Econstudentlog

Stuff

i. I’ve played some good chess over the last few weeks. I’m currently participating in an unrated chess tournament –  the format is two games per evening (one with the white pieces and one with the black), with 45 minutes per person per game. The time control means that although the games aren’t rated, they’re at least long enough to be what I’d consider ‘semi-serious’.

Here’s a recent game I played, from that tournament – I was white. It wasn’t without flaws on my part but it was ‘good enough’ as he was basically lost out of the opening. I wasn’t actually sure if 7.Qd4 could be played (this should tell you all you need to know about how much I know about the Pirc…) but I was told after the game that it was playable – my opponent had seen it in a book before, but he’d forgotten how the theory went and so he made a blunder. It was the second game that evening, played shortly after I’d held my opponent, a ca. 2000 FIDE rated player, to a draw in the first game. I mention the first game also because I think it’s quite likely that the outcome of that game played a role in the mistake he made in the second game. The average rating of my opponents so far has been 1908 (I’ve also drawn a 2173 FIDE guy along the way, though the chess in that case was not that great), and I’m at +1 after six games. I’ve beaten FMs before in bullet and blitz, but as mentioned these games are a tad more serious than, say, random 3 minute games online, and this is one of the first times I’ve encountered opponents as strong as this in a ‘semi-serious’ setting. And I’m doing quite well. It probably can’t go on, but I’m enjoying it while it lasts.

ii. An interesting medical lecture about vaccines:

iii. Estimating Gender Disparities in Federal Criminal Cases.

“This paper assesses gender disparities in federal criminal cases. It finds large gender gaps favoring women throughout the sentence length distribution (averaging over 60%), conditional on arrest offense, criminal history, and other pre-charge observables. Female arrestees are also significantly likelier to avoid charges and convictions entirely, and twice as likely to avoid incarceration if convicted. Prior studies have reported much smaller sentence gaps because they have ignored the role of charging, plea-bargaining, and sentencing fact-finding in producing sentences. Most studies control for endogenous severity measures that result from these earlier discretionary processes and use samples that have been winnowed by them. I avoid these problems by using a linked dataset tracing cases from arrest through sentencing. Using decomposition methods, I show that most sentence disparity arises from decisions at the earlier stages, and use the rich data to investigate causal theories for these gender gaps.”

Here’s what she’s trying to figure out: “In short, I ask: do otherwise-similar men and women who are arrested for the same crimes end up with the same punishments, and if not, at what points do their fates diverge?”

Some stuff from the paper:

“The estimated gender disparities are strikingly large, conditional on observables. Most notably, treatment as male is associated with a 63% average increase in sentence length, with substantial unexplained gaps throughout the sentence distribution. These gaps are much larger than those estimated by previous research. This is because, as the sequential decomposition demonstrates, the gender gap in sentences is mostly driven by decisions earlier in the justice process—most importantly sentencing fact-finding, a prosecutor-driven process that other literature has ignored.

But why do these disparities exist? Despite the rich set of covariates, unobservable gender differences are still possible, so I cannot definitively answer the causal question. However, several plausible theories have testable implications, and I take advantage of the unusually rich dataset to explore them. I find substantial support for some theories (particularly accommodation of childcare responsibilities and perceived role differences in group crimes), but that these appear only to partially explain the observed disparities.” […]

“Columns 11-12 of Table 5 show that the gender gap is substantially larger among black than non-black defendants (74% versus 51%). The race-gender interaction adds to our understanding of racial disparity: racial disparities among men significantly favor whites,29 but among women, the race gap in this sample is insignificant (and reversed in sign). The interaction also offers another theory for the gender gap: it might partly reflect a “black male effect”—a special harshness toward black men, who are by far the most incarcerated group in the U.S. […] This theory only goes so far, however — the gender gap even among non-blacks is over 50%, far larger than the race gap among men.”

iv. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus?

“Nutritional factors affect blood glucose levels, however there is currently no universal approach to the optimal dietary strategy for diabetes. Different carbohydrate foods have different effects on blood glucose and can be ranked by the overall effect on the blood glucose levels using the so-called glycaemic index. By contributing a gradual supply of glucose to the bloodstream and hence stimulating lower insulin release, low glycaemic index foods, such as lentils, beans and oats, may contribute to improved glycaemic control, compared to high glycaemic index foods, such as white bread. The so-called glycaemic load represents the overall glycaemic effect of the diet and is calculated by multiplying the glycaemic index by the grammes of carbohydrates.

We identified eleven relevant randomised controlled trials, lasting 1 to 12 months, involving 402 participants. Metabolic control (measured by glycated haemoglobin A1c (HbA1c), a long-term measure of blood glucose levels) decreased by 0.5% HbA1c with low glycaemic index diet, which is both statistically and clinically significant. Hypoglycaemic episodes significantly decreased with low glycaemic index diet compared to high glycaemic index diet. No study reported on mortality, morbidity or costs.”

v. I started reading Dinosaurs Past and Present a few days ago. It’s actually a quite short and neat book, but I haven’t gotten very far as other things have gotten in the way. I just noticed that a recently published PlosOne study deals with some of the same topics covered in the book – I haven’t read it yet but if you’re curious you can read the article on Forearm Posture and Mobility in Quadrupedal Dinosaurs here.

September 25, 2013 - Posted by | Chess, data, diabetes, Lectures, medicine, Paleontology, personal, studies

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: