945, human tracer experiments began with the intent to determine how to properly analyze excretion samples to estimate body burden. Numerous analytic methods were devised by the lead doctors at the Met Lab (Chicago), Los Alamos, Rochester, Oak Ridge, and Berkeley.[2] The first human plutonium injection experiments were approved in April 1945 for three tests: April 10 at the Manhattan Project Army Hospital in Oak Ridge, April 26 at Billings Hospital in Chicago, and May 14 at the University of California Hospital in San Francisco. Albert Stevens was the person selected in the California test and designated CAL-1 in official documents.[2] […] The plutonium experiments were not isolated events.[2] During this time, cancer researchers were attempting to discover whether certain radioactive elements might be useful to treat cancer.[2] Recent studies on radium, polonium, and uranium proved foundational to the study of Pu toxicity. […] The mastermind behind this human experiment with plutonium was Dr. Joseph Gilbert Hamilton, a Manhattan Project doctor in charge of the human experiments in California.[6] Hamilton had been experimenting on people (including himself) since the 1930s at Berkeley. […] Hamilton eventually succumbed to the radiation that he explored for most of his adult life: he died of leukemia at the age of 49.”

“Although Stevens was the person who received the highest dose of radiation during the plutonium experiments, he was neither the first nor the last subject to be studied. Eighteen people aged 4 to 69 were injected with plutonium. Subjects who were chosen for the experiment had been diagnosed with a terminal disease. They lived from 6 days up to 44 years past the time of their injection.[2] Eight of the 18 died within 2 years of the injection.[2] All died from their preexisting terminal illness, or cardiac illnesses. […] As with all radiological testing during World War II, it would have been difficult to receive informed consent for Pu injection studies on civilians. Within the Manhattan Project, plutonium was referred to often by its code “49” or simply the “product.” Few outside of the Manhattan Project would have known of plutonium, much less of the dangers of radioactive isotopes inside the body. There is no evidence that Stevens had any idea that he was the subject of a secret government experiment in which he would be subjected to a substance that would have no benefit to his health.[2][6]

The best part is perhaps this: Stevens was not terminal: “He had checked into the University of California Hospital in San Francisco with a gastric ulcer that was misdiagnosed as terminal cancer.” It seems pretty obvious from the fact that one of the people involved in these experiments survived for 44 years and the fact that four other experimentees were still alive by the time Stevens died that he was not the only one who was misdiagnosed, and one interpretation of the fact that more than half survived beyond two years might be that the definition of ‘terminal’ applied in this context may have been, well, slightly flexible (especially considering how large injections of radioactive poisons in these people may not exactly have increased their life expectancies). Today people usually use this term for conditions which people can expect to die from within 6 months – 2 years is a long time in this context. It may however also to some extent just have reflected the state of medical science at the time – also illustrative in that respect is how the surgeons screwed him over during his illness: “Half of the left lobe of the liver, the entire spleen, most of the ninth rib, lymph nodes, part of the pancreas, and a portion of the omentum… were taken out”[1] to help prevent the spread of the cancer that Stevens did not have.” In case you were wondering, not only did they not tell him he was part of an experiment; they also did not ever tell him he had been misdiagnosed with cancer.

ii. Aberration of light.

“The aberration of light (also referred to as astronomical aberration or stellar aberration) is an astronomical phenomenon which produces an apparent motion of celestial objects about their locations dependent on the velocity of the observer. Aberration causes objects to appear to be angled or tilted towards the direction of motion of the observer compared to when the observer is stationary. The change in angle is typically very small, on the order of v/c where c is the speed of light and v the velocity of the observer. In the case of “stellar” or “annual” aberration, the apparent position of a star to an observer on Earth varies periodically over the course of a year as the Earth’s velocity changes as it revolves around the Sun […] Aberration is historically significant because of its role in the development of the theories of light, electromagnetism and, ultimately, the theory of Special Relativity. […] In 1729, James Bradley provided a classical explanation for it in terms of the finite speed of light relative to the motion of the Earth in its orbit around the Sun,[1][2] which he used to make one of the earliest measurements of the speed of light. However, Bradley’s theory was incompatible with 19th century theories of light, and aberration became a major motivation for the aether drag theories of Augustin Fresnel (in 1818) and G. G. Stokes (in 1845), and for Hendrick Lorentzaether theory of electromagnetism in 1892. The aberration of light, together with Lorentz’ elaboration of Maxwell’s electrodynamics, the moving magnet and conductor problem, the negative aether drift experiments, as well as the Fizeau experiment, led Albert Einstein to develop the theory of Special Relativity in 1905, which provided a conclusive explanation for the aberration phenomenon.[3] […]

Aberration may be explained as the difference in angle of a beam of light in different inertial frames of reference. A common analogy is to the apparent direction of falling rain: If rain is falling vertically in the frame of reference of a person standing still, then to a person moving forwards the rain will appear to arrive at an angle, requiring the moving observer to tilt their umbrella forwards. The faster the observer moves, the more tilt is needed.

The net effect is that light rays striking the moving observer from the sides in a stationary frame will come angled from ahead in the moving observer’s frame. This effect is sometimes called the “searchlight” or “headlight” effect.

In the case of annual aberration of starlight, the direction of incoming starlight as seen in the Earth’s moving frame is tilted relative to the angle observed in the Sun’s frame. Since the direction of motion of the Earth changes during its orbit, the direction of this tilting changes during the course of the year, and causes the apparent position of the star to differ from its true position as measured in the inertial frame of the Sun.

While classical reasoning gives intuition for aberration, it leads to a number of physical paradoxes […] The theory of Special Relativity is required to correctly account for aberration.”

The article has much more, in particular it has a lot of stuff about historical aspects pertaining to this topic.

iii. Spanish Armada.

“The Spanish Armada (Spanish: Grande y Felicísima Armada or Armada Invencible, literally “Great and Most Fortunate Navy” or “Invincible Fleet”) was a Spanish fleet of 130 ships that sailed from A Coruña in August 1588 under the command of the Duke of Medina Sidonia with the purpose of escorting an army from Flanders to invade England. The strategic aim was to overthrow Queen Elizabeth I of England and the Tudor establishment of Protestantism in England, with the expectation that this would put a stop to English interference in the Spanish Netherlands and to the harm caused to Spanish interests by English and Dutch privateering.

The Armada chose not to attack the English fleet at Plymouth, then failed to establish a temporary anchorage in the Solent, after one Spanish ship had been captured by Francis Drake in the English Channel, and finally dropped anchor off Calais.[10] While awaiting communications from the Duke of Parma‘s army the Armada was scattered by an English fireship attack. In the ensuing Battle of Gravelines the Spanish fleet was damaged and forced to abandon its rendezvous with Parma’s army, who were blockaded in harbour by Dutch flyboats. The Armada managed to regroup and, driven by southwest winds, withdrew north, with the English fleet harrying it up the east coast of England. The commander ordered a return to Spain, but the Armada was disrupted during severe storms in the North Atlantic and a large portion of the vessels were wrecked on the coasts of Scotland and Ireland. Of the initial 130 ships over a third failed to return.[11] […] The expedition was the largest engagement of the undeclared Anglo-Spanish War (1585–1604). The following year England organised a similar large-scale campaign against Spain, the Drake-Norris Expedition, also known as the Counter-Armada of 1589, which was also unsuccessful. […]

The fleet was composed of 130 ships, 8,000 sailors and 18,000 soldiers, and bore 1,500 brass guns and 1,000 iron guns. […] In the Spanish Netherlands 30,000 soldiers[17] awaited the arrival of the armada, the plan being to use the cover of the warships to convey the army on barges to a place near London. All told, 55,000 men were to have been mustered, a huge army for that time. […] The English fleet outnumbered the Spanish, with 200 ships to 130,[18] while the Spanish fleet outgunned the English—its available firepower was 50% more than that of the English.[19] The English fleet consisted of the 34 ships of the royal fleet (21 of which were galleons of 200 to 400 tons), and 163 other ships, 30 of which were of 200 to 400 tons and carried up to 42 guns each; 12 of these were privateers owned by Lord Howard of Effingham, Sir John Hawkins and Sir Francis Drake.[1] […] The Armada was delayed by bad weather […], and was not sighted in England until 19 July, when it appeared off The Lizard in Cornwall. The news was conveyed to London by a system of beacons that had been constructed all the way along the south coast.”

“During all the engagements, the Spanish heavy guns could not easily be run in for reloading because of their close spacing and the quantities of supplies stowed between decks […] Instead the gunners fired once and then jumped to the rigging to attend to their main task as marines ready to board enemy ships, as had been the practice in naval warfare at the time. In fact, evidence from Armada wrecks in Ireland shows that much of the fleet’s ammunition was never spent.[26] Their determination to fight by boarding, rather than cannon fire at a distance, proved a weakness for the Spanish; it had been effective on occasions such as the battles of Lepanto and Ponta Delgada (1582), but the English were aware of this strength and sought to avoid it by keeping their distance. With its superior manoeuvrability, the English fleet provoked Spanish fire while staying out of range. The English then closed, firing repeated and damaging broadsides into the enemy ships. This also enabled them to maintain a position to windward so that the heeling Armada hulls were exposed to damage below the water line. Many of the gunners were killed or wounded, and the task of manning the cannon often fell to the regular foot soldiers on board, who did not know how to operate the guns. The ships were close enough for sailors on the upper decks of the English and Spanish ships to exchange musket fire. […] The outcome seemed to vindicate the English strategy and resulted in a revolution in naval battle tactics with the promotion of gunnery, which until then had played a supporting role to the tasks of ramming and boarding.”

“In September 1588 the Armada sailed around Scotland and Ireland into the North Atlantic. The ships were beginning to show wear from the long voyage, and some were kept together by having their hulls bundled up with cables. Supplies of food and water ran short. The intention would have been to keep well to the west of the coast of Scotland and Ireland, in the relative safety of the open sea. However, there being at that time no way of accurately measuring longitude, the Spanish were not aware that the Gulf Stream was carrying them north and east as they tried to move west, and they eventually turned south much further to the east than planned, a devastating navigational error. Off the coasts of Scotland and Ireland the fleet ran into a series of powerful westerly winds […] Because so many anchors had been abandoned during the escape from the English fireships off Calais, many of the ships were incapable of securing shelter as they reached the coast of Ireland and were driven onto the rocks. Local men looted the ships. […] more ships and sailors were lost to cold and stormy weather than in direct combat. […] Following the gales it is reckoned that 5,000 men died, by drowning, starvation and slaughter at the hands of English forces after they were driven ashore in Ireland; only half of the Spanish Armada fleet returned home to Spain.[30] Reports of the passage around Ireland abound with strange accounts of hardship and survival.[31]

In the end, 67 ships and fewer than 10,000 men survived.[32] Many of the men were near death from disease, as the conditions were very cramped and most of the ships ran out of food and water. Many more died in Spain, or on hospital ships in Spanish harbours, from diseases contracted during the voyage.”

iv. Viral hemorrhagic septicemia.

Viral hemorrhagic septicemia (VHS) is a deadly infectious fish disease caused by the Viral hemorrhagic septicemia virus (VHSV, or VHSv). It afflicts over 50 species of freshwater and marine fish in several parts of the northern hemisphere.[1] VHS is caused by the viral hemorrhagic septicemia virus (VHSV), different strains of which occur in different regions, and affect different species. There are no signs that the disease affects human health. VHS is also known as “Egtved disease,” and VHSV as “Egtved virus.”[2]

Historically, VHS was associated mostly with freshwater salmonids in western Europe, documented as a pathogenic disease among cultured salmonids since the 1950s.[3] Today it is still a major concern for many fish farms in Europe and is therefore being watched closely by the European Community Reference Laboratory for Fish Diseases. It was first discovered in the US in 1988 among salmon returning from the Pacific in Washington State.[4] This North American genotype was identified as a distinct, more marine-stable strain than the European genotype. VHS has since been found afflicting marine fish in the northeastern Pacific Ocean, the North Sea, and the Baltic Sea.[3] Since 2005, massive die-offs have occurred among a wide variety of freshwater species in the Great Lakes region of North America.”

The article isn’t that great but I figured I should include it anyway because I find it sort of fascinating how almost all humans alive can and do live their entire lives without necessarily ever knowing anything about stuff like this. Humans have some really obvious blind spots when it comes to knowledge about some of the stuff we put into our mouths on a regular basis.

v. Bird migration.

Bird migration is the regular seasonal movement, often north and south along a flyway between breeding and wintering grounds, undertaken by many species of birds. Migration, which carries high costs in predation and mortality, including from hunting by humans, is driven primarily by availability of food. Migration occurs mainly in the Northern Hemisphere where birds are funnelled on to specific routes by natural barriers such as the Mediterranean Sea or the Caribbean Sea.”


“Historically, migration has been recorded as much as 3,000 years ago by Ancient Greek authors including Homer and Aristotle […] Aristotle noted that cranes traveled from the steppes of Scythia to marshes at the headwaters of the Nile. […] Aristotle however suggested that swallows and other birds hibernated. […] It was not until the end of the eighteenth century that migration as an explanation for the winter disappearance of birds from northern climes was accepted […] [and Aristotle’s hibernation] belief persisted as late as 1878, when Elliott Coues listed the titles of no less than 182 papers dealing with the hibernation of swallows.”

“Approximately 1800 of the world’s 10,000 bird species are long-distance migrants.[9][10] […] Within a species not all populations may be migratory; this is known as “partial migration”. Partial migration is very common in the southern continents; in Australia, 44% of non-passerine birds and 32% of passerine species are partially migratory.[17] In some species, the population at higher latitudes tends to be migratory and will often winter at lower latitude. The migrating birds bypass the latitudes where other populations may be sedentary, where suitable wintering habitats may already be occupied. This is an example of leap-frog migration.[18] Many fully migratory species show leap-frog migration (birds that nest at higher latitudes spend the winter at lower latitudes), and many show the alternative, chain migration, where populations ‘slide’ more evenly North and South without reversing order.[19]

Within a population, it is common for different ages and/or sexes to have different patterns of timing and distance. […] Many, if not most, birds migrate in flocks. For larger birds, flying in flocks reduces the energy cost. Geese in a V-formation may conserve 12–20% of the energy they would need to fly alone.[21][22] […] Seabirds fly low over water but gain altitude when crossing land, and the reverse pattern is seen in landbirds.[25][26] However most bird migration is in the range of 150 m (500 ft) to 600 m (2000 ft). Bird strike aviation records from the United States show most collisions occur below 600 m (2000 ft) and almost none above 1800 m (6000 ft).[27] Bird migration is not limited to birds that can fly. Most species of penguin migrate by swimming.”

“Some Bar-tailed Godwits have the longest known non-stop flight of any migrant, flying 11,000 km from Alaska to their New Zealand non-breeding areas.[36] Prior to migration, 55 percent of their bodyweight is stored fat to fuel this uninterrupted journey. […] The Arctic Tern has the longest-distance migration of any bird, and sees more daylight than any other, moving from its Arctic breeding grounds to the Antarctic non-breeding areas.[37] One Arctic Tern, ringed (banded) as a chick on the Farne Islands off the British east coast, reached Melbourne, Australia in just three months from fledging, a sea journey of over 22,000 km (14,000 mi). […] The most pelagic species, mainly in the ‘tubenose’ order Procellariiformes, are great wanderers, and the albatrosses of the southern oceans may circle the globe as they ride the “roaring forties” outside the breeding season. The tubenoses spread widely over large areas of open ocean, but congregate when food becomes available. Many are also among the longest-distance migrants; Sooty Shearwaters nesting on the Falkland Islands migrate 14,000 km (8,700 mi) between the breeding colony and the North Atlantic Ocean off Norway. Some Manx Shearwaters do this same journey in reverse. As they are long-lived birds, they may cover enormous distances during their lives; one record-breaking Manx Shearwater is calculated to have flown 8 million km (5 million miles) during its over-50 year lifespan.[39]

“Bird migration is primarily, but not entirely, a Northern Hemisphere phenomenon.[50] This is because land birds in high northern latitudes, where food becomes scarce in winter, leave for areas further south (including the Southern Hemisphere) to overwinter, and because the continental landmass is much larger in the Northern Hemisphere [see also this post]. In contrast, among (pelagic) seabirds, species of the Southern Hemisphere are more likely to migrate. This is because there is a large area of ocean in the Southern Hemisphere, and more islands suitable for seabirds to nest.[51]


July 10, 2014 - Posted by | biology, history, medicine, Physics, wikipedia, Zoology

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: