Econstudentlog

Stuff

i. I had a doctor’s appointment today and got the results of my bloodwork back. My Hba1c was 48, or 6.5%. This is the lowest it’s been for as long as I can remember. I have had some trouble with hypoglycemic episodes now and then, but not significantly more than usual and I’ve had no major episodes. I believe the lowered Hba1c is probably mostly a result of lowered nocturnal blood glucose values. These have however at some points been uncomfortably low, so I’m not sure 6,5 is a realistic long-term goal and because of those uncomfortably low values I have made adjustments along the way which probably means that the Hba1c may be a bit higher next time if other things stay pretty much the same (which I know they won’t; for instance I’m planning on significantly increasing my running over the next four months). But even so I was very happy about this result, as I choose to believe that it means I’ll actually be able to obtain <7.0% results in the future without major adverse events if I’m careful and vigilant.

This recent post goes into more detail about the hypoglycemia risk and what it’s about. This Danish post has some data on the distribution of Hba1c results among Danish diabetics – the relevant figure is this one (with 6.5%, I’m in the 10% fractile).

ii. I’m now ‘officially’ a researcher. I have just become a member of Statistics Denmark’s research programme (-forskerordning), which means that I’ve obtained access to a specific data set which I’ll do work on during the next year. Danish registers contain a lot of good information compared to the registers of most other countries, so I may actually be able to look at stuff that a lot of researchers elsewhere are simply not able to analyze due to data issues – which is exciting. Unfortunately I’ll not be comfortable blogging anything about this stuff, as there are a huge number of restrictions on data access/sharing etc. – but I believe it’ll be interesting to work with this stuff and I’m looking forward to it.

iii. A couple of Khan Academy videos:

iv. PlosOne: Sex Differences in Mathematics and Reading Achievement Are Inversely Related: Within- and Across-Nation Assessment of 10 Years of PISA Data.

Abstract: “We analyzed one decade of data collected by the Programme for International Student Assessment (PISA), including the mathematics and reading performance of nearly 1.5 million 15 year olds in 75 countries. Across nations, boys scored higher than girls in mathematics, but lower than girls in reading. The sex difference in reading was three times as large as in mathematics. There was considerable variation in the extent of the sex differences between nations. There are countries without a sex difference in mathematics performance, and in some countries girls scored higher than boys. Boys scored lower in reading in all nations in all four PISA assessments (2000, 2003, 2006, 2009). Contrary to several previous studies, we found no evidence that the sex differences were related to nations’ gender equality indicators. Further, paradoxically, sex differences in mathematics were consistently and strongly inversely correlated with sex differences in reading: Countries with a smaller sex difference in mathematics had a larger sex difference in reading and vice versa. We demonstrate that this was not merely a between-nation, but also a within-nation effect. This effect is related to relative changes in these sex differences across the performance continuum: We did not find a sex difference in mathematics among the lowest performing students, but this is where the sex difference in reading was largest. In contrast, the sex difference in mathematics was largest among the higher performing students, and this is where the sex difference in reading was smallest. The implication is that if policy makers decide that changes in these sex differences are desired, different approaches will be needed to achieve this for reading and mathematics. Interventions that focus on high-achieving girls in mathematics and on low achieving boys in reading are likely to yield the strongest educational benefits.”

v. Genomic responses in mouse models poorly mimic human inflammatory diseases.

Abstract: “A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are non-existent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g.,R^2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases.”

vi. Married men at the age of 40 can expect to live on average 7.1 years longer than unmarried men at the age of 40, and 6.6 years longer than divorced men at the age of 40. For women the life expectancy difference between the married and unmarried group is 4.8 years, and the difference between married women and divorced women is 4.3 years. The excess mortality for unmarried men in their forties (compared with married males) is around 250%, and for men in their fifties it’s still above 200%.

The data reported above is from a new publication by Statistics Denmark which you can read here. Here’s a related publication. Here is a recent publication on the education levels of Danish emigrants. All three publications are unfortunately in Danish.

vii. Nasa – The Tyranny of the Rocket Equation. This part was surprising to me, because I’d never really thought about this:

“If the radius of our planet were larger, there could be a point at which an Earth escaping rocket could not be built. Let us assume that building a rocket at 96% propellant (4% rocket), currently the limit for just the Shuttle External Tank, is the practical limit for launch vehicle engineering. Let us also choose hydrogen-oxygen, the most energetic chemical propellant known and currently capable of use in a human rated rocket engine. By plugging these numbers into the rocket equation, we can transform the calculated escape velocity into its equivalent planetary radius. That radius would be about 9680 kilometers (Earth is 6670 km). If our planet was 50% larger in diameter, we would not be able to venture into space, at least using rockets for transport.”

viii. I’m very surprised they did not already know this.

April 3, 2013 - Posted by | data, demographics, diabetes, genetics, Khan Academy, papers, personal

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: